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Abstract. The unsupervised depth estimation is the recent trend by utilizing
the binocular stereo images to get rid of depth map ground truth. In unsuper-
vised depth computation, the disparity images are generated by training the CNN
with an image reconstruction loss. In this paper, a dual CNN based model is
presented for unsupervised depth estimation with 6 losses (DNM6) with indi-
vidual CNN for each view to generate the corresponding disparity map. The
proposed dual CNN model is also extended with 12 losses (DNM12) by utiliz-
ing the cross disparities. The presented DNM6 and DNM12 models are exper-
imented over KITTI driving and Cityscapes urban database and compared with
the recent state-of-the-art result of unsupervised depth estimation. The code is
available at: https://github.com/ishmav16/Dual-CNN-Models-for-Unsupervised-
Monocular-Depth-Estimation.
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1 Introduction

The image based depth estimation of scene is a very active research area in the field
of computer vision. The depth map from images can be estimated in various ways like
structure from motion [14], multi-view stereo [19], monocular methods [17]], single-
image methods [[18], etc. The deep learning and convolutional neural networks (CNNs)
based methods perform outstanding in most of the problems of computer vision such as
image classification [10], facial micro-expression recognition [[15]], face anti-spoofing
[[13]], hyper-spectral image classification [16], image-to-image transformation [9]], colon
cancer nuclei classification [1], etc. Inspired from the success of deep learning, several
researchers also tried to utilize the CNN for the depth prediction, specially in monocular
imaging conditions. These approaches are classified mainly in three categories namely
learning-based stereo [23]], [21]], supervised single view depth estimation [3[], [[11], and
unsupervised depth estimation [4], [6]. The stereo image pairs and ground truth dispar-
ity data are needed in order to train the learning-based stereo models. In real scenario,
creating such data is very difficult. Moreover, these methods generally create the arti-
ficial data which can not represent the real challenges appearing in natural images and
depth maps. The supervised single view depth estimation methods also use ground truth
depth to train the model. The main hurdle in supervised approaches is availability and
creation of ground truth depth maps which is always not available in real applications.
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The unsupervised depth estimation methods do not need any ground truth depth
maps. Basically, they utilize the underlying theory of epipolar constraints [7]]. Recently,
Garg et al. used auto-encoder deep CNN to predict the inverse depth map (i.e. disparity)
from left image [4]. They computed a warp image (i.e. reconstructed left image) from
disparity map and right image. Finally, the error between original and reconstructed left
image is used as the loss to train the whole setup in unsupervised manner. This approach
is further improved by Godard et al. by incorporating the left-right consistency [6]. In
left-right consistency, basically two depth maps (i.e. left and right) are generated using
auto-encoder only from the left input image. The left input image is used with generated
right depth map and the right image is used with generated left depth map to reconstruct
the right and left images respectively. Zhou et al. [22] utilized the concepts of unsuper-
vised image depth estimation proposed in [3]] and [6] to tackle the monocular depth and
camera motion estimation in unstructured video sequences in unsupervised learning
framework. In one of the recent work, the 3D loss such as photometric quality of frame
reconstructions is combined with 2D loss such as pixel-wise or gradient-based loss for
learning the depth and ego-motion from monocular video in unsupervised manner [12].

While the unsupervised based methods have gained the attention in recent times,
there is still need of discovering better suited unsupervised networks and loss functions.
Through this paper, we propose a dual CNN based model for unsupervised monocular
image depth estimation by utilizing the 6 losses (DNM6). We also extend the dual
CNN model with 12 losses and generate DNM12 architecture to improve the quality
of depth maps. The appearance matching loss, disparity smoothness loss and left-right
consistency loss are used in this paper. The rest of the paper is structured by presenting
the proposed dual CNN models DNM6 and DNM12 in Section 2, the experimental
results and analysis in Section 3, and the concluding remarks in Section 4.

2 Proposed Methodology

2.1 Dual Network Model with 6 Losses (DNMG6)

The proposed idea of dual network model (DNM) using CNN is illustrated in Figure
[Tl This model is based on the 6 losses, thus referred as the DNM6 model. The DNM6
model has two CNN one for each left and right images of stereo pair. During training,
the left image I' and right image I" are considered as the inputs to the left CNN named
as CNN-L and right CNN named as CNN-R respectively. The I, ; refers to the (i, 4t
co-ordinate of image I. It is assumed that both I' and I images are captured in simi-
lar settings. Both CNN’s are based on the auto-encoder algorithm and combined these
two networks named as dual network. The CNN architecture (in both CNN5s) is taken
from the Godard et al. [6]. The CNN-L predicts the left disparity map d', whereas the
CNN-R predicts the right disparity map d". The d; ; refers to disparity value at (4, j)*"
co-ordinate of disparity map d. In order to reconstruct the left and right image from left
and right disparity maps (d' and d"), the bilinear sampling from the Spatial Transform
Networks [8]] is used in this paper. The similar approach is also followed in [6] for re-
construction from disparity map. The left image is reconstructed from the left disparity
map d' and input right image I”, whereas the right image is reconstructed from the right
disparity map d” and input left image I' as shown in the Figure The reconstructed left
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Fig. 1. Pictorial representation of proposed Dual Network Model with 6 Losses (DNM6)

and right images are referred as I'and I" respectively throughout the paper. We also
used the loss functions (C') such as appearance matching loss (C),), disparity smooth-
ness loss (Cys) and left-right consistency loss (Cj,.) similar to [6] but in dual network
framework. The loss functions are defined below.

Appearance Matching loss: To enforce the appearance of estimated images must
be similar to the input image, a combination of L1 norm and Structural Similarity Index
Metric (SSIM) [120]] loss term is used for both left and right images, defined as [6],

1 1— SSIM(I],I7) .
Cor="y2_0 S (L=a) | I - I | )
i,J

where 8 € {l,r}, C’(llp refers appearance matching loss between estimated left image
and input left image and Cy, refers appearance matching loss between estimated right
image and input right image and « represents the weight between SSIM and L1 norm.

Disparity Smoothness Loss: The image gradient based disparity smoothness loss
is computed from both disparity maps to ensure the estimated disparity map should be
smooth. Similar to [6], the disparity smoothness loss is given as,

0l = S 0udy e 1100 1 (o,d8 o115 %)
i,
where 3 € {l,7}, CY, refers the disparity smoothness loss of left disparity map d'
estimated by CNN-L, C'_ refers the disparity smoothness loss of right disparity map d"
estimated by CNN-R and 0 is the partial derivative.
Left Right Consistency Loss: To maintain the estimated left disparity map d’ and
right disparity map d” to be consistent, the L1 term penalties on estimated disparities
similar to [[6] are computed between d' and d" as follows,

1 1
Cir =% > dl - dijq | and Cp=— > ldy; - d§j+d;]_| 3)
i,j ,J

where Cj,. and C,.; refer the left to right and right to left consistency losses respectively.
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Fig. 2. Pictorial representation of our Dual Network Model with 12 losses (DNM12)

Similar to Godard et al. [6], four output scales s in both left and right CNNs are
used in this paper in order to make the loss functions more robust. The combined cost
function Cj at scale s including all above losses i.e. appearance matching losses C’ép
and C,, disparity smoothness losses C;, and C'j, and left-right consistency losses Cj,
and C is given as Cs = gy (CL, + Ch,) + aas(Chy + Cl,) + cur (Ciy + Cip). The
final Cost/Loss function for proposed DNM6 model is computed as C' = Z§:1 Cs at
different output scales from s = 1 to 4 similar to [6]. At testing time, a single left image,
I' is needed as the input to the left CNN (i.e., CNN-L) and it predicts the disparity map
d' from the trained network. Note that, the right CNN with input I" can also be used to
predict the disparity map d”. Once disparity map d (i.e. d’ or d") is computed, it can be
converted into depth map (D) as D = i EB , where f represents the focal length and B
is the baseline between stereo cameras.

2.2 Dual Network Model with 12 Losses (DNM12)

In our previous DNM6 model, disparity maps are estimated from each network in-
dividually, whereas in this DNM12 model, the left-right cross disparity mapping is also
proposed as depicted in Figure 2] The left and right CNN networks of DNM6 are ex-
tended to generate two output disparities (i.e. left and right) from each CNN. Similar
to Godard et al. [6], it generates both left and right disparity maps from a single im-
age. During training, the left image I' and right image I" of stereo pair are provided
as inputs to the left CNN (CNN-L) and right CNN (CNN-R) respectively. In DNM12
architecture, both the CNN’s predict the left and right disparities independently as il-
lustrated in Figure 2| Here, we consider d and d'~ as the left and right disparity maps
respectively estimated by the left CNN-L and similarly d™ and d"" as the left and right
disparity maps respectively estimated by the right CNN-R. As shown in theAFigureJZL
four bilinear samplers are used for reconstructing the two output left images /' and 1"
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corresponding to left input image and two output right images I and I correspond-
ing to right input image. The I uses d" and I", I'" uses d'~ and I', I" uses d"* and
I, and I"" uses d’ and I'. In DNM12, four appearance matching losses, four disparity
smoothness losses and four left-right consistency losses are considered.

The Four Appearance Matching Losses are defined as follows,

C’fgz NZa

where 3 € {l,r},y € {l,r}, Cl, and Cl; are the appearance matching losses for left
CNN-L and Cygl,, Cr are the appearance matching losses for right CNN-R. The total
appearance matching loss is given by Cy, = (CH, + Clr + Clt + Ci).

The Four Disparity Smoothness Losses are computed as follows,

1— SSIM(I” i

17771
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where 8 € {l,r}, v € {l,r}, C., Cl are the disparity smoothness losses for left
CNN-L and C}, C'" are the disparity smoothness losses for right CNN-R. The total
disparity smoothness loss is computed as Cys = (C’fl’S + Cff; + L+ ).

The Four Left-Right Consistency Losses are calculated as follows,

1
I _ L gl 1 1
Cir = 2_ 13 dy gl and Cu= N§ |di — 4 vt (6)
7
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where Clr, Crl are the left-right and right-left consistency losses for left CNN-L and
C}., C7, are the left-right and right-left consistency losses for right CNN-R. The total
left-right consistency loss is calculated as Cj,. = (C}. + CL, + CF. + C™T).

Similar to DNMB6, the total Loss function in DNM12 is also defined as C' = Z;l:l Cs
at different output scales from s = 1 to 4, where C at a particular scale is computed by
weighted sum of all losses as Cs = agqp X Cop + ags X Cys + oy X Cpr. The same
procedure as provided in previous DNM6 model is followed in DNM12 also for testing,
a single image is taken as input to either CNN-L or CNN-R and it predicts the disparity

map from the trained network which is converted into depth map.

3 Experimental Results and Analysis

We have used the standard datasets such as KITTI and Cityscapes for the experi-
ments. The KITTI database [5] consists of stereo pairs from different scenes. Similar
to Godard’s work [6], 29,000 stereo pairs are used for training and 200 high-quality
images are used as the test cases along with its depth maps. The Cityscapes database
[2] contains the stereo pairs captured for autonomous driving. Similar to Godard’s work
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Table 1. Experimental results by using proposed dual CNN based DNM6 and DNM 12 models for
unsupervised depth estimation over KITTI benchmark database. The training is done over KITTI
training images and the evaluation is done over KITTI test images. In this table, pp denotes the
post-processing. The best results without post-processing are highlighted in bold face.

Lower is better Higher is better

Method Abs Rel |Sq Rel [RMSE (RMSE log |d1-all |al a2 a3

Godard et al. [6] No LR|0.123  |1.417 |6.315 |0.220 30.318 |0.841 |0.937 |0.973
Godard et al. [6] 0.124 |1.388 [6.125 |0.217 30.272 [0.841 [0.936 |0.975
DNM6 Model 0.1223 |1.4004 (6.162 |0.214 31.050 |0.848 |0.941 (0.976
DNM12 Model 0.1221 |1.3058 (6.069 |0.213 31.455 |0.841 |0.939 |0.976
DNM6 Model PP 0.1157 |1.2037 |5.830 |0.203 30.004 |0.852 |0.945 |0.979
DNM12 Model PP 0.1157 |1.1404 |5.772 |0.203 30.342 |0.848 |0.944 |0.979

[6], we have used the 22,973 stereo pairs for training after cropping each image such
that the 80% of the height is preserved and the car hoods are removed. Similar to [6],
we have used the same 200 KITTI stereo images for testing over Cityscapes database.

The CNN architectures in our network are same as in Godard et al. [6]. The pro-
posed DNM6 and DNM 12 models are implemented in TensorFlow which contains 62
million trainable parameters. We have used following parameters, o = 0.85, agp = 1,
ags = 0.1, ag = 1.0 and learning rate A\ = 10— for first 30 epochs and 0.5 x 10~4
for next 10 epochs and 0.25 x 10~ for the last 10 epochs. The data augmentation is
done on fly, similar to [6]. During test time, a post-processing is performed to reduce
the effect of stereo dis-occlusions similar to [6]].

In both DNM6 and DNM12 methods, the estimated disparity map d(x) is further

converted into depth map as D(z) = %, where f is the focal length and B is the

baseline. The evaluation of both models are done with the estimated depth maps D(z)
and provided ground truth depth maps G(x). The evaluation metrics are same as in [6]
such as Absolute Relative difference (Abs Rel), Squared Relative difference (Sq Rel),
Root Mean Square Error (RMSE), RMSE log, and d1-all. The lower values of these
metrics represent the better performance. We also measured the Accuracy metrics (i.e.,
al, a2, and a3 similar to [6]) for which higher is better.

The results are reported in Table[I|over KITTI database and compared with very re-
cent state-of-the-art unsupervised method proposed by Godard et al. [6]] with and with-
out left-right (LR) consistency. Note that the lower values of Abs Rel, Sq Rel, RMSE,
RMSE log, and d1-all and the higher values of accuracies al, a2, and a3 represent
the better performance. The performance of proposed DNM6 and DNM 12 methods are
also tested with a pre-procesing (PP) step to reduce the effect of stereo dis-occlusions
[6]. The best results without PP are highlighted in bold face in Table[I] It can be easily
observed that the proposed dual CNN based models i.e. both DNM6 and DNM12 per-
form better than Godard et al. [6] with and without left-right consistency. The Abs Rel,
Sq Rel, RMSE, RMSE log, and d1-all values are generally lower and accuracies al,
a2, and a3 are higher for the proposed DNM6 and DNM12 methods. It is also noticed
that DNM12 completely outperforms the Godard et al. [6] in all terms except d1-all.
The performance of DNM6 model is improved in terms of the Abs Rel, RMSE, al,
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Table 2. Experimental results by using proposed dual CNN based DNM6 and DNM12 models
for unsupervised depth estimation over Cityscapes benchmark database. The training is done over
Cityscapes training images and the evaluation is done over KITTI test images. In this table, pp
denotes the post-processing. The best results without post-processing are highlighted in bold face.

Lower is better Higher is better
Method Abs Rel |Sq Rel [RMSE (RMSE log |d1-all |al a2 a3
Godard et al. [6] 0.699  |10.060 |14.445 |0.542 94.757 10.053 |0.326 |0.862
DNM6 Model 0.2704 |3.7637 (9.186 |0.326 64.215 |0.649 |0.864 (0.941
DNM12 Model 0.2661 |3.6491 (8.915 |0.316 61.163 |0.669 |0.875 |0.946
DNM6 Model PP 0.2474 |2.9781 (8.406 (0.300 63.780 |0.663 |0.881 |0.954
DNM12 Model PP 0.2396 |2.8945 (8.178 |0.289 58.733 |0.687 |0.889 |0.959

a2, and a3 as compared to the Godard model. The DNM12 model exhibits the better
performance as compared to the DNM6 model in all terms except accuracies. As for as
accuracies are concerned, the DNM6 model is superior as compared to DNM12 model
because generating right disparity from left image and left disparity from right image
is not suited for pixel level thresholding. This is also seen that the performance of pro-
posed models improved significantly with post-processing step over KITTI database.
The results comparison of proposed models with Godard et al. [6] over Cityscapes
database is illustrated in Table[2] In this Table, the training is performed over Cityscapes
database, whereas the test images are same as in KITTI database. It is noticed from this
experiment that the proposed models are superior than Godard et al. [6] over Cityscapes
database in all terms. Moreover, the DNM 12 model performs better than DNM6 model.
As for as both databases are concerned, the results of proposed models over KITTI
database is better than the Cityscapes database. The possible reason can be the differ-
ence between the camera calibration between training and testing databases. The similar
observations are also made by Godard et al. [6]]. The post-processing step enhances the
performance of proposed DNM6 and DNM12 models over Cityscapes database.

4 Conclusion

In this paper, the dual CNN based models DNM6 and DNM12 are presented for
unsupervised monocular depth estimation. The dual network models used two different
CNNs (CNN-L and CNN-R) for left and right images of training stereo pairs respec-
tively. In DNM6 and DNM 12, total 6 and 12 losses are used, respectively. The results
are computed over benchmark KITTI and Cityscapes databases and compared with the
recent left-right consistency based method. It is observed that the DNM12 outperforms
the existing method left-right consistency method. It is also observed that the DNM12
model improves the performance over DNM6 model in most of the cases. The post-
processing step further boosts the performance of proposed models.
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