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Abstract. Wireless communication on the body is expected to become more im-
portant in the future. This communication will in certain scenarios benefit from
higher frequencies of operation and their associated smaller antennas and poten-
tially higher bandwidths. One of these scenarios is communication between a
wristband and wearable sensors on the arm. In order to investigate the feasibility
of such a scenario, propagation at 55 - 65 GHz along the arm is measured for two
configurations. First, for increasing separation distances along the arm, and sec-
ond for a transmitter is rotationally placed around the wrist. Two channel gain
models are fitted to the data and used to obtain a channel gain exponent in the
first configuration and loss per angle of rotation in the second configuration.
These models are relevant inputs for the design of future wearable wireless sys-
tems.
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1 Introduction

There is a growing interest in Body Area Networks (BANs). These collections of wire-
less, body-worn sensors and actuators are envisioned to enable a large amount of wear-
able applications [1,2]. A standard for wireless communication in BANs (IEEE
802.15.6) [3] has been developed and several applications already exist [1, 2]. There
are three types of communication within a BAN: on-body communication between two
body-worn nodes, off-body communication between a body-worn node, and body sur-
face to intra-body communication between a body-worn node and an implanted node
[3]. The current generation of BANs mainly operate below 6 GHz. However, there is a
trend in wireless research, for example in 5™ generation networks, to consider higher
frequency bands. One of these potential frequency bands is the V-band (40-70 GHz),
where a license-free frequency band is allocated around 60 GHz (57-64 GHz in the
US). The advantages of using this relatively high frequency band is the use of smaller
antenna (arrays) and higher bandwidths. Two aspects that are very appealing for BANs
as well.



An application that could benefit greatly from 60 GHz communication is the wrist-
band to arm scenario illustrated in Fig. 1. It is conceivable that a wristband (of for ex-
ample a smart watch) contains multiple interconnected antennas that work at 60 GHz
and cover an arm with several scattered wireless sensors, for example: Electromyogra-
phy (EMG), skin impedance, blood oxygenation, and blood oximetry sensors that are
not necessarily all on the same location. Using the right protocol and antenna combin-
ers, such a wristband array could be used for on-body beam steering [17] or Multiple
Input Multiple Output (MiMo) communication [18]. This will provide premium chan-
nel gains and signal-to-noise and signal-to-interference ratios. In order to enable such
a network, the propagation along the arm needs to be studied first. In particular, the
channel loss or equivalently gain [4, 16] that can exist between such nodes.

Fig. 1. Illustration of the concept of a wristband with multiple 60 GHz transmitters communi-
cating with several wearable sensors on the arm.

There have been previous studies of on-body antennas at 60 GHz [5-7] and on-body
channel loss measurements at 60 GHz [5, 8-10]. However, the number of studies is
limited and are either based on measurements and simulation using phantoms [5, 8, 10]
or only consider certain fixed links (fixed transmitter (TX) and receiver (RX)) on the
human body such as “shoulder to ankle”, “wrist to head” [5, 9] and do not provide
insight into the relationship between channel loss and propagation distance. We did not
find previous publications that study propagation along the arm at 60 GHz. Therefore,
the goals of this study were the following: (1) execute channel gain measurements at
60 GHz as function of distance along the arm of real humans, (2) execute channel gain
measurements for rotated TX antennas on the wrist that emulate a wristband with mul-
tiple antennas, and (3) develop a channel gain model for propagation in that scenario.

2 Materials and Methods

2.1  Theory

Propagation of vertically (V) and horizontally (H) polarized electromagnetic fields on
a flat conductive surface has been described in literature [11, 12] and more specific at
60 GHz in [8]. For a V-polarized wave, the electric field E,. at the location of a receiver
at a height of 4, and distance d from a transmitter at height /7, can be expressed (near
the surface) as [8, 11, 12]:



Er = EQS + Egeom + Esurf (1)

with E, the electric field at the receiver, Ey is the quasi-static field, Egeoyy, is the geo-
metrical-optics field, and Ej,,.r is the Norton Surface wave. The relative amplitudes of
the last two terms depend on d, hy, hr, the dielectric parameters of the conductive sur-
face, and the transmitter and receiver parameters. Expressions for both terms can be
found in [8, 11, 12]. The validity of this approximation is discussed in [8] and requires
that 4r and Ar are maximally a couple of millimeters. The first term in Eq. 1 governs
the near-field transmission (quasi-static coupling) and has a 1/d® dependency. At
60 GHz, this component is small at propagation distances of several centimeters [8].
The second and third terms will be the dominant in the channel measurements executed
in this study (see Section 2.2). Both terms have a 1/d? dependency [8], which has led
to the proposal of the following channel gain/loss model in [8]:

G(d) = G(dy) — 10.1.10gy, (di) +X, @)
0

with G the channel gain in decibels, do an arbitrary reference distance, n the channel
gain exponent, and Xthe lognormal variance on the pathloss. As [8] proposes a 1/d?
dependency of the surface waves, they predicted and found an n = 4 for the channel
loss, which scales as EZ.

Another analysis can be done for H-polarized waves, leading to a similar channel
gain model [8]. Therefore, this model will be used in Section 2.3 to process the meas-
urement data.

The dependencies of channel gain over distance assume perfect alignment in terms
of polarization. However, in the case of a wristband containing several transmitting
antennas, there will be a polarization mismatch between TX and RX. Moreover, the
field will propagate along a curved surface instead of an approximately straight path.
The polarization mismatch between two linearly-polarized antennas can be described
using [13]:

g@) = g(0°).cos?() 3)

with g the linear channel gain and v the angle between the polarizations of the receiver
and the transmitter. This mismatch will decrease channel gain as the TX-RX pair is
rotated over angles between 0° and 90° relative to one another and increase again for
further rotations beyond 90° up to 180°. Channel gain along a curved surface is com-
monly described using an exponential dependency [14]:

G(d) = G(0) + 10.log;o(e™*) + X, 4)
with G the channel gain in decibels, a the loss per unit distance, and X;the lognormal

variance on the pathloss. Of course, d is also a function of the angle 1 when two anten-
nas are rotated with respect to one another along the arm. Eqs. 3 and 4 both cause a



decrease in channel gain between 0° and 90° rotation of linearly polarized TX and RX
relative to one another. However, while Eq. 4 predicts a further increase in channel gain
between 90° and 180°, Eq. 3 predicts an increase due to a better polarization match.
Therefore, an interesting option is the use of a two-slope channel loss model like the
one proposed in [15]:

G(0) = G(0°) — ;.|| for B € [-0,,+6,] (5)
GO) =GO, —a,.|0| -6, forBe[—m,—6,]and b € [6,, ]

with 6 the angle of rotation around the arm, 8, the transition angle, and «; and «, the
two losses over distance with a; > «,.

2.2 Measurements

The goal of our measurements was to emulate a wristband for a wearable sensor com-
munication application on the arm. To this aim, channel gain was measured along the
arm for two scenarios: (1) transmission along the arm and (2) communication between
a rotated transmitter and a fixed receiver, in a frequency band from 55 to 65 GHz. The
wireless on-body propagation was studied for the scenarios illustrated in Fig. 2.

Fig. 2. On-body channel gain measurement scenarios for (a) propagation along the arm and (b)
propagation around the arm at fixed separation distance.

This channel gain was measured on the left arm of three male subjects with heights
and body masses of 191 cm and 83 kg, 169 cm and 75 kg, and 172 cm and 58 kg,
respectively.

The procedure for measuring channel gain was as follows (first scenario). Linearly-
polarized horn antennas (QMS-00475, Steatite Antennas, UK) resonating in a fre-
quency band around 60 GHz were placed on the left arm of the subjects at a minimum



separation distance of 5 cm on the arm of the subject. The TX was always placed on
the wrist (ht=5 mm), while the RX (h~=5 mm) was moved away from the TX in steps
of 5 cm up to a separation distance of 45 cm, see Fig. 2 (a). Distances are measured in
between horn apertures. The horn antennas were placed in two configurations: H-po-
larization, i.e. polarization parallel to the skin and V-polarization, i.e. polarization or-
thogonal to the skin. Fig. 3 shows an illustration of the measurement setup on subject 1.
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Fig. 3. Measurement setup on the body of the channel gain measurements (a) and (b) H-config-
uration, (c) V-configuration.

The horn antennas were connected to a Vector Network Analyzer (ZVA 67, Rohde
& Schwarz, Munich, Germany), which swept over a frequency band from 55 — 65 GHz
in 201 frequency steps. 30 sweeps of all two-port S parameters were registered for every
measurement configuration and averaged for processing.

An additional on-body configuration (second scenario) was studied for subject 1
where the TX and RX were aligned and placed at 10 cm separation distance, see Fig. 2
(b). In this case the TX was again located on the wrist and rotated along the wrist over
360° in approximate steps of 45 degrees. The RX was static during this rotation. The
goal of this measurement is to emulate a wristband containing multiple TX antennas.
Both antenna polarizations were again considered in this setup.

2.3 Data Analysis

The Sz1 parameter was pooled for every measurement configuration and separation dis-
tance, leading to 60 samples per step in distance. These were fed into a log-linear fit
using the channel gain model shown in Eq. 2. do was chosen to be 10 cm in this fit. The
fit resulted in values for G(do) and the channel gain exponent n. The average deviation
o was calculated by averaging the difference (in decibels) between the fitted model and
the measurement data.

The S21 and S12 parameters obtained during the rotational measurements were pooled
again for every measurement configuration and angle of rotation. Measurements were
also pooled for measurements with equal amplitude in rotation angle and opposite sign
(for example 45° and -45° were pooled) leading to 120 samples per angle. Based on Eq.
3 we enforced a transition angle of 90° and fitted two slopes to the measurements at
angles | 6 |[< 90° and |6]| > 90° in order to obtain @, and «,. The average deviation o
was calculated using the same procedure.
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Measurements Along the Arm

Fig. 4 shows the results of the channel gain measurements along the arm at 55 GHz,
60 GHz, and 65 GHz, alongside the channel gain model described by Eq. 2, fitted to

the data.
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Fig. 4. Channel gain measurements along the arm of subject 1 in the configuration shown in
Fig. 1 at (a) 55 GHz, (b) 60 GHz, and (c) 65 GHz.

The parameters of the channel gain model (Eq. 2) are shown in Table 1.



Table 1. Parameters of the Channel Gain Model presented in Eq. 2.

Subject & Frequency G(10 cm) (dB) n o(dB)
H \Y H \% H \%
Subject 1
55 GHz -16 -22 34 5.4 53 5.9
60 GHz -17 -22 3.6 5.4 5.5 5.1
65 GHz -17 -23 4.0 5.3 6.1 3.7
Subject 2
55 GHz -17 -22 4.7 4.4 3.6 32
60 GHz -18 -23 4.8 4.6 3.7 3.7
65 GHz -18 -23 4.7 4.5 4 3.8
Subject 3
55 GHz -19 -24 5.1 53 43 43
60 GHz -19 -25 5.1 5.5 44 4.5
65 GHz -19 -25 5 5.7 4.6 54

The channel gain exponents listed in Table 1 are between 3.4 and 5.7, while channel
gains at 10 cm were found in a -25 to -16 dB range. The parameters for the different
subjects were found to be comparable. We found lower channel gain exponents for the
H-polarized antennas in comparison to V-polarized antennas for subjects 1 and 3, while
for subject 2, the channel loss exponent was slightly higher for H-polarization. This
might be due to the higher body mass index (BMI) of subject 2 w.r.t. BMI of subjects
1 and 3. The channel gain at 10 cm decreased with frequency. This was expected as
larger relative distances in comparison to the wavelength had to be covered at higher
frequencies (smaller wavelengths), which implies a lower channel gain [8]. Our results
demonstrate a good agreement with literature. For instance [8] reported channel gain
exponents from 3.5 up to 4 for a 60 GHz dipole above a human skin phantom. The
theory presented in [8] does predict a path loss exponent of exactly n = 4. Most of the
values we found were higher than 4, which indicates that probably there were some
near field data (exponent > 4) included in the measurements. In [19], a pathloss expo-
nent of 3.6 was reported for two rectangular waveguides at 60 GHz on a skin phantom.
In addition, [19] showed that different textiles have negligible effect on the channel
gain at 60 GHz, which suggests that our measurements are usable for situations in which
the arm is covered by clothing. The variation on the path loss (o) is around 5 dB. For
the horizontally polarized antennas on each of the three subjects the o slightly increases
with increasing the frequency. Similar behavior is observed for vertically polarized
horns (except subject 1).

In comparison to literature at lower frequencies, the channel gain exponents found
in this study were generally higher. Channel gain along the arm was studied from 0.45-
2.4 GHz in [16] for separation distances from 10 — 50 cm using the same model as
presented in Eq. 2, resulting in channel gain exponents between 0.6 and 3.2. The values
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in [16] were obtained for indoor environments where reflections were present. This
generally leads to lower path loss exponents [3]. In the contrary, in this study a very
low amount of reflections was expected due to the higher frequencies, which would
result in higher channel gain exponents. The IEEE channel gain model [3] valid at 0.4
- 11 GHz found channel gain exponents from 0.5 — 2 in indoor environments and 1.7 -
4.5 in anechoic conditions. The highest channel gain exponents in [3] were found be-
tween 3-11 GHz. [20] measured channel gain at 2.45 GHz using dipoles in the H-po-
larization on the arm from 5-30 cm and found a channel gain exponent of 3.4.

3.2 Measurements Around the Arm

Fig. 5 shows the channel gain as a function of the rotation around the wrist of the
TX at 10 cm from the RX antenna.
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Fig. 5. Channel gain measurements for rotation of the TX around the arm of subject 1 in the
configuration shown in Fig. 1 at (a) 55 GHz, (b) 60 GHz, and (c) 65 GHz.
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The parameters of the channel gain model shown in Eq. 5 are shown in Table II.

Table II. Parameters of the channel gain model in Eq. 5 fitted to measurements on subject 1.

Frequency a, (dB/°) a, (dB/°) o (dB)
H v H \% H \%
55 GHz 0.76 0.56 0.091 0.13 7.5 4.6
60 GHz 0.73 0.58 0.037 0.080 5.2 2.8
65 GHz 0.77 0.56 -0.020 0.093 2.6 1.6

The loss per angle listed in Table II ranges from -0.02 to 0.77 dB/degree. The loss
per degree was significantly higher for the angles | 8 |<90° () in comparison to |6 >
90° (a,) as expected in Section 2.1. This justified our choice of 8, = 90° and was also
in line with the results found in [15] at lower frequencies for propagation around the
human body. The V-polarization had lower losses a; for rotation angles < 90° in com-
parison to H-polarization. It seems that since H-polarization is parallel to the arm, ro-
tating the antennas results in a higher diffraction loss around the arm. On the contrary,
the losses per angle a, are higher for V-polarization in comparison to H-polarization.
Potentially, a better fit could be obtained by using a three-slope model instead of a two-
slope model. Most of the loss (on a logarithmic scale) occurred between 45° and 90°,
which corresponded well with Eq. 3. Measurements with more angular resolution
should be executed to determine this.

The losses per angle a; for | 8 |[< 90° were found to be relatively large and would
make communication with a single antenna at 60 GHz around the arm (| 8 | > 90°) rather
difficult, since we measured 50-70 dB loss over 90° rotation. However, this opens up
opportunities for good signal-to-interference ratios for channels that are 90° rotated to-
wards one another on the arm (assuming similar path gains as both TX and RX would
rotate around the arm). An important note here is that the used antennas have a high
gain (19 dBi at 60 GHz) and narrow radiation pattern (3dB beam width of 14° to 24°)
in comparison to what can be expected from smaller on-body antennas.

4 Conclusion

Propagation of electromagnetic waves at frequencies from 55 to 65 GHz was studied
in a wrist-to-arm scenario. To this aim antennas tuned to that frequency band were
placed on the left arm of three subjects in two measurement scenarios that are repre-
sentative for communication from a wristband to an arm-worn sensor: (1) transmission
along the arm and (2) communication between a rotated transmitter and a fixed receiver.
A log-linear model, normalized to the channel gain at 10 cm antenna separation, was
fitted to the measured scattering parameters obtained in the first scenario, resulting in
an estimation of channel gain exponents. A dual-slope model was fitted to the data
obtained in the second scenario (rotation scenario) in order to obtain two loss factors
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that describe the loss in channel gain per rotational angle around the wrist. In the along
the arm scenario, channel gain exponents between 3.4 and 5.7 were obtained, in com-
parison to a theoretically expected value of 4. The channel gains at 10 cm ranged from
-25 to -16 dB. The measured losses per angle in the second scenario ranged from -0.02
to 0.77 dB/degree with significantly lower losses for rotational angles beyond 90°. The
loss per angle for rotation from 0° to 90° was found to be higher than 0.56 dB/°, while
this quantity is smaller than 0.13 dB/° for additional rotations beyond 90° up to 270°.
This suggests the potential for simultaneous operation of multiple wireless channels in
the studied frequency band on the same arm with favorable signal-to-interference ratios.
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