
HDArray: Parallel Array Interface for
Distributed Heterogeneous Devices

Hyun Dok Cho1??, Okwan Kwon1, and Samuel P. Midkiff2

1 NVIDIA Corporation, Santa Clara, CA 95050, USA
{hyundokc,okwank}@nvidia.com

2 Purdue University, West Lafayette, IN 47907, USA
smidkiff@purdue.edu

Abstract. Heterogeneous clusters with nodes containing one or more
accelerators, such as GPUs, have become common. While MPI provides
inter-address space communication, and OpenCL provides a process
with access to heterogeneous computational resources, programmers are
forced to write hybrid programs that manage the interaction of both
of these systems. This paper describes an array programming interface
that provides users with automatic and manual distributions of data
and work. Using work distribution and kernel def and use information,
communication among processes and devices in a process is performed
automatically. By providing a unified programming model to the user,
program development is simplified.

Keywords: Parallel Programming Model · Distributed Shared Memory
· Heterogeneous Systems · MPI · OpenCL.

1 Introduction

As GPU programming becomes more mainstream, both large and small scale
multi-node systems with one or more GPUs per node have become common.
These nodes, however, complicate already messy distributed system programming
by adding MPI [12] on top of proprietary host-GPU mechanisms. Developers
must maintain two programming models: one for intra-process communication
among devices and one for inter-process communication across address spaces.

Several systems have improved the programmability of multi-node systems
with accelerators. SnuCL [15,17], dCuda [14], and IMPACC [16] support transpar-
ent access to accelerators on different nodes, and PARRAY [7] and Viñas et al. [31]
provide high-level language abstractions and flexible array representations. Pro-
grammers can develop high-performance applications but must manage low-level
details of accelerator programming or provide explicit communication code. Parti-
tioned Global Address Space (PGAS) platforms for accelerators, XMP-ACC [21],
XACC [24], and Potluri et al. [26], relieve programmers from dealing with data
distribution, but data is strongly coupled to threads, making performance tun-
ing more difficult. Finally, compiler-assisted runtime systems, Hydra [28] and
?? This work was done while at Purdue University.

ar
X

iv
:1

80
9.

05
65

7v
2

 [
cs

.D
C

]
 1

8
Se

p
20

18

2 H. Cho et al.

OMPD [19], propose a fully automatic approach that allows OpenMP programs
to run on accelerator clusters, presenting an attractive alternative for developing
repetitive, regular applications, but the distribution of work and data are limited
by OpenMP semantics and expressiveness.

In this paper, we describe the Heterogeneous Distributed Array (HDArray)
interface and runtime system. HDArray targets program execution on cluster-
sized distributed systems with nodes containing one or more accelerators, i.e.,
devices. Work is done as OpenCL work items, and HDArray provides ways to
explicitly and implicitly partition work onto devices.

HDArray also provides a way for the data used by the work on a device to
be specified. The data read and written is typically relative to work items and
can be specified either using offsets from the work item, or with an absolute
specification of the data. HDArray then tracks the data defined and used by each
work item, which allows communication to be generated automatically, since, in
race-free programs, HDArray knows where the last written copy of a datum is,
and who needs that value. Importantly, data is not explicitly distributed and is
not bound to, or owned by, a work item, but flows from its defining process and
device to the process and device where it is needed.

Finally, HDArray allows work to be repartitioned at any point in the program.
This flexibility allows a programmer to optimize the work distribution and its
necessary communication without any changes to the kernel code.

To summarize, our contributions are

1. A novel and easy programming model that can efficiently run on distributed
heterogeneous devices, enabling flexible work distribution, with data flowing
to the work that needs it.

2. A fully automatic runtime communication generation scheme and its imple-
mentation.

3. A flexible user interface that allows manual tuning of work distribution for
high performance and enabling automatic communication.

4. Experimental results showing good performance and speedups on small
clusters with eight nodes and 1 to 32 GPUs.

The rest of the paper is organized as follows. Sections 2, 3, and 4 describe
the design and implementation of the HDArray interface. Section 5 presents
a performance evaluation of the HDArray runtime system. Section 6 discusses
related work, and conclusions and future work follow in Section 7.

2 Design of the HDArray Interface

We now present the design of the HDArray interface and its runtime system as
shown in Fig. 1. The central structure, and concept, of the HDArray system is
the HDArray itself. The HDArray encapsulates a host buffer and device buffer by
keeping necessary states for communication among processes and kernel compu-
tation. The HDArray system provides a collection of APIs and annotations that
the programmer uses to access the features of the HDArray system. These APIs

HDArray: Parallel Array Interface for Distributed Heterogeneous Devices 3

HDArray
frontend

MKernel mapping information

E
C/C++

compiler

Transformed

programHDArray

program
Executable

(a) The HDArray frontend

Runtime
Section manager

Communication manager

Computation manager

HDArray A
Host buffer

Device bufferM

Resources

E …

(b) The HDArray runtime

Fig. 1. An overview of the HDArray system within a single process.

and annotations are translated by the HDArray frontend into calls, arguments,
and initialization files (M) for use by the HDArray runtime.

2.1 HDArray Structures

Each MPI process that maps to a single OpenCL device maintains HDArrays
and their structures. Each HDArray contains the necessary state for the system
to automatically generate communication and manage data distributions.

Host and device buffers contain the distributed data for an HDArray for a
host and device in the HDArray program, respectively. Host buffers reside in the
process memory of the host, and device buffers reside on a device.

An HDArray contains sets of array sections: global, i.e., across all kernels,
definition sections (GDEF); local, i.e., for a particular kernel, definition sections
(LDEF); and local use sections (LUSE). These sets are summarized by one or
more sections of [LB:UB] that give the lower and upper bounds of the array
sections for all processes. GDEF is a set of written sections not propagated to
different processes, and two types of GDEFs are maintained: sGDEF and rGDEF.
sGDEF for a process p describes HDArray elements that p has written, but not
sent, to other processes q, i.e., the elements for which p describes the coherent
copy that must be sent to other processes that use those values. rGDEF for
process p describes elements of the HDArray that p has not received from q.
LUSE/LDEF is the set of sections each process reads/writes in the kernel.

HDArray programs are SPMD programs, and each process maintains coherent
local copies of the aforementioned four sets for all processes, and thus each process
knows the array access information of the other processes. All LUSE, LDEF, and
GDEF sets are empty when an HDArray is created. LUSE (LDEF) is updated by
HDArray annotations and APIs, as discussed in Section 3, and GDEF is updated
as a function of itself, LUSE, and LDEF, which we describe in Section 2.2.

As well, each process maintains a history of local and global sections, and
sections to communicate for each HDArray of a kernel. The runtime maintains
the history to reduce the overhead of determining communication by avoiding an
expensive data flow evaluation if possible, as described in Section 4.2.

2.2 Communication Generation using GDEF, LDEF, and LUSE

The runtime communicates elements of HDArrays immediately before a kernel
launch. Intersecting the GDEF and LUSE sets allows a process to determine
which processes have elements of an HDArray that it will use in a kernel call,
and therefore which elements it must communicate with that process. Fig. 2
shows the example of the intersection with two processes. Let k be the index of a

4 H. Cho et al.

SEND0,1(k)

sGDEF update

sGDEF(k)
sGDEF0,1(k) : (sGDEF0,1(l) - SEND0,1(k)) ⋃ LDEF0,0(k)
sGDEF1,0(k) : (sGDEF1,0(l) - SEND1,0(k)) ⋃ LDEF1,1(k)

SEND0,1(k) : P0→P1

SENDMSG(k)

SEND1,0(k) : P1→P0

LUSE0,1(k)
sGDEF(l) LUSE(k)

P1 LUSE1,0(k)

Process
sGDEF0,1(l)P0
sGDEF1,0(l)

sGDEF1,0(l)

sGDEF0,1(l) SEND0,1(k)

sGDEF1,0(k)

sGDEF0,1(k)

LUSE0,1(k)
sGDEF1,0(l)

sGDEF0,1(l)

Generate a send message

∩ LDEF0,0(k)⋃-

Fig. 2. sGDEF of use HDArray for Process 0 before and after kernel call (sGDEF0,1(l)
and sGDEF0,1(k) respectively). The system intersects sGDEF with LUSE, sends the
intersection from P0 to P1, and updates sGDEF. Note that LDEF0,0(k) is NULL.

kernel call and l the preceding kernel call of k. For process p, sGDEFp,q(l) and
rGDEFp,q(l) are sets of sections that are live before the kernel call k. LUSEp,p(k)
is local uses by process p for the kernel call k, whereas LUSEp,q(k) represents
local uses of other process q for 0 ≤ q ≤ nprocs− 1, q 6= p. The communication
messages of p to send and receive for the kernel call k are then generated as:

SENDMSGp,q(k) = sGDEF p,q(l) ∩ LUSEp,q(k) (1)
RECVMSGp,q(k) = rGDEF p,q(l) ∩ LUSEp,p(k) (2)

After communication and kernel execution, GDEF sets for each HDArray for
kernel call k must be updated to avoid redundant communication for used
HDArrays, and detect new communication in the future kernel call k + 1 for
defined HDArrays. These updates can be calculated together as Eqns. 3 and 4.

sGDEF p,q(k) = (sGDEF p,q(l)− SENDMSGp,q(k)) ∪ LDEF p,p(k) (3)
rGDEF p,q(k) = (rGDEF p,q(l)−RECVMSGp,q(k)) ∪ LDEF p,q(k) (4)

Fig. 2 shows the example of the sGDEF update. The SENDMSG and RECVMSG
for the kernel call k are subtracted from sGDEF and rGDEF of kernel call l,
respectively. These removes communicated data from sGDEF and rGDEF of the
kernel call l. The results of the subtractions are then unioned with LDEF sets to
update sGDEF and rGDEF for kernel call k. Similar to LUSE, LDEFp,p(k) and
LDEFp,q(k) sets represent local definitions by process p and q for kernel call k,
respectively.

3 HDArray Programming Interface

The HDArray programming interface has two types of specifications. First, a single
pragma of the form #pragma hdarray [clauses] allows user-defined hints for
generating LUSE and LDEF to find data to be accessed, and partitioning work
item regions to distribute work. The functionality is contained in the clauses,
described next. Second, HDArray provides library functions, hiding low-level
details of distributed device programming, described below. Hereafter, we use
the terms work item and thread interchangeably.

Table 1 lists the available annotation clauses. Five clauses exist: use, def,
use@, def@, and partition. We now explain each of these.

HDArray: Parallel Array Interface for Distributed Heterogeneous Devices 5

Table 1. Core hdarray directive clauses
Clause Description
use (array name, offset) Declare offset(s) of an array to be used.

def (array name, offset) Declare offset(s) of an array to be defined.

use@ (array name) Declare absolute sections(s) of an array to be used.

def@ (array name) Declare absolute sections(s) of an array to be defined.

partition (partition ID, dimension, dev:ID, region) Manually partition work item regions to devices.

1 ...
2 #pragma hdarray partition(part0, (10240,10240),\
3 dev:0, (0,3008),(0,10240),\
4 dev:1,(3008,7232),(0,10240))
5 ...
6 HDArrayApplyKernel("corr_ker1", part0, ...);
7 HDArrayApplyKernel("corr_ker2", part0, ...);
8 ...

Listing 1.1. Manually partitioned Correlation host code.

Offset Clauses: use and def. Each HDArray accessed in a kernel can be a use,
def, or both. These clauses specify elements of arrays, as offsets relative to work
items, that will be read and/or written by a single work item. The offsets can be
used when a kernel’s array access pattern is relative to a work item, which is the
most common kernel programming pattern. If the offsets are specified, the system
derives LDEF and LUSE from the offset and partitioned work item region for
each process. An offset can be any integer, e.g., “0” indicates the current position
of an array element relative to the work item index. It also describes a direction
with “ + ” or “− ”; e.g., (0,−1), referring to the previous elements of the same
row. An “ ∗ ” denotes all elements of the array in the dimension of interest, e.g.,
(0, ∗) denotes all elements in a row of a 2-dimensional array.

Absolute Section Interface Clauses: use@ and def@. When it is difficult to
represent offsets, e.g., a kernel’s access pattern is not relative to a work item or
non-rectangular, one can use the absolute section interface with use@ and/or
def@ clauses and APIs. Unlike offsets, absolute sections are the coordinates
of the [lowerbound, upperbound] of each dimension of an up to three dimen-
sional item. The absolute section interface clauses inform the system to bypass
LUSE/LDEF updates (Fig. 3). Instead, users call absolute section interface
APIs, e.g., HDArraySetAbsoluteUse, described in Section 3.1, to set LDEF and
LUSE. The APIs allow users to specify multiple absolute sections for each device,
allowing non-rectangular regions or different access patterns for each device to
be described, and enable fine tuning of communication.

Partition Clause: partition. HDArray provides an HDArrayPartition library
call that allows a ROW, COL or BLOCK partition to be specified. HDArray
will automatically partition the work evenly across processes and devices in the
specified manner. A ROW partitioning is shown in Listing 1.2. The API then
returns a unique partition ID, which is used, repeatedly if necessary, to execute
kernels with the partitioned work item. This partition ID, along with use and
def information, allows the system to know data needed by the work done by the
kernel on each device.

6 H. Cho et al.

Table 2. Core HDArray interface library functions
Prototype Description

int HDArrayInit(int argc, char *argv[], char *kpath,
char *dpath)

Initialize HDArray runtime environment and returns
device ID. Take path to OpenCL kernel file (kpath)
and optional device information file (dpath).

void HDArrayExit(void) Terminate the HDArray runtime environment.
void HDArrayShowDeviceInfo(int devID) Display device information. Take device ID.
HDArray_t *HDArrayCreate(char *sym, char *type, void

*uA, int dim, ...)
Allocate host and device buffer and returns HDArray
handle. Take name, type, address, and size of user
array (uA).

int HDArrayPartition(PART_T type, int dim, ...) Partition work item regions. Take type of partition
and variable list for array size and region for each
dimension. Supported types: ROW, COL, and BLOCK.

void HDArrayApplyKernel(char *kName, int partID,...) Perform communication and kernel execution. Take
the kernel name, partition ID, and kernel arguments.

void HDArrayRead(HDArray_t *hA, void *uA,int partID)
⇒ Same for HDArrayWrite

Read(Write) array section specified by partition ID
from(to) HDArray(hA) to(from) user array (uA).

void HDArrayReduce(HDArray_t *hA, void *res,
REDUCE_OP op, int partID)

Reduce specific array sections of HDArray(hA) to a
scalar value(res). Supported ops: SUM, PROD, MAX, and
MIN.

void HDArraySetAbsoluteUse(char *kName, int partID,
HDArray_t *hA, int devID, int dim, ...)
⇒ Same for HDArraySetAbsoluteDef

Set absolute section used(defined) for each device.
The absolute section becomes LUSE(LDEF).

void HDArraySetTrapezoidUse(char *kName, int partID,
HDArray_t *hA, int devID, int dim, ...)
⇒ Same for HDArraySetTrapezoidDef

Set predefined shape for LUSE(LDEF). Specify four
positions of upper-left, upper-right, below-left, and
below-right.

The HDArray pragma enables manual partitions to be used as well, as shown
in Listing 1.1, which specifies two work regions. The annotation is expanded to
an internal function call that performs the partitioning and returns a unique
partition ID. In lines 6-7, the partition ID (part0) is used to determine the work
distributions of the two kernels. This annotation allows more programmer control
for optimal communication tuning and load balancing.

3.1 HDArray Library Functions

The library functions, with core APIs described in Table 2, encapsulate low-level
details of the programming model.

HDArrayInit initializes the MPI and OpenCL systems and reads in data gener-
ated by the frontend. A table is maintained for each HDArray’s use in a kernel
call, which is initialized with information gathered by the frontend from use and
def. This use/def and partitioning information are used to generate inter-process
and host-device communication. The last parameter of the HDArrayInit function
provides a device information file containing tuples (MPI rank, device ID) to
the kernel. Note that MPI rankfile allows the MPI rank to be known before a
program run. The device ID can be used to specify which device(s) to use when
multiple devices are available to a process.

HDArrayCreate creates a host and device buffer for the HDArray on each
process using malloc() and clCreateBuffer() respectively, and allocates and
initializes the HDArray’s GDEF.

HDArrayPartition evenly partitions work item regions for each device for a
given partitioning type. It then defines the partitioned work item region entry in
a partition table maintained for the HDArray and return a unique partition ID
that is used for work and data distribution.

HDArray: Parallel Array Interface for Distributed Heterogeneous Devices 7

HDArrayApplyKernel manages communication and launches a kernel. It per-
forms the following actions:

– Bind arguments to the kernel call. The system finds the device buffer from
HDArray handle, binds all other arguments directly, and calls the OpenCL
function clSetKernelArg().

– Determine and perform communication. Use HDArrays trigger communica-
tion. LUSE is updated by composing use offset (in the kernel table) with
partitioned work item regions, and the LUSE is intersected with GDEF
to determine communication (Eqns. 1 and 2). If the intersection resides in
the device, it is transferred to the host using clEnqueueReadBufferRect().
Then, any needed inter-process non-blocking (e.g., point-to-point or collective)
communication is done, followed by transferring data to the device using
clEnqueueWriteBufferRect(). Finally, the system updates the GDEF sets,
as described in Eqns. 3 and 4.

– Execute the kernel. The preferred work-group size is found using
clGetKernelWorkGroupInfo(), the work-group size is set, and the kernel is
called using clEnqueueNDRangeKernel(). Modified device buffers are known
because of the def offset from the kernel table, and the system updates LDEF
and GDEF (Eqns. 3 and 4) so that the host has the coherent copy.

HDArraySetAbsoluteUse and HDArraySetAbsoluteDef specify the absolute
sections of the HDArrays annotated with use@ or def@ clauses (Section 3) which
are then used to define LUSE and LDEF for each device. LDEF updates must
be precise because they affect GDEF, which defines who owns the coherent
copy of a value. Multiple HDArraySetAbsoluteDef calls can be used to give
precise updates, but for ease of programming and avoiding errors in entering each
absolute section, HDArray supports predefined shapes for absolute section updates
for LDEF (and LUSE). For example, the HDArraySetTrapezoidDef function
supports LDEF updates for two-dimensional trapezoidal or triangular shapes,
which avoids multiple HDArraySetAbsoluteDef calls to update the LDEF.

Utility library functions In addition to the core API functions, utility library
functions are provided. I/O utility functions allow the programmer to move data
between user space arrays and HDArrays. The HDArray runtime updates the
GDEF, LDEF, and LUSE information to reflect the data movement, thus keeping
these consistent with the actual memory state. Reduction functions are also
provided. If all data for an HDArray is in the host memories, a local reduction
followed by an MPI reduction is performed. If some or all data is in the device
memory, a device reduction is performed followed by an MPI reduction.

3.2 A Case Study: Matrix Multiply

Listing 1.2 and 1.3 show a General Matrix Multiply (GEMM) implemented using
HDArray. The program uses C host code and OpenCL device code to perform
the matrix multiply C = A×B on three 1024×1024 2D matrices.

8 H. Cho et al.

1 void main(int argc, char *argv[]) {
2 int ni = 1024, nj = 1024, nk = 1024;
3 float a[ni][nk], b[nk][nj], c[ni][nj], alpha, beta;
4 ... // initialize variables
5
6 HDArrayInit(argc, argv, "gemm.cl", NULL);
7 int part0 = HDArrayPartition(ROW, 2, ni, nj, 0, 0, ni, nj)
8
9 HDArray_t *hA = HDArrayCreate("a", "float", a, 2, ni, nk);

10 HDArray_t *hB = HDArrayCreate("b", "float", b, 2, nk, nj);
11 HDArray_t *hC = HDArrayCreate("c", "float", c, 2, ni, nj);
12 HDArrayWrite(hA, a, part0);
13 HDArrayWrite(hB, b, part0);
14 HDArrayWrite(hC, c, part0);
15
16 HDArrayApplyKernel("gemm", part0, hA, hB, hC, alpha, beta, ni, nj, nk);
17 HDArrayRead(hC, c, part0);
18 HDArrayExit();
19 }

Listing 1.2. GEMM host code.

1 #pragma hdarray use(A,(0,*)) use(B,(*,0)) def(C,(0,0))
2 __kernel void gemm(__global float *A, __global float *B, __global float *C,
3 float alph, float beta, int ni, int nj, int nk) {
4 int i = get_global_id(1), j = get_global_id(0);
5 if ((i < ni) && (j < nj)) {
6 C[i * nj + j] *= beta;
7 for(int k=0; k < nk; k++)
8 C[i*nj+j] += alph * A[i*nk+k] * B[k*nj+j];
9 }

10 }

Listing 1.3. GEMM device code.

Line 6 of the host code initializes the MPI and OpenCL environments and
finds available devices to run the OpenCL kernel implemented in “gemm.cl”. Line
7 evenly partitions the highest dimension of 2D array domain with regards to the
number of devices. The function returns a partition ID, part0, which represents
the partitioned region and is used throughout the program.

On lines 9-11, the host creates HDArrays and allocates host and device
buffers with the same size of user-space arrays. After the allocation, the host
binds program array variables (a, b, c) to handles (hA, hB, hC) that point into
structures in the HDArray runtime and allow users to access device buffers holding
data for their respective program arrays. Lines 12-14 write user arrays into the
device buffer of HDArrays according to the part0 specification. Therefore, the
data is distributed to different devices.

On line 16, the host launches the “gemm” kernel using the part0 and kernel
arguments. part0 is used for work distribution. As shown in Fig. 3, the runtime
then binds HDArray handles and host variables to the kernel arguments, handles
necessary communication, and invokes the kernel (Listing 1.3). Line 17, reads
the result of the computation from the device memory into user array c. Finally,
the host frees all the resources, including HDArray’s, and finalizes the parallel
program in line 18.

The device code in Listing 1.3 shows an ordinary OpenCL kernel to be called,
with an annotation added on line 1. The annotation is a #pragma hdarray
statement with offset clauses discussed in Section 3. These offsets, relative to a
work item index, specify slices of the A, B, and C arrays that are used and defined.
The code informs the runtime system that a single thread reads all elements of

HDArray: Parallel Array Interface for Distributed Heterogeneous Devices 9

the row of the array A and all elements of the column of the array B. The zero
offset indicates that each thread writes the result of the multiplication to its work
item index of the array C.

With the work partitioning (part0) and per-thread array element access
(offset) information provided by the host and device code, respectively, the
runtime is able to generate LUSE and LDEF, and distribute work for the kernel.

4 Implementation

This section describes some implementation details not covered in Section 3.

4.1 Frontend and Execution Phase

The frontend phase, shown in Fig. 1a, uses a simple parser that performs three
tasks: (1) parse OpenCL kernel functions and HDArray pragmas, (2) collect
information, including use and def offset information, that is written to the file M
(Fig. 1) used to initialize the HDArray table, and (3) generate code for HDArray
pragmas and directives that pass partitioning information to the runtime.

Fig. 1b shows the execution phase. The main tasks of the HDArray execution
phase are (1) maintaining information about HDArray sections residing on hosts
and in devices, (2) determining and scheduling communication to ensure up-
to-date data is available for computations, and (3) launching kernel executions.
Fig. 3 sketches the logic of HDArrayApplyKernel which is the core part of the
execution phase.

NONO
YES

NO YES

Set kernel
arguments Launch kernelFor each USE

type HDArray

Update LUSE

Schedule Communication
Transfer data to host

Execute Communication
Transfer data to device

USE@ ? func ptr?

callback

For each DEF
type HDArray

Update LDEF

Update GDEF
(union)

Update GDEF (subtract)

End

NO
YES

YES

func ptr?

callback

DEF@ ?

Fig. 3. Logic of HDArrayApplyKernel function.

4.2 Reducing Runtime Overhead

The major overhead incurred by our baseline runtime system comes from in-
tersecting and updating array sections to determine communication. Data to
send or receive are found by intersecting GDEF with LUSE sets, as shown in
Eqns. 1 and 2, which requires the number of computations on each process p
that is linear in the number of processes. To reduce the overhead, the HDArray
system attempts to evaluate the intersections only when it is necessary to do
so. To assist in this, the system caches the last GDEF, LDEF, and LUSE sets
as well as intersections per kernel call/partition ID. If LUSE and GDEF are

10 H. Cho et al.

unchanged for repeated kernel calls with the same partition ID, the system reuses
the intersections from the last kernel call.

LUSE and LDEF sets, accessed in a repetitive kernel call with the same
partition ID, can be reused. However, GDEF sets for that kernel call can change
as they are a function of the LUSE and LDEF sets and all previous GDEFs.
Therefore, the system must check whether the GDEF sets have changed. An exact
comparison of GDEFs takes O(n2) time, but the GDEF comparison overhead is
reduced in two steps. First, the system maintains history buffers of the IDs of
LDEF and LUSE sets for each HDArray that tracks LDEF/LUSE IDs for the
entire program. It then evaluates the def-use chains in the buffer to determine
changes in GDEF. For example, the system compares the last LDEF and LUSE
IDs with the current LDEF and LUSE IDs. If the two pairs are the same, GDEF
sets for last and current kernels are also the same because a GDEF update is a
function of LDEF and LUSE, thereby the system bypasses the GDEF comparison.
If the history buffer does not provide enough information, as the second step,
the system performs an O(n) comparison of GDEF sections, enabled by keeping
the GDEF sections in sorted order when updated in Eqns. 3 and 4. The sorted
GDEFs allow simple and linear-time GDEF comparisons.

Finally, the system hides the overhead of section updates by overlapping the
updates with host communication and device computation. It updates GDEF
sets for HDArray used during the communications which are all non-blocking.
For a defined HDArray, the system updates LDEF and GDEF sets during the
non-blocking kernel execution.

5 Experimental Results

In this section, we evaluate the effectiveness of the proposed techniques with six
publicly available benchmarks. Our evaluation is done using up to 32 OpenCL
devices (limited by Xsede job submission policies) on the Xsede Comet cluster [23,
29]. Comet has 1,944 compute nodes and 72 GPU nodes, connected by a 56 Gbps
FDR Infiniband. Each compute node consists of two 12 core Intel Xeon CPU
E5-2680 processors running at 2.50 GHz, 128 GB of main memory. The GPU
nodes consist of 36 NVIDIA P100 nodes and 36 NVIDIA K80 nodes, and each
node has 4 GPUs. We use both P100 and K80 GPU nodes, each of which has
total 40GB of device memory and utilize 4 GPU devices per node.

We use six micro-kernel benchmarks: GEMM, 2MM, 2D Convolution, Jacobi,
Covariance, and Correlation from the Polyhedral Benchmark Suite for GPUs
and accelerators (PolyBench/ACC) [11]. We compile the benchmarks with gcc
4.9.2 with -O3 and use OpenMPI version 1.8.4. OpenCL version 1.2 is used to
support NVIDIA devices. Baseline numbers are found using the implementations
provided by the benchmarks. For HDArray system numbers, the OpenCL device
code is augmented with HDArray pragmas with use and def clauses, and C host
code that includes HDArray library calls and partition clauses are added.

HDArray: Parallel Array Interface for Distributed Heterogeneous Devices 11

88%

68%

0.5
1
2
4
8

16
32

1 2 4 8 16 32

Sp
ee

du
p

Number of Processes

Jacobi
Ideal
K80
P100

91%

93%

0.5
1
2
4
8

16
32

1 2 4 8 16 32

Sp
ee

du
p

Number of Processes

Convolution
Ideal
K80
P100

92%

90%

0.5
1
2
4
8
16
32

1 2 4 8 16 32

Sp
ee

du
p

Number of Processes

GEMM
Ideal
K80
P100

75%

42%

0.5
1
2
4
8
16
32

1 2 4 8 16 32

Sp
ee

du
p

Number of Processes

2MM
Ideal
K80
P100

27%

16%

0.5
1
2
4
8
16
32

1 2 4 8 16 32

Sp
ee

du
p

Number of Processes

Covariance
Ideal
K80
P100

27%

16%

0.5
1
2
4
8
16
32

1 2 4 8 16 32

Sp
ee

du
p

Number of Processes

Correlation
Ideal
K80
P100

Fig. 4. Scalability for the HDArray runtime system on P100 and K80 nodes. We show
the speedup for each benchmark, which is the ratio of the execution time of a single
device to the execution time of the number of devices indicated on the x-axis. All the
benchmarks use an automatic row-wise partitioning for data and work distribution.

5.1 Scalability

Fig. 4 shows strong scaling on both P100 and K80 nodes. The baseline time is
for running one OpenCL device without HDArray. All the benchmarks perform a
row-wise partition using the HDArrayPartition function with a ROW argument
for work and data distribution. Most benchmarks running on K80 nodes scale
better than on P100 nodes because the P100 is faster than the K80, and thus the
communication overhead on P100 nodes is a larger fraction of the computation
time.

GEMM, shown in Section 3.2, uses 10,240×10,240 matrices with 100 itera-
tions. The HDArray runtime system detects and generates all-gather collective
communication because each OpenCL work-item needs row and column elements
of arrays for computation. Scaling is good to 32 processes, with similar efficiencies
on the K80 (92%) and P100 (90%), due to the low ratio of communication to
kernel execution time. 2MM performs two matrix multiplications, D = A× B
followed by E = C ×D. It differs from GEMM in that 2MM runs two kernel
functions within a loop and exhibits a data dependency because one kernel
defines the array D used by the other kernel. With the row-wise partitioning,
the efficiency drops off to about 75% (42%) on the K80 (P100) at 32 processes
because of the communication cost. The cost is proportional to the number of
processes, and every iteration requires the communication: once for the array B,
and 100 times for the array D.

A different partitioning can be used to reduce the communication cost. 2MM
with column-wise partitioning, as shown in Fig. 5, only communicates twice
for arrays A and C, and the efficiency is about 98% (96%) on the K80 (P100)
at 32 processes. Table 3 shows communication volumes of all 32 processes and

12 H. Cho et al.

98%

96%

0.5
1
2
4
8
16
32

1 2 4 8 16 32
Sp

ee
du

p
Number of Processes

2MM - Column
Ideal
K80
P100

44%

24%

0.5
1
2
4
8

16
32

1 2 4 8 16 32

Sp
ee

du
p

Number of Processes

Correlation - Manual
Ideal
K80
P100

Fig. 5. Scalability for the HDArray runtime system with different partitioning methods.
2MM uses automatic column-wise partitioning and Correlation uses manual row- and
column-wise partitionings.

Table 3. Total communication volume for 32 processes
Partition Convolution JACOBI GEMM 2MM Covariance Correlation

Default (Row) 5 MB 473 GB 12 GB 1262 GB 1268 GB 1268 GB
Customized 5 MB 473 GB 12 GB 25 GB 811 GB 811 GB

noticeable volume difference for 2MM. This performance tuning was done by
simply changing the PART_T argument of HDArrayPartition function.

Both Jacobi and Convolution kernels are iterative stencil codes, with four
and eight neighbors, respectively. The offsets of use and def clauses have similar
patterns for both benchmarks. For Jacobi, the device code consists of two kernels.
One kernel processes the following computation:

A[i][j] = (B[i][j − 1] +B[i][j + 1] +B[i− 1][j] +B[i+ 1][j])/4

The use clauses are specified for the kernel with four offsets, (0,-1), (0,+1),
(-1,0), (+1,0), for an array B. The other kernel performs B[i][j] = A[i][j], and
zero offsets are used. The host code allocates user space arrays to have ghost
cells at the array boundary, and then generates two partition IDs: one that
partitions the entire region for data distribution and the other that excludes
the cells for work distribution. Two kernels have a data dependency on array B
in the iteration space. Convolution has four additional offsets added, but there
is no data dependency. Both kernels use 20,480×24,080 matrices with 100,000
iterations, and the runtime detects and schedules a point-to-point communication.
Both benchmarks scale well with an efficiency of 88% (68%) on the K80 (P100)
for Jacobi, and 91% (93%) on the K80 (P100) for Convolution at 32 processes.
Similar to GEMM, two nodes for Convolution show similar efficiencies due to
the small communication overhead.

Covariance and Correlation are data mining benchmarks that compute a
measure from statistics that show how linearly related two variables are. These
benchmarks have triangular-shape array accesses, requiring the absolute section
interface discussed in Section 3. Both use 10,240 vectors and 10,240×10,240
matrices with 100 iterations, and the system detects point-to-point and all-gather
communication. Scaling is poor with the default row-wise partitioning with an
efficiency of 27% (16%) on the K80 (P100) for Correlation (similar to Covari-
ance). This is because evenly distributing work using HDArrayPartition causes

HDArray: Parallel Array Interface for Distributed Heterogeneous Devices 13

0.35

0.0000

0.0001

0.0005

0.0050

0.0500

0.5000

2 4 8 16 32

%
of

 To
ta

l E
xe

cu
tio

n
Tim

e

Number of Processes

Runtime Overhead - P100
jacobi convolution correlation
covariance 2mm gemm

0.12

0.0000

0.0001

0.0005

0.0050

0.0500

0.5000

2 4 8 16 32

%
of

 To
ta

l E
xe

cu
tio

n
Tim

e

Number of Processes

Runtime Overhead - K80
jacobi convolution correlation
covariance 2mm gemm

Fig. 6. Total runtime overhead for all six benchmarks on both P100 and K80. The
highest overhead is 0.35% from Jacobi on P100.

0.000
0.050
0.100
0.150
0.200
0.250

0.300
0.350

2 4 8 16 32
Ti

m
e

in
 Se

co
nd

s

Number of Processes

Overhead Time of Jacobi
Total overhead Intersection
LDEF and LUSE GDEF Update

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

1 2 4 8 16 32%
 o

f T
ot

al
 E

xe
cu

tio
n

Ti
m

e

Number of Processes

Overhead Rate of Jacobi
Total overhead
Intersection
LDEF and LUSE
GDEF Update

Fig. 7. Breakdown of runtime overhead for Jacobi on P100. There is no overhead
of GDEF updates because these updates are overlapped with communication and
computation. Running a single device also does not incur any overhead.

poor work and communication load balancing for kernels that have triangular
access patterns. The most time-consuming computation is done from the upper-
triangular section of an array which later requires communication to make the
array symmetric. As a result, each device gets a different amount of work, and a
device with the most computation also has the most communication, which leads
to the imbalance of computation and communication across the devices.

Manual partitioning (Listing 1.1) with optimized absolute section updates to
balance the work and communication among devices, gives better scalability with
an efficiency of 44% (24%) on the K80 (P100) with the reduced communication
volume as shown in Fig. 5 and Table 3, respectively. This result highlights the
value of integrating manual and automatic partitioning. Also, the performance
tuning does not require any changes in kernel code, but only a few lines are
changed in absolute section updates and partitioning in the host code.

5.2 Runtime Overhead

Fig. 6 shows the percentage of runtime overhead based on total execution time.
All of the benchmarks have less than 0.36% overhead on up to 32 processes. The
benchmarks on a P100 node have more overhead than on a K80 as the P100 is
faster than the K80, similar to the scalability difference. Our effort to minimize
the runtime overhead, as discussed in Section 4.2, significantly reduced the cost
of calculating GDEF, LDEF, LUSE, and intersection for all the benchmarks.
Without the optimization, the HDArray baseline system suffers from the overhead
of section calculations, which increases proportional to the number of processes.

14 H. Cho et al.

Breaking down the highest overhead benchmark in Fig. 7, the overhead
of GDEF updates are zero because they overlap with, and finish before, the
communication and kernel computation. This is a large improvement because
every kernel call requires the GDEF update. The intersection overhead, which
includes both intersection time and caching time, is much smaller, e.g., by a factor
of 19 for Jacobi on P100, than the baseline system. The result shows the benefit of
using the LDEF/LUSE history buffer and linear-time GDEF comparison. Caching
LDEF and LUSE for each kernel call is also beneficial. The LDEF and LUSE
update overhead does not linearly increase in time because the local sections are
reused after the first iteration of the kernel call. Finally, although not shown in
the figure, the system reduces the number of sections by merging adjacent or
redundant sections, further reducing the overheads of intersecting.

6 Related Work

Our paper is related to previous efforts to simplify distributed accelerator pro-
gramming with runtime support for efficient communication. Hydra [28] is a
compiler-assisted runtime system which extends OMPD [19]’s hybrid compiler-
runtime communication analysis to translate and execute OpenMP programs
on accelerator clusters. One difference is that HDArray handles communication
without any static analysis, allowing programmers to use separate compilation
and external binary libraries.

PGAS languages [6, 8, 25] have been extended to support accelerator clus-
ters [21, 24, 26]. PGAS languages expose a global shared array to relieve pro-
grammers from data distribution and communication handling but require the
specification of the affinity between data and threads, which makes data owned
by a thread. As the data ownership is strongly coupled with computation, chang-
ing data distribution may require the modification of computation code. Our
approach gives more freedom to the programmer to re-distribute data at any
parallel program point without changes in kernel code. High Performance Fortran
(HPF) [13,27] does not support accelerators.

Researchers have proposed language extensions for the programmability of het-
erogeneous clusters. SnuCL [17] and SnuCL-D [15] enable OpenCL applications to
run in a distributed manner without any modification. dCUDA [14] automatically
overlaps on-node computation and inter-node communication with hardware sup-
port and device-side remote memory access operations. It combines the MPI and
CUDA programming models into a single CUDA kernel. IMPACC [16] integrates
MPI and OpenACC [2] while exploiting shared memory parallelism. It reduces the
communication cost through unified MPI communication routines, a unified node
virtual address space, node heap aliasing technique, etc. Despite their optimized
communication with little or no code changes, programmers are forced to manage
numerous low-level details of the accelerator or MPI programming because these
tools provide an abstraction level analogous to OpenCL/CUDA or MPI, and
require explicit data transfer or communication code.

HDArray: Parallel Array Interface for Distributed Heterogeneous Devices 15

OmpSs [4] supports task parallelism and directives for computation offloading
and communication handling. Programmers specify accessed regions of shared
data, but no convenient way to define and operate on subarrays is provided. We
differ by supporting data parallelism and allowing users to specify per-thread
offset information, and both work and data partitioning can be done automatically
or manually. HOMP [32] proposes an extension of OpenMP for distributing and
binding computation and data, which gives users more control of managing data
and computation, but lacks cluster support and manual partitioning for specific
devices.

Viñas et al. [31] proposed the hybrid use of Hierarchically Tiled Array
(HTA) [3] for globally distributed arrays and Heterogeneous Programming Li-
brary (HPL) [30] for accelerators. Both HTA and HPL C++ libraries provide
implicit parallelism and communication and hide many low-level details of MPI
and OpenCL; however, there exist two different arrays: an HTA and an HPL
Array, which programmers need to define and maintain. Explicit data transfer
from the HPL Array to an HTA is also necessary. PARRAY [7,9] is a C language
extension that introduces novel array types to separate the logical and physical
structure and what kind of process/thread will operate on a dimension. Unlike
HDArray, users need to specify communication mechanisms for every array and
explicitly insert communication code.

Skeleton libraries [10,22] differ from us in that they can only support applica-
tions in which all the computational patterns are covered by the skeletons. Other
popular platforms such as NumbaPro [20], Arrayfire [1], PyCUDA [18], Copper-
head [5], OpenACC and OpenMP 4.0 all aim to make accelerator programming
easier, but only target a single node.

7 Conclusions and Future Work

We have presented the HDArray interface and runtime system for accelerator
clusters. The interface features a novel global programming model which sep-
arates work partitioning from the concept of data distribution, thus enabling
straightforward and flexible work distribution.

The interface abstracts away many low-level details of multiple address space
programming, yet supports a low-level array programming environment through
the HDArray annotations and APIs for performance tuning. We showed how
the HDArray interface could help programmers to write and tune array-based
programs for distributed devices. The offsets provide an intuitive and simple way
to describe the access patterns of kernels, and the patterns can be easily changed
by simply adjusting partitions without the modification of kernel code.

The HDArray runtime system performs efficient and fully automatic commu-
nication by managing the array sections. We presented optimizations including
the caching mechanism and communication and computation overlap, which
reduce or hide much of the overheads of communication detection.

Future work being considered is the ability to adjust work partitions assigned
to devices. This capability would allow splitting up computations to fit them in

16 H. Cho et al.

small device memories, and adjusting the sizes of work assigned to heterogeneous
devices to provide load balancing.

Acknowledgments

This material is based upon work supported by the National Science Foundation
under Grant No. CNS-1405954, and used the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by National Science Foun-
dation grant number ACI-1548562. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation or XSEDE.
We also thank Prof. Jeffrey M. Siskind and Purdue ITaP for the use of their
resources.

References

1. ArrayFire, https://arrayfire.com/
2. The OpenACC Application Programming Interface Version 2.5, 2015, http://www.

openacc.org/sites/default/files/OpenACC_2pt5.pdf
3. Bikshandi, G., et al.: Programming for Parallelism and Locality with Hierarchically

Tiled Arrays. In: Proceedings of the eleventh ACM SIGPLAN symposium on
Principles and practice of parallel programming. PPoPP ’06

4. Bueno, J., et al.: Productive Programming of GPU Clusters with OmpSs. In: Parallel
& Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International. pp.
557–568

5. Catanzaro, B., Garland, M., Keutzer, K.: Copperhead: Compiling an Embedded
Data Parallel Language. In: Proceedings of the 16th ACM Symposium on Prin-
ciples and Practice of Parallel Programming. PPoPP ’11, New York, NY, USA.
https://doi.org/10.1145/1941553.1941562

6. Charles, P., et al.: X10: An Object-Oriented Approach to Non-Uniform Cluster
Computing. In: Acm Sigplan Notices. vol. 40, pp. 519–538. ACM (2005)

7. Chen, Y., Cui, X., Mei, H.: PARRAY: A Unifying Array Representation for Hetero-
geneous Parallelism. In: Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. PPoPP ’12

8. Consortium, U., et al.: UPC Language Specifications V1.2. Lawrence Berkeley
National Laboratory (2005)

9. Cui, X., Li, X., Chen, Y.: Programming Heterogeneous Systems with Array Types.
In: 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing

10. Ernsting, S., Kuchen, H.: Data Parallel Algorithmic Skeletons with Accelerator
Support. International Journal of Parallel Programming 45(2), 283–299 (2017)

11. Grauer-Gray, S., et al.: Auto-tuning a High-level Language Targeted to GPU
Codes. In: 2012 Innovative Parallel Computing (InPar). pp. 1–10 (May 2012).
https://doi.org/10.1109/InPar.2012.6339595

12. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming
with the Message-Passing Interface, vol. 1. MIT press (1999)

https://arrayfire.com/
http://www.openacc.org/sites/default/files/OpenACC_2pt5.pdf
http://www.openacc.org/sites/default/files/OpenACC_2pt5.pdf
https://doi.org/10.1145/1941553.1941562
https://doi.org/10.1109/InPar.2012.6339595

HDArray: Parallel Array Interface for Distributed Heterogeneous Devices 17

13. Gupta, M., et al.: An HPF Compiler for the IBM SP2. In: Proceedings of the 1995
ACM/IEEE Conference on Supercomputing. Supercomputing ’95, ACM (1995).
https://doi.org/10.1145/224170.224422

14. Gysi, T., Bär, J., Hoefler, T.: dCUDA: Hardware Supported Overlap of Computation
and Communication. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. SC ’16

15. Kim, J., Jo, G., et al.: A Distributed OpenCL Framework using Redundant Compu-
tation and Data Replication. In: Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI ’16

16. Kim, J., et al.: IMPACC: A Tightly Integrated MPI+ OpenACC Framework
Exploiting Shared Memory Parallelism. In: International Symposium on High-
Performance Parallel and Distributed Computing. HPDC ’16

17. Kim, J., et al.: SnuCL: An OpenCL Framework for Heterogeneous CPU/GPU Clus-
ters. In: Proceedings of the 26th ACM International Conference on Supercomputing.
ICS ’12

18. Klöckner, A., et al.: PyCUDA and PyOpenCL: A Scripting-based Approach to
GPU Run-time Code Generation. Parallel Comput. 38(3), 157–174 (Mar 2012)

19. Kwon, O., et al.: A Hybrid Approach of OpenMP for Clusters. In: Proceedings of
the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming. pp. 75–84. PPoPP ’12 (2012). https://doi.org/10.1145/2145816.2145827

20. Lam, S.K.: NumbaPro: High-Level GPU Programming in Python for Rapid Devel-
opment, http://on-demand-gtc.gputechconf.com/

21. Lee, J., et al.: An Extension of XcalableMP PGAS Language for Multi-node GPU
Clusters. In: Proceedings of the 2011 International Conference on Parallel Processing.
pp. 429–439. Euro-Par’11, Springer-Verlag (2012). https://doi.org/10.1007/978-3-
642-29737-3_48

22. Majeed, M., et al.: Cluster-SkePU: A Multi-Backend Skeleton Programming Library
for GPU Clusters. In: Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA) (2013)

23. Moore, R.L., et al.: Gateways to Discovery: Cyberinfrastructure for the Long
Tail of Science. In: Proceedings of the 2014 Annual Conference on Extreme
Science and Engineering Discovery Environment. XSEDE ’14, ACM (2014).
https://doi.org/10.1145/2616498.2616540

24. Nakao, M., et al.: XcalableACC: Extension of XcalableMP PGAS Language Using
OpenACC for Accelerator Clusters. In: Workshop on Accelerator Programming
using Directives (WACCPD) (2014). https://doi.org/10.1109/WACCPD.2014.6

25. Numrich, R.W., Reid, J.: Co-Array Fortran for Parallel Programming. In: ACM
Sigplan Fortran Forum. vol. 17, pp. 1–31. ACM (1998)

26. Potluri, S., et al.: Extending openSHMEM for GPU Computing. In: Parallel &
Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium. pp.
1001–1012

27. Rice University, C.: High Performance Fortran Language Specification. SIGPLAN
Fortran Forum (Dec 1993). https://doi.org/10.1145/174223.158909

28. Sakdhnagool, P., Sabne, A., Eigenmann, R.: HYDRA: Extending Shared Address
Programming for Accelerator Clusters. In: International Workshop on Languages
and Compilers for Parallel Computing. Springer (2015)

29. Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazle-
wood, V., Lathrop, S., Lifka, D., Peterson, G.D., et al.: Xsede: accelerating scientific
discovery. Computing in Science & Engineering 16(5), 62–74 (2014)

https://doi.org/10.1145/224170.224422
https://doi.org/10.1145/2145816.2145827
http://on-demand-gtc.gputechconf.com/
https://doi.org/10.1007/978-3-642-29737-3_48
https://doi.org/10.1007/978-3-642-29737-3_48
https://doi.org/10.1145/2616498.2616540
https://doi.org/10.1109/WACCPD.2014.6
https://doi.org/10.1145/174223.158909

18 H. Cho et al.

30. Viñas, M., Bozkus, Z., Fraguela, B.B.: Exploiting Heterogeneous Parallelism with
the Heterogeneous Programming Library. Journal of Parallel and Distributed
Computing 73(12), 1627–1638 (2013)

31. Viñas, M., et al.: Towards a High Level Approach for the Programming of Heteroge-
neous Clusters. In: Parallel Processing Workshops (ICPPW), 2016 45th International
Conference on. pp. 106–114. IEEE (2016)

32. Yan, Y., et al.: HOMP: Automated Distribution of Parallel Loops and Data in
Highly Parallel Accelerator-Based Systems. In: Parallel and Distributed Processing
Symposium (IPDPS), 2017 IEEE International. pp. 788–798. IEEE (2017)

	 HDArray: Parallel Array Interface for Distributed Heterogeneous Devices

