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Abstract. Sharing images online poses security threats to a wide range
of users due to the unawareness of privacy information. Deep features
have been demonstrated to be a powerful representation for images.
However, deep features usually suffer from the issues of a large size and
requiring a huge amount of data for fine-tuning. In contrast to normal
images (e.g., scene images), privacy images are often limited because of
sensitive information. In this paper, we propose a novel approach that
can work on limited data and generate deep features of smaller size.
For training images, we first extract the initial deep features from the
pre-trained model and then employ the K-means clustering algorithm
to learn the centroids of these initial deep features. We use the learned
centroids from training features to extract the final features for each test-
ing image and encode our final features with the triangle encoding. To
improve the discriminability of the features, we further perform the fu-
sion of two proposed unsupervised deep features obtained from different
layers. Experimental results show that the proposed features outperform
state-of-the-art deep features, in terms of both classification accuracy
and testing time.

Keywords: Privacy images - unsupervised deep features- image classi-
fication- ResNet-50- privacy and security.

1 Introduction

Privacy image classification is becoming increasingly important nowadays, owing
to the prevalent presence of social media on the web where people share per-
sonal and private images. The privacy image classification systems allow people
to know if the images they share are private or public. Private images, such as
images involving families, usually involve private information about the users.
By contrast, public images generally involve scenes, objects, animals and so on,
and do not include private information. The purpose of the privacy image clas-
sification is to make people alert while sharing images online. People sometimes
may be unaware of whether they are doing right or wrong when sharing their
images. In such cases, a system that is capable of classifying private and public
images is very useful to users.

For image classification, feature extraction from images is a fundamental
step. Privacy images are challenging for classification, because they may contain
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Private
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Fig. 1. Images showing the private and public images from PicAlert dataset.

high within-class dissimilarity. As shown in Fig.[I] we observe in both categories
(private and public) that they have such patterns. Fortunately, there are only
two categories in privacy images so that we do not need to consider such varying
patterns as in other scene image classification which have far more than two
categories .

In general, the existing feature extraction methods for privacy images com-
prise of traditional vision-based methods , deep learning-based methods
, and semantic approaches . While comparing traditional vision-
based features against the deep learning-based features, we notice a significant
improvement in classification accuracy with the aid of the latter features learned
from the pre-trained deep learning models. By the help of the fine-tuned deep
learning models, it can even achieve a higher classification accuracy which re-
quired a massive amount of data . Nevertheless, in the task of privacy image
classification, there is a very limited amount of data due to privacy issues. Sim-
ply extracting features from intermediate layers of those models makes the size
of the features higher, thereby increasing computational burden during classifi-
cation. To sum up, these existing methods on privacy images suffer from two
problems: 1) the curse of dimensionality of features; and 2) requirements of mas-
sive data if we want to obtain a fine-tuned model or new deep learning model.
As such, feature extraction methods favoring a low feature size and limited data
are particularly needed for the task of privacy image classification.

In this paper, we propose a novel approach to extract the features of privacy
images with the assistance of unsupervised feature learning, which not only works
on a limited amount of privacy images but also yields a lower feature size. In-
spired by the work in [20], where the authors claim the efficacy of the pre-trained
models against the fine-tuned models over privacy images, we also choose a pre-
trained model in this work. Specifically, among several pre-trained models, we
choose the ResNet-50 @ model, which has been found to have a lower error rate
for the classification of different types of images than the state-of-the-art deep
learning models such as VGG-Net and GoogleNet [17]. Furthermore, the
ResNet-50 also has a lower number of layers than its other versions (ResNet-
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101 and ResNet-152), thereby having a faster speed. To perform unsupervised
feature learning, we perform the K-means clustering on the deep features ex-
tracted from the ResNet-50 |6] which has been pre-trained with a large dataset
of labeled images (i.e., ImageNet [4]). Then, we encode the features using the
triangle encoding [3] to achieve our unsupervised deep features. The K-means
clustering can yield centroids of patterns (contexts) for privacy images. The fea-
tures of the clustering method are (1) discriminable patterns of privacy images
and (2) a lower feature size due to its dimension reduction capability. We tested
our unsupervised deep features on PicAlert [25] and found that our features can
produce better classification accuracies than deep learning features extracted by
state-of-the-art models.

2 Related works

Several studies have explored the privacy image classification problem with the
use of different types of features such as SIFT (Scale Invariant Feature Trans-
form) and RGB (Red Green Blue) [26], textual and deep learning based features
[19H23}127], semantic features [15], and so on.

Zerr et al. [25] used various types of visual features such as quantized SIFT,
color histogram, brightness and sharpness and the text features of the image.
They have shown that the features designed by the fusion of textual and vi-
sual features are prominent than the visual features only. Similarly, the authors
in |191/20,/22] emphasized the usage of textual features such as deep tags (object
tags and scene tags) and user tags (user annotated tags) based features for the
classification of privacy images and claimed that the features designed based on
tags outperform the state-of-the-art features such as SIFT, GIST (Generalized
Search Tree) and fully connected features (F'C-features of VGG-Net). Zhong et
al. [27] chose FC-features of a deep learning model for the group-based person-
alized approach which further proved the applicability of high-level features such
as FC-features for this domain. Similarly, Spyromitros et al. |15] explored the
semantic features based on the output of a large array of classifiers. Their pro-
posed semantic features outperform the generic traditional vision-based features
such as SIFT, EDCH (Edge Direction Coherence) feature, etc.

More recently, Tonge et al. [21] explored textual features based on the pre-
trained deep learning model, which yielded the scene information of the image,
called scene tags. The authors unveiled that the combination of such scene tags
with user tags and object tags outperforms features of individual tags. Likewise,
Tran et al. [23] extracted hierarchical features by the concatenation of object
features and convolutional features. For the experiments, the authors used two
pipelined CNNs (Convolutional Neural Networks). The FC-features obtained af-
ter the fine-tuning operation over two deep learning models were concatenated to
get the final hierarchical features of the image. Their method requires a massive
amount of images for training. However, in the recent research by Tonge et al. [20]
the features extracted from the pre-trained model (FC-features of AlexNet [§])
outperform the hierarchical features extracted from the fine-tuned deep learning
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models . Thus, task-generic features which are extracted from the pre-trained
models, became more prominent than task-specific features which are extracted
from fine-tuned deep learning models, for privacy images. This opens a door to
take advantage of the pre-trained models for the feature extraction of privacy
images, given a limited amount of training images.

3 Unsupervised Features Extraction

To extract the unsupervised deep features, we chose the pre-trained ResNet-
50 model. A pre-trained model is favorable owing to the following reasons: 1)
fine-tuned models require massive data to overcome overfitting, and 2) there is
a very limited amount of private images for the study. The overall approach,
shown as a block diagram in Fig. 2| consists of three main steps to extract the
unsupervised deep features, namely: initial deep features extraction (Sec. 3.1),
K-means clustering on deep features (Sec. 3.2), and unsupervised deep features
encoding (Sec. 3.3).

3.1 Initial deep features extraction

We take the features from the top activation layers as the candidate deep features
which can better represent images based on the objects’ details in the images .
The original dimension of the deep features from the activation layers is 7*7+512,
which provides 512-D features (each feature map is 7% 7). To represent a feature
map as a single value, we operate the global average pooling that exploits the
properties of deep features with both high and low values. This results in a 512-D
vector of an image where each component represents its corresponding feature
map. Let H, W, and D denote the height, width , and depth of the candidate
deep features of the top activation layers of the ResNet-50 model.
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Fig. 2. Block diagram of the extraction of our proposed unsupervised deep features
(UDF) encoding.
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where f(x,) is the average pooled features of image x, based on the feature
maps {zl,,zl,, -, 2l W Eq. computes the representative values of
the corresponding feature maps.

The pooled features obtained from Eq. are further processed by the two
normalization strategies: power-normalization and L2-normalization. We first
use the signed square root norm of the features for power-normalization and

then perform L2-normalization, due to their higher performance [9}(10].

f@g) =V f(xa) (2)

Eq. calculates the square root based power normalization (f(xz)) of each
element of the average pooled feature vector f(z,). Now, the features are nor-

malized, as shown in the Eq. .

" fz)
76 = s ®
Similarly, Eq. yields f(z!), which is the L2-normalization of each element
of the feature vector f(z/,). The feature vectors of images extracted from Eq.
will be used to perform K-means clustering to learn the centroids (Sec. 3.2).
Table[I]lists detailed information about the layers used in this work. The first
five activation layers are 512-D with a feature map size of 7 7. For the average
pooling layer (avg_pool), the dimension is 2048-D in the ResNet-50 model with
a feature map size of 1 % 1. We perform global averaged pooling of each feature
map to get the aggregated value of the corresponding feature map.

3.2 K-means clustering over deep features

We perform K-means clustering to learn the centroids of the initial deep features
for the training dataset. Firstly, we set k as an initial centroid number. Let c*
represent the k" cluster center. The k clusters and centroids are optimized
based on the distances of data points to centroids. k is set to 250 (Sec.

7
512D 512D

Feature map of 7x7x512  Average pooled feature map Normalized deep feature

Fig. 3. The steps to extract the initial deep features of the selected activation layers
(e.g., activation 48) from the pre-trained ResNet-50 model.
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Table 1. Deep layers with sizes of feature maps and features from the pre-trained
ResNet-50 model. The names in the bracket represent the activation layer name of the
ResNet-50 model. We call these layers such as 42, 44, 45 and so on as methods because
they output features.

Methods Feat. map Feat. size
ResNet-50(42) Tx7 512-D
ResNet-50(44) 7T 512-D
ResNet-50(45) TxT 512-D
ResNet-50(47) 7T 512-D
ResNet-50(48) 77 512-D
ResNet-50(avg_pool) 1%1 2048-D

which empirically produces a higher accuracy than others. While there are more
delicately designed clustering algorithms, K-means is easy and simple to use,
and we found it is effective in our context.

3.3 Unsupervised deep features encoding

After the calculation of the learned centroids {c*}, we calculate the strength
of all the initial deep features using the triangle encoding technique [3] which
has a higher performance than hard assignment coding schemes as described by
Coates et al. [3].

f(#a) = maz{0, p — 21}, (4)

where z,= d(f(x”),c*) and p is the average distance of all f(z!/

and f(#,) denotes the unsupervised deep features in Eq. (4.

) to all centriods

d(f(a), ) = /(O (fal) — cb)? (5)

We calculate the Euclidean distances between any two points, shown in Eq. .
After calculating the average distances from the corresponding initial features,
we need to check if one distance is below or above its corresponding average
distance. This is because the distances to all the centroids reveal the implicit re-
lationship among centroids for the corresponding initial deep features. To do so,
we set the distance to 0 if the distance is above the average distance. Otherwise
we set it as the difference between the average distance and Euclidean distance
of the corresponding point. Through this scheme, we are able to identify the
importance of corresponding initial deep features to all centroids, which further
facilitates the encoding of the features. In this work, the dimension of the result-
ing unsupervised deep features are k. Here, kK = 250 resulting in a 250-D vector
for each privacy image.

We assume that the initial deep features are represented by f(z”) in Alg.
for training. To extract the proposed features, we perform several steps. First of
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Algorithm 1 Unsupervised deep features of training images

Input: f(z”) < training initial deep features, k +—number of cluster centroids
Output: f(&) < training unsupervised deep features,
c® «cluster centroids of training features

1: Perform K-means clustering on f(z”) and extract ¢* centroids.
2: for i =0ton do

3: for j=0to k do

4: >=22,d(f(af), &)
5: end for

6: forl=0tokdo

T w>/k

8: 2 < d(f(z]),ch)

9: 21+ maz{0,u — 2}
10:  end for

11 f(d) « 4

12: end for

13: return f(%)

all, we perform K-means clustering over such deep features to obtain ¢ cluster
centroids and then perform the triangle encoding operation from lines 2 to 13.
We repeat the lines from 2 to 13 for the extraction of proposed features of testing
initial deep features, based on the centroids {c¢} learned from training features.

4 Experimental Results

This section is divided into three sub-sections: Section explains the dataset
used; Section [£.2] explains our experimental setup; Section discusses the anal-
ysis of different values of k in the experiment; and Section [4.4]discusses the results
and testing time.

4.1 Dataset

We conduct experiments on the Flickr images sampled from the only available
privacy image dataset, PicAlert [26], which was provided by Spyromitros et
al. [15]. The dataset contains two categories of images: private and public. The
number of private images in the dataset is lower than public images and we follow
the similar configurations as suggested by Tonge et al. [22] for the train/test split
in the experiment. The total number of images is 4700, in which, 3917 (83%)
images are for training and 783 (17%) images are for testing. Similarly, the ratio
of private/public images in each subset (training and testing) is 3 : 1.

4.2 Experimental setup

The experiments have been performed on a laptop with NVIDIA 1050 GeForce
GTX GPU and 16GB RAM. We use the keras [2] package implemented in R [11],
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Table 2. Analysis of different k, number of clusters, using classification accuracy (%)
while extracting unsupervised deep features (UDF) using ResNet-50(47) method.

k 100 150 200 250 300 350 400 450 500
Accuracy  84.54 84.92 85.05 85.69 85.18 85.18 85.05 85.18 85.56

which is open source. Also, we test our proposed unsupervised deep features
by utilizing the L2-regularized Logistic Regression (LR) classifier in Liblinear
[5]. We fix bias as 1 and tune C, which is the main parameter to tune in L2-
regularized Logistic Regression (LR) classifier. The grid search technique is used
for C in the range of 1 and 50, to search the optimal value.

4.3 Analysis of k

To select a best k, the number of clusters for our dataset, we perform an analysis
using the features extracted from the ResNet-50(47) method in the experiment.
The tested values for k are in the range of 100 and 500 as seen in Table [2| While
observing in Table [2] we notice that the number of cluster £k = 250 yielded a
more prominent classification accuracy (85.69%) than other values. Thus, we
empirically employed 250 as the number of clusters for K-means clustering to
extract the proposed unsupervised deep features (UDF).

4.4 Analysis of results

We discuss the results of classification accuracy and prediction timings in this
section.

Classification accuracy We compare the proposed features with the state-of-
the-art features (deep features extracted from various pre-trained deep learning
models), in terms of classification accuracy. To examine what deep features are
more effective, we evaluate the deep features from six different layers of ResNet-
50 model. In Table we see that our proposed unsupervised deep features
extracted from each layer outperform the existing features of the corresponding
layer. The highest accuracy is from the activation layer 48 (ResNet-50(48)),
which is 85.95%, among all unsupervised deep features. Similarly, the least
accuracy is generated by the ResNet-50(42) which is 84.80%. We notice the
interesting result from the ResNet-50(avg_pool) layer whose accuracy (85.56%)
is same for both kinds of features. It is a top layer of the ResNet-50 model, which
carries important information about objects in the images.

In spite of a lower size, the classification accuracies of the proposed features
are consistently increased for each layer [6] except the top layer, compared to the
corresponding original deep features. Furthermore, to improve the classification
for privacy images, we fuse two unsupervised deep features. We tested the combi-
nation of two different deep features and empirically found that the combination
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Table 3. Comparisons of the proposed unsupervised deep features (UDF) with the
initial deep features (IDF) with regard to classification accuracy (%).

Methods IDF UDF
ResNet-50(42) 83.90 84.80
ResNet-50(44) 84.03 85.05
ResNet-50(45) 85.05 85.82
ResNet-50(47) 84.16 85.69
ResNet-50(48) 84.41 85.95
ResNet-50(avg_pool) 85.56 85.56

Table 4. Comparisons of the proposed features with the state-of-the-art deep fea-
tures, which are extracted from different pre-trained deep learning models, in terms of
classification accuracy (%) and testing time (seconds).

Methods Feat. size Acc. Test. time
VGG-16(FCy) [12] 4096-D 84.67 0.120
VGG-16(FC,) [12] 4096-D 84.80 0.090
VGG-19(FCy) [12] 4096-D 84.67 0.060
VGG-19(FC) [12] 4096-D 84.54 0.090
Inception-V3(avg_pool) |18] 2048-D 74.84 0.050
DenseNet-121(avg_pool) |7 1024-D 79.56 0.025
DenseNet-169(avg_pool) |7 1664-D 78.41 0.030
DenseNet-201(avg_pool) |7 1920-D 79.05 0.020
Xception(avg_pool) [1] 2048-D 75.00 0.050
Inception-ResNet-v2(avg_pool) |16] 1536-D 74.96 0.020
Ours (Serial Fusion) 500-D 86.33 0.015

of ResNet-50(47) and ResNet-50 (avg_pool) produces a higher separability. That
is, the resulting features become more discriminable than other types of com-
binations. We use the serial feature fusion strategy [24] which produces 500-D
features in total. The comparisons of our fused features with the state-of-the-
art deep features are shown in Table [4 The compared deep features are ex-
tracted from various pre-trained deep learning models: VGG-Net [12] (VGG-16
and VGG-19), ResNet-50 [6], DenseNet-121 [7], DenseNet-169 [7], DenseNet-
201 |7], Inception-V3 [18], Xception [1], Inception-ResNet-v2 [16]. We observe
that the lowest accuracy is 74.84% from Inception-ResNet-v2 [16]. VGG-Net [12]
with VGG-16(FC2) features yield an accuracy of 84.80% (which is the second
highest accuracy on the dataset), which clearly benefits from a greater feature
size. Our fused deep features produce an accuracy of 86.33% which is 11.49%
higher than the lowest accuracy [16]. The features from other pre-trained models
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Table 5. Testing timings (in seconds) of the proposed unsupervised deep features
(UDF) as well as the initial deep features (IDF').

Methods IDF UDF
ResNet-50(42) 0.017 0.011
ResNet-50(44) 0.009 0.004
ResNet-50(45) 0.015 0.003
ResNet-50(47) 0.011 0.003
ResNet-50(48) 0.009 0.003
ResNet-50(avg_pool) 0.160 0.003

Table 6. Sizes of the proposed unsupervised deep features (UDF) and the initial deep
features (IDF).

Methods IDF UDF
ResNet-50(42) 512-D 250-D
ResNet-50(44) 512-D 250-D
ResNet-50(45) 512-D 250-D
ResNet-50(47) 512-D 250-D
ResNet-50(48) 512-D 250-D
ResNet-50(avg_pool) 2048-D 250-D

except VGG-Net [12] and ResNet-50 [6] are not appropriate for the classification
of privacy images because of their lower classification accuracies. We notice that
our proposed features outperform the existing features in terms of classification
accuracy.

Testing time We also analyze the efficiency of our proposed deep features, i.e.,
the testing time during classification. The testing time of the proposed unsu-
pervised features is compared with those of the state-of-the-art deep features
(Table [4). The testing time is measured in seconds. Our fused features achieve
0.015 seconds and is the fastest among all. We also observe that the testing
timings of the proposed features during classification are shorter compared to
the corresponding deep features (Table . The minimum testing time reported
is 0.003 seconds which is the least among all. This attributes to a lower size
of the proposed features than the original deep features: a larger feature size
often leads to a slower prediction speed. We list the feature sizes of original deep
features and the proposed features in Table[6] Since we set 250 as the number of
cluster centroids (k) during K-means clustering, the size of the proposed features
is 250. Here, we notice that our proposed features outperform state-of-the-art
deep features in terms of testing time as well.
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5 Conclusion

In this paper, we have introduced the unsupervised deep features based on the
deep features extracted from the ResNet-50 model. We first extract the deep
features from top activation layers of the ResNet-50 model for each image, and
then perform the K-means clustering over training set to learn the centroids.
Finally, we encode the computed features to a feature vector for each image
based on the learned centroids. The feature vector is taken as an input to our
trained model which gives the prediction. Experiments show that our proposed
features are more accurate in privacy image classification and produce shorter
testing time than state-of-the-art deep features. In the future, we would like
to investigate a more complicated classification of privacy images which involve
more than two categories.
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