Skip to main content

Semantic Segmentation of Grey-Scale Traffic Scenes

  • Conference paper
  • First Online:
Book cover Image and Video Technology (PSIVT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11854))

Included in the following conference series:

  • 1224 Accesses

Abstract

In this paper we propose a novel architecture called KDNet that takes into account both spatial and temporal features for traffic scene labelling. One advantage of convolutional networks is the ability to yield hierarchical features that has been proved to bring high-quality result for scene labelling problem. We demonstrate that including temporal features has even better impact on segmenting the scene. We make use of convolutional long short-term memory cells in order to allow our model to take input at many different time steps. The backbone of our model is the well known fully convolutional network called FCN-8s. The model is built in an end-to-end manner, thus eliminating post-processing steps on its output. Our model outperforms FCN-8s at a significant margin on grey-scale video data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.mynteye.com/products/mynt-eye-stereo-camera.

References

  1. Bourdev, L., Maji, S., Brox, T., Malik, J.: Detecting people using mutually consistent poselet activations. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 168–181. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15567-3_13

    Chapter  Google Scholar 

  2. Chen, C.W., Luo, J., Parker, K.J.: Image segmentation via adaptive K-mean clustering and knowledge-based morphological operations with biomedical applications. IEEE Trans. Image Process. 7, 1673–1683 (1998)

    Article  Google Scholar 

  3. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: IEEE Conference on Computer Vision Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  4. Ess, A., Mueller, T., Grabner, H., Van Gool, L.: Segmentation-based urban traffic scene understanding. In: British Machine Vision Conference (2009)

    Google Scholar 

  5. Feng, N., Delhomme, D., LeCun, Y., Piano, F., Bottou, L., Barbano, P.E.: Toward automatic phenotyping of developing embryos from videos. IEEE Trans. Image Process. 14, 1360–1371 (2005)

    Article  Google Scholar 

  6. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361 (2012)

    Google Scholar 

  7. Klette, R.: Concise Computer Vision: An Introduction into Theory and Algorithms. UTCS. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6320-6

    Book  MATH  Google Scholar 

  8. Wan, J., et al.: Deep learning for content-based image retrieval: a comprehensive study. In: ACM International Conference on Multimedia, pp. 157–166 (2014)

    Google Scholar 

  9. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: International Conference on Neural Information Processing Systems, pp. 2843–2851 (2012)

    Google Scholar 

  10. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1915–1929 (2013)

    Article  Google Scholar 

  11. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  14. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  15. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv:1412.7062 (2014)

  16. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848 (2018)

    Article  Google Scholar 

  17. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  18. Roy, A., Todorovic, S.: A multi-scale CNN for affordance segmentation in RGB images. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 186–201. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_12

    Chapter  Google Scholar 

  19. Visin, F., et al.: ReSeg: a recurrent neural network-based model for semantic segmentation. In: IEEE Conference on Computer Vision Pattern Recognition Workshops, pp. 426–433 (2016)

    Google Scholar 

  20. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vision 77, 157–173 (2008)

    Article  Google Scholar 

  21. Brostow, G.J., Fauqueur, J., Cipolla, R.: Semantic object classes in video: a high-definition ground truth database. Pattern Recogn. Lett. 30, 88–97 (2009)

    Article  Google Scholar 

  22. Scharwächter, T., Enzweiler, M., Franke, U., Roth, S.: Stixmantics: a medium-level model for real-time semantic scene understanding. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 533–548. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_35

    Chapter  Google Scholar 

  23. Alex, G.: Generating sequences with recurrent neural networks. CoRR (2013). http://arxiv.org/abs/1308.0850

  24. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013)

    Google Scholar 

  25. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  26. Shi, X., Chen, Z., Wang, H., Yeung, D., Wong, W., Woo, W.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. CoRR (2015). http://arxiv.org/abs/1506.04214

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trung Khoa Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le, T.K., Klette, R. (2019). Semantic Segmentation of Grey-Scale Traffic Scenes. In: Lee, C., Su, Z., Sugimoto, A. (eds) Image and Video Technology. PSIVT 2019. Lecture Notes in Computer Science(), vol 11854. Springer, Cham. https://doi.org/10.1007/978-3-030-34879-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34879-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34878-6

  • Online ISBN: 978-3-030-34879-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics