Skip to main content

Global Sensitivity Analysis of Constraint-Based Metabolic Models

  • Conference paper
  • First Online:
Book cover Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2018)

Abstract

In the latter years, detailed genome-wide metabolic models have been proposed, paving the way to thorough investigations of the connection between genotype and phenotype in human cells. Nevertheless, classic modeling and dynamic simulation approaches—based either on differential equations integration, Markov chains or hybrid methods—are still unfeasible on genome-wide models due to the lack of detailed information about kinetic parameters and initial molecular amounts. By relying on a steady-state assumption and constraints on extracellular fluxes, constraint-based modeling provides an alternative means—computationally less expensive than dynamic simulation—for the investigation of genome-wide biochemical models. Still, the predictions provided by constraint-based analysis methods (e.g., flux balance analysis) are strongly dependent on the choice of flux boundaries. To contain possible errors induced by erroneous boundary choices, a rational approach suggests to focus on the pivotal ones. In this work we propose a novel methodology for the automatic identification of the key fluxes in large-scale constraint-based models, exploiting variance-based sensitivity analysis and distributing the computation on massively multi-core architectures. We show a proof-of-concept of our approach on core models of relatively small size (up to 314 reactions and 256 chemical species), highlighting the computational challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tangherloni, A., Nobile, M., Besozzi, D., Mauri, G., Cazzaniga, P.: LASSIE: simulating large-scale models of biochemical systems on GPUs. BMC Bioinform. 18(1), 246 (2017)

    Article  Google Scholar 

  2. Swainston, N., et al.: Recon 2.2: from reconstruction to model of human metabolism. Metabolomics 12(7), 1–7 (2016)

    Article  Google Scholar 

  3. Cazzaniga, P., et al.: Computational strategies for a system-level understanding of metabolism. Metabolites 4, 1034–1087 (2014)

    Article  Google Scholar 

  4. Bordbar, A., Monk, J.M., King, Z.A., Palsson, B.O.: Constraint-based models predict metabolic and associated cellular functions. Nat. Rev. Genet. 15(2), 107 (2014)

    Article  Google Scholar 

  5. Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001)

    Article  MathSciNet  Google Scholar 

  6. Saltelli, A.: Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 145(2), 280–297 (2002)

    Article  MathSciNet  Google Scholar 

  7. Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S.: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 181(2), 259–270 (2010)

    Article  MathSciNet  Google Scholar 

  8. Orth, J.D., Thiele, I., Palsson, B.Ø.: What is flux balance analysis? Nat. Biotechnol. 28(3), 245–248 (2010)

    Article  Google Scholar 

  9. Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F.: Sensitivity analysis for chemical models. Chem. Rev. 105, 2811–2827 (2005)

    Article  Google Scholar 

  10. Damiani, C., Filisetti, A., Graudenzi, A., Lecca, P.: Parameter sensitivity analysis of stochastic models: application to catalytic reaction networks. Comput. Biol. Chem. 42, 5–17 (2013)

    Article  MathSciNet  Google Scholar 

  11. Nobile, M.S., Mauri, G.: Accelerated analysis of biological parameters space using GPUs. In: Malyshkin, V. (ed.) PaCT 2017. LNCS, vol. 10421, pp. 70–81. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62932-2_6

    Chapter  Google Scholar 

  12. Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33(2), 161–174 (1991)

    Article  Google Scholar 

  13. Campolongo, F., Cariboni, J., Saltelli, A.: An effective screening design for sensitivity analysis of large models. Environ. Model. Softw. 22(10), 1509–1518 (2007). Modelling, computer-assisted simulations, and mapping of dangerous phenomena for hazard assessment

    Article  Google Scholar 

  14. Sobol, I.M., Kucherenko, S.: Derivative based global sensitivity measures and their link with global sensitivity indices. Math. Comput. Simul. 79(10), 3009–3017 (2009)

    Article  MathSciNet  Google Scholar 

  15. Usher, W., Herman, J., Whealton, C., Hadka, D.: SALib/SALib: Launch! (2016)

    Google Scholar 

  16. Saltelli, A., et al.: Global Sensitivity Analysis: The Primer. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  17. Damiani, C., et al.: A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: the WarburQ effect. PLoS Comput. Biol. 13(9), e1005758 (2017a)

    Article  Google Scholar 

  18. Di Filippo, M., et al.: Zooming-in on cancer metabolic rewiring with tissue specific constraint-based models. Comput. Biol. Chem. 62, 60–69 (2016)

    Article  Google Scholar 

  19. Damiani, C., Di Filippo, M., Pescini, D., Maspero, D., Colombo, R., Mauri, G.: popFBA: tackling intratumour heterogeneity with flux balance analysis. Bioinformatics 3(14), i311–i318 (2017)

    Article  Google Scholar 

  20. Graudenzi, A., et al.: Integration of transcriptomic data and metabolic networks in cancer samples reveals highly significant prognostic power. J. Biomed. Inform. 87, 37–49 (2018)

    Article  Google Scholar 

  21. Damiani, C.: Integration of single-cell RNA-seq data into population models to characterize cancer metabolism. PLoS Comput. Biol. 15(2), e1006733 (2019)

    Article  Google Scholar 

  22. Gabriel, E., et al.: Open MPI: goals, concept, and design of a next generation MPI implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.) EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30218-6_19

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Pescini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Damiani, C., Pescini, D., Nobile, M.S. (2020). Global Sensitivity Analysis of Constraint-Based Metabolic Models. In: Raposo, M., Ribeiro, P., Sério, S., Staiano, A., Ciaramella, A. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2018. Lecture Notes in Computer Science(), vol 11925. Springer, Cham. https://doi.org/10.1007/978-3-030-34585-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34585-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34584-6

  • Online ISBN: 978-3-030-34585-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics