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Chapter 4

CONVERTING AN ELECTRIC POWER
UTILITY NETWORK TO DEFEND
AGAINST CRAFTED INPUTS

Michael Millian, Prashant Anantharaman, Sergey Bratus, Sean Smith
and Michael Locasto

Abstract This chapter proposes a roadmap that employs secure parsers to elimi-
nate the possibility of input-handling vulnerabilities in industrial control
systems. Industrial control systems are responsible for maintaining the
integrity of power grids. Complex communications networks constitute
the backbones of these systems. Communications in industrial control
networks must be processed correctly and they should not crash devices
or enable attackers to access networked devices. Language-theoretic
security is the practice of comprehensive input handling using secure
parsers. This chapter demonstrates that the existing collection of secure
parsers for industrial control protocols can cover the communications
needs of industrial control networks. It discusses the merits of guard-
ing industrial control networks using secure parsers, proposes a triage
procedure for implementation and summarizes the security benefits and
lessons learned.

Keywords: Industrial control networks, input handling, language-theoretic parsers

1. Introduction
Industrial control systems are increasingly connected to the Internet, either

directly or via connections to Internet-connected devices. Industrial control
protocols are used to interact with actuators and sensors that help operate im-
portant infrastructure assets such as the power grid. The risks posed by the
cyber-physical nature of industrial control devices coupled with their network
connectivity render the task of securing industrial control network communi-
cations a very high priority.

The principal goal of this research is to eliminate input-handling vulnerabil-
ities in industrial control networks. Input-handling vulnerabilities are a class of
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vulnerabilities with a long history and many modern examples [5–7, 19]. Pre-
vious work has shown that industrial control networks are not immune to these
vulnerabilities – between 2013 and 2014 alone, more that 30 input-handling
vulnerabilities were discovered in implementations of the DNP3 protocol in
industrial control devices [2].

However, eradicating input-handling vulnerabilities presents some challenges.
First, while a language-theoretic security approach has been applied to build
secure parsers for industrial control protocols, the results have thus far been
limited to academic research as opposed to production systems. Indeed, the
adoption of these protocol implementations in real systems has been minimal.
This research attempts to address the issue by clarifying the benefits and ex-
plaining how to use secure parsers.

In particular, a notional architecture of an industrial control network that
employs secure parsers is presented. The notional architecture is a general
network model that incorporates the components found in industrial control
networks. The model loosely maps a real-world network without being tied to
a single utility. It is shown that secure parsers cover the communications edges
of this model. Indeed, all communications can be guarded using these parsers.

The second challenge is that industrial control networks employ a large vari-
ety of protocols. Securing a protocol implementation requires a careful exami-
nation of the protocol specification. Device manufacturers often subset or fork
existing protocols, resulting in new protocols that must be analyzed thoroughly.
Device manufacturers also implement proprietary protocols that significantly
complicate protocol analysis. To address this challenge, best practices are pro-
posed for creating new parsers and for subsetting or forking existing protocols.

The third challenge is updating industrial control devices. Because these
devices perform vital operations, taking them offline or interrupting their ability
to communicate are not viable options. Nevertheless, protocols that contain
unsafe features must be made to meet language-theoretic security standards.
This is accomplished by employing a triage procedure that enables industrial
control devices to continue to operate during the transition.

The proposed approach focuses on subsetting existing industrial control pro-
tocols. A subset of a protocol is just the protocol with certain messages ex-
cluded. For example, an opcode is removed if the payload for the opcode is un-
safe. No features are added to a protocol; rather, unsafe features are removed.
As a result, all the industrial control devices that understand a protocol can
understand the safe subset of the protocol.

2. Background and Prior Work
Input-handling vulnerabilities have plagued networked systems since their

creation. Several well-known bugs – Heartbleed [6], Shellshock [18], Rosetta
Flash [17] and Apple’s goto bug [5] – involve input-handling vulnerabilities.
Any program that accepts inputs must validate the inputs holistically to ensure
that they comply with the protocol specifications. An input-handling vulnera-
bility stems from a protocol violation. Typically this is due to a programmer



Millian et al. 75

error, such as forgetting to check a condition. Sometimes, an input-handling
vulnerability may arise not from a protocol violation per se, but from a deeper
flaw in the protocol.

Many bugs have parsing errors at their root. Some work has been done to
demonstrate this in specific domains (e.g., USB [12]), but no large-scale effort
has been expended to label all parsing bugs as such. Another domain-specific
work found more than 30 input-handling vulnerabilities in DNP3 protocol im-
plementations [2]. In fact, only a few implementations were found to be free
of vulnerabilities. They were immune because they employed very constrained
subsets of DNP3 that significantly reduced their attack surfaces. This result
supports the position that protocol subsetting can eliminate input-handling
vulnerabilities.

The impacts of input-handling vulnerabilities range from device crashes to
attackers gaining access to networks. Heartbleed enabled attackers to exfiltrate
data; Apple’s goto bug allowed man-in-the-middle attacks; Shellshock gave at-
tackers direct access to systems. Given the ubiquity of input-handling vulner-
abilities, it is imprudent to believe that industrial control networks, protocols
and devices are immune to input-handling vulnerabilities. Device crashes may
pose mild threats in information technology environments. Not so in industrial
control networks where device crashes can disrupt critical infrastructure assets.
Without question, it is imperative to ensure that industrial control networks
are rendered immune to input-handling vulnerabilities.

2.1 Language-Theoretic Security
Language-theoretic security postulates that all inputs received by a program

must be validated in their entirety by a parser developed from a formal grammar
before any and all uses of the inputs by program internals. A program that
receives an unanticipated input could be driven to a state that its developers
did not anticipate. A language-theoretic-security-hardened parser ensures that
input validation code is explicitly and clearly based on a formal grammar, that
the validation code is logically separate from the code that processes the inputs,
and that a program can never operate on inputs that have not been verified
exhaustively. There is no room for inputs that are “almost correct” because
these inputs cannot be meaningfully distinct from malicious crafted inputs.

In this work, a language denotes a set of allowed inputs. A protocol is
specified using a grammar, a set of production rules that create the inputs that
constitute the language. A parser is an implementation of the protocol in code.

A parser combinator is employed to construct a parser in a manner that
clearly and explicitly represents the protocol. It is a toolkit or framework that
produces code that visually resembles the formal grammar instead of multiple
if-statements that check conditions. Parser combinators dramatically reduce
the possibility of programmer errors (e.g., forgetting to check a condition).

In this research, the Hammer parser combinator tool [16] was used to imple-
ment parsers. Hammer was developed with a security focus, which is measured
against the Chomsky hierarchy that classifies languages according to their com-
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plexity [3]. The language classes range from regular expressions that are recog-
nized/generated by finite state automata to recursively-enumerable languages
that are recognized/generated by Turing machines. Note that regex tools in
Perl, Python and JavaScript are actually more complex than regular expres-
sions. Grammars that are deterministic-context-free or simpler are considered
safe; this limit is discussed by Momot et al [14]. Parser combinator toolkits
are useful for building parsers for binary protocols and for specifying byte-level
constraints about languages. They also provide a way to represent top-down
grammars. The Hammer tool parses inputs into abstract syntax trees.

2.2 Industrial Control Systems Security
Industrial control systems differ from traditional information technology sys-

tems and, consequently, require different security approaches. Industrial con-
trol networks interact with physical devices such as sensors and actuators using
short messages with extremely low latency. In contrast, information technol-
ogy networks transfer data using much larger packets with longer latency. Ad-
ditionally, industrial control networks are typically deeper than information
technology networks.

Much work has focused on ensuring the security of industrial control systems
and networks. The prevailing security paradigm is defense-in-depth where se-
curity features and tools are added at each layer of the system or network to
provide compound protection against external threats [8].

This research leveraging secure parsers complements the defense-in-depth
model. Industrial control systems were originally designed for isolated, local
use of analog equipment. Over the years, industrial control networks have been
upgraded to support automation and remote access. New connections and
capabilities pose new threats that industrial control systems were not designed
to handle. The proposed approach is fundamentally about ensuring message
security during the protocol design phase. It may require modifications of
existing protocols if they do not meet the complexity-limitation requirements
for security. Because protocol complexity is restricted rather than increased, the
proposed approach dovetails with current defense-in-depth strategies. Existing
security measures do not have to be replaced, they can work in concert with
the proposed approach. Indeed, the approach can be used at every level of
the defense-in-depth model to increase the security claims at a given level and
between levels.

3. Notional Architecture
This section presents a notional architecture for a language-theoretic-secu-

rity-compliant industrial control system at a utility. The notional architecture
contains the general elements and components of a real-world network in an
abstract representation that is not tied to a single utility.

First, the types of devices encountered in an electricity utility are specified,
including the devices that are expected to communicate directly and the pro-
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Figure 1. Purdue model architecture (adapted from [11]).

tocols they use for communications. Next, it is shown how secure parsers can
provide coverage of the communication needs in the model such that all the
communications can be guarded by the parsers.

Figure 1 shows the Purdue model architecture [11], which is annotated with
the various paths that an attacker could use to access the industrial control
network. The Purdue model has six levels: (i) enterprise network (level 5);
(ii) business planning and logistics network (level 4); (iii) site manufacturing
operations and control (level 3); (iv) area control (level 2); (v) basic control
(level 1); and (vi) process devices (level 0). The levels are divided into several
zones, where a zone corresponds to large-scale interconnectivity. Implementing
clear boundaries between the zones is a best practice for enforcing multiple
layers of defense.

This research focuses mainly on levels 2 through 0, which is called the cell
security zone or the SCADA (supervisory control and data acquisition) zone.
This zone comprises devices found in an electricity substation as well as devices
that are directly involved in managing the substation. Level 2 is concerned with
monitoring and controlling physical devices. The devices in this level include
control center operation workstations, human-machine interfaces (HMIs), engi-
neering workstations, security event collectors, operations alarm systems, com-
munications front ends, data historians and network/application administrator
workstations. Level 1 is concerned with sensing and manipulating physical
devices. Devices in this level include dedicated operator workstations, pro-
grammable logic controllers (PLCs), control processors, programmable relays,
remote terminal units (RTUs) and process-specific microcontrollers. Level 0
contains physical devices such as sensors, actuators, motors, process-specific
automation machinery and field instrumentation devices [13].
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Figure 2. Notional architecture.

During the research, several real and development networks in the SCADA
zone were examined. These networks are considered critical infrastructure as-
sets, so detailed information about their network topologies cannot be pub-
lished. In any case, large variances were observed in device types and layouts
from substation to substation. Thus, it has been possible to develop a notional
architecture that is not based on a single utility.

Figure 2 shows the notional architecture that is derived from previous mod-
els [10, 11, 20] as well as from real and development networks. The architecture
is designed to be as generic as possible while still maintaining its utility.

The generic architecture enables the expression of coverage by focusing on
a small set of protocols used at the edges (e.g., RTU-RTU, RTU-HMI and
control-center-substation) without too much concern about the actual device
models. While there are many protocols for a given edge (e.g., RTU-HMI),
the notion of coverage means that at least one of the protocols is handled and,
therefore, it is feasible to add the protection. Vendor-specific protocols exist,
but many vendors provide devices that can handle multiple protocols (i.e.,
standard languages), so this concept of coverage is practical. Using popular
protocols allows easier integration in existing ecosystems. The set of popular
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protocols considered in this work was determined using informal as well as
published surveys [10].

4. Analysis
This section discusses the coverage provided by secure parsers and their

benefits and trade-offs.

4.1 Protocol Coverage
At this time, the authors of this chapter have implemented secure input

handling for the DNP3, MMS (Manufacturing Message Specification), Modbus,
IEC 61850-8-1 (GOOSE), IEEE C37.118 [1], SEL Fast Message, HTTP and
Telnet protocols. This section discusses how this selection of protocols offers
adequate coverage of industrial control network communications needs.

DNP3, MMS and Modbus are the de facto industry communications stan-
dards. These protocols allow for communications between the human-machine
interface of a master station and remote terminal units, programmable logic
controllers and intelligent electronic devices (IEDs). SEL Fast Message is a
vendor-specific protocol for SEL devices that handles much of the same com-
munications. GOOSE is used to broadcast or multicast event data fast and
reliably in substations; GOOSE messages have a maximum latency of 4ms.
IEEE C37.118 is used to transmit phasor data over wide-area networks. HTTP
and Telnet are used for communications between workstations and for config-
uring devices.

To reiterate, communications from level 2 downwards are covered by the
popular DNP3, MMS and Modbus protocols as well as by the vendor-specific
SEL Fast Message protocol. Level 1 substation/physical devices are covered
by the GOOSE and IEEE C37.118 protocols. Finally, workstation-workstation
communications are covered by HTTP and Telnet. By implementing parsers
for these industrial control system protocols, a large degree of protection is
provided for the majority of low-level (Purdue model) operational technology
traffic in most industrial control networks. In particular, secure parsing is pro-
vided for the protocols that are responsible for manipulating physical devices,
a task that has very high priority.

4.2 Benefits
The major benefit in using a parser combinator tool is the possibility of

producing provably-correct code. A programmer implementing a parser should
not have to worry about the correctness of a combinator just like a programmer
typically does not worry about the correctness of a compiler.

Proofs of correctness of the combinators in Hammer remain to be done.
However, as far as this work is concerned, only two possibilities exist – either
every combinator is correct or there are bugs in one or more combinators. If
a bug is found in a combinator, it can be corrected without having to rewrite
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the parsers built using the combinator (although they would have to be recom-
piled using the updated combinator library). This is because each combinator
performs a function that is fully understood under formal computational the-
ory, so the function signature of each combinator is set, only the internals may
change. After this proof work is complete, every secure parser built with these
combinators immediately derives the full benefits of provable security.

The other benefit of the parser combinator is that it reduces the effort un-
dertaken by the programmer who works on a parser. A key observation is
that attention should be paid to match the complexity of the parser to the
complexity of the protocol and this attention must be baked in during develop-
ment and implementation. Traditional parser programming involves a number
of if-statements that check conditions. It is easy to miss a condition – as in
Heartbleed and Apple’s goto bug. However, even when a fix is provided, it is
still difficult to compare the new parser against the protocol and demonstrate
that they match completely [14].

Using a parser combinator simplifies the comparison task, and thus decreases
the likelihood of errors, and simplifies the implementation of fixes should er-
rors occur. A parser combinator tool produces code that visually matches the
structure of the grammar, rendering the verification of equality trivial. Fur-
thermore, a tool like Hammer does not have combinators that would allow the
programming of complex constructions such as Turing machines. If a program-
mer cannot implement a protocol feature using a parser combinator, then it
is an indication that, perhaps, the feature is unsafe and that a subset of the
protocol without the feature should be used. Ideally, this practice of subsetting
protocols leads to protocols being designed without unsafe features.

The end result of using a parser combinator is a parser that only accepts
messages in the protocol specification. The task of implementing protocols
safely can thus be broken down to designing protocols and designing parser
combinator tools.

Previous work with DNP3 has demonstrated the practicality of the approach
for industrial control system protocols [2]. Implementing the DNP3 parser re-
vealed that the specification mentions that the transport layer payload contains
at least one byte, but that a zero-length application layer message would cause
unhandled exceptions in certain implementations. Each protocol that was im-
plemented contained such features, which were usually handled by if-checks in
the parser. The language-theoretic security approach to parser construction
considers such packet structure features when writing the parser, significantly
decreasing the likelihood that a check is omitted.

4.3 Trade-Offs
The major trade-off that comes with a language-theoretic-security-based

parser is the need to subset a protocol when inherently unsafe features are
discovered. The cost associated with this modification is the possibility that
network devices regularly or occasionally transmit messages using the unsafe
features. Experience has shown that such messages are a small, if any, fraction
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of actual traffic. However, there are situations where the trade-offs could be
greater depending on the use cases.

Maintaining unsafe protocol features is dangerous. Unsafe features most
often relate to message format as opposed to message content, especially in
the case of industrial control networks. Of course, it may be necessary to use
certain kinds of messages and there are always development costs involved in
making changes. However, the real costs arise from the risks of an attacker
crashing devices, exfiltrating data or seizing control of devices.

5. Triage Procedure
This section discusses the roadmap for incorporating language-theoretic-

security-hardened parsers in industrial control networks so that electric util-
ities may realize the security benefits. The roadmap involves a three-step plan
for engaging with utilities and vendors. The first step is to develop the secure
parsers and incorporate them on a per-device basis in a laboratory setting. The
second step is to create a virtual substation in the laboratory. The third step is
to work with utilities and vendors to replace parser implementations in device
firmware via their product refresh cycles.

5.1 Protocols and Devices
The first step is to write and test parsers for industrial control protocols.

At this time, parsers have been implemented for eight protocols: DNP3, MMS,
Modbus, IEC 61850-8-1 (GOOSE), IEEE C37.118, SEL Fast Message, HTTP
and Telnet. Accomplishing this task in full requires the complete list of proto-
cols used by utilities.

For each protocol of interest, the protocol specification is obtained and a
secure parser is written and tested. At first, parser testing is performed using
a bump-in-the-wire implementation. A key requirement is to ensure that the
messages passed by each parser allow normal device operations.

However, some inherent difficulties exist. Obtaining documentation for in-
dustrial control protocols can be difficult. Many protocol specifications have to
be purchased – their costs range from a few hundred dollars to several thousand
dollars. A protocol specification may not cover the complete protocol; some
protocols import other protocols to leverage existing work and offset the design
burden (e.g., data encoding formats and protocol data units). The specifica-
tions of these embedded protocols might also have to be purchased.

Another challenge is that there is neither uniformity nor good practice when
it comes to describing a protocol. Some specifications are all prose and the
developer must create the protocol grammars. Even worse are situations where
the specifications include state machines or grammars, but their functionalities
do not match the prose [2]. This causes divergent implementations depending
on how closely the developer reads the documentation. Until protocol specifi-
cations improve, close readings of the available specification are essential.
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When a protocol has unsafe features, the correct subset of the protocol
has to be determined before a parser can be developed. An example of an
unsafe feature is nested length fields. Inclusion of nested length fields requires
inner length agreement (e.g., the inner length should not exceed the outer
length). This constraint cannot be described purely in terms of packet structure
using a context-free language because it requires complete parsing of the outer
and inner fields to determine agreement. If adherence to the protocol is not
maintained by the packet structure of the packet, but left to after-the-fact
checks, it is common for one or more checks to be forgotten [5, 6].

After the parsers are written and tested as bump-in-the-wire implementa-
tions to ensure that devices can operate as required, the native parsers must
be replaced with security parsers on a per-device basis. This action is required
because industrial control protocols have maximum latency requirements and
parsing every message twice can be expensive. Incorporating a secure parser
as the native parser provides security benefits beyond traditional intrusion de-
tection. Intrusion detection systems have difficulty providing insights into en-
crypted messages, but every message must be decrypted and parsed. Thus,
incorporating secure parsers as the only native parsers in a device adds precise
security properties.

5.2 Virtual Substation
After implementing the full range of parsers for industrial control protocols

and incorporating them in devices, the next step is to create and operate a
virtual substation with hardened devices in a laboratory environment. Before
deploying the parsers in real critical infrastructure assets, it is necessary to
guarantee that the individual devices and the consequences on a network with
these devices operating under normal and stress conditions are well understood.

The virtual substation would be a fully-functioning substation that runs
in parallel with real-world networks but does not affect the operation of the
networks. It could accept real-time data or replayed captures and would operate
real or simulated devices. Developers would conduct analyses to ensure correct
operations of the virtual substation with no risk to the larger network.

This step can motivate hardened devices via the list of vulnerabilities that
the parsers would prevent. It would also demonstrate to utilities and vendors
that hardened devices are viable in operational environments.

5.3 Deployment
The final step involves field deployments of the hardened devices. This step

must address all the real-world constraints that were not considered in the
previous two steps. In particular, industrial control networks are slow to incor-
porate changes and the changes made may be expected to last for decades. Nev-
ertheless, existing refresh cycles can be leveraged to push language-theoretic-
security-based parsers to devices in the form of firmware updates.
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5.4 Current Status
The project is currently in the first step in the roadmap. Eight protocol

parsers have been developed and tested as bump-in-the-wire implementations
in confidential field trials [9]. Parsers for a proprietary JSON-based protocol
have also been incorporated in General Electric devices [15].

The parsers will be made available as open source or under similar licenses.
Instead of each developer having to implement a parser to read input in a spe-
cific format, the project goal is to create a standard library for each parser. It
would be very useful if the crypto-idiom “don’t roll your own crypto” could be
extended to parsers – “don’t roll your own parsers.” The number of vulnera-
bilities that have arisen from poor parser code supports this point of view.

Code for the DNP3 and C37.118 parsers is available on GitHub [4]. The
remaining parsers will be added to the master repository in the near future.

6. Conclusions
This chapter has presented the design and implementation of an industrial

control network that exclusively employs language-theoretic-security-compliant
parser implementations. The collection of secure parsers for industrial control
protocols cover the communications needs of industrial control networks while
eliminating input-handling vulnerabilities that could be exploited by denial-of-
service and remote code execution attacks. The roadmap described in this chap-
ter describes how electric utilities could deploy the security-hardened parsers in
their industrial control networks via standard product refresh cycles, reaping
the associated security benefits in a cost-effective manner.

Any opinions, findings, conclusions or recommendations expressed in this
chapter are those of the authors and do not necessarily reflect the views of the
U.S. Air Force, DARPA, United States Government or any agency thereof.
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