
Towards Model-based Reinforcement Learning
for Industry-near Environments

Per-Arne Andersen�[0000−0002−7742−4907], Morten
Goodwin[0000−0001−6331−702X], and Ole-Christoffer

Granmo[0000−0002−7287−030X]

Department of ICT, University of Agder, Grimstad, Norway
{per.andersen,morten.goodwin,ole.granmo}@uia.no

Abstract. Deep reinforcement learning has over the past few years
shown great potential in learning near-optimal control in complex simu-
lated environments with little visible information. Rainbow (Q-Learning)
and PPO (Policy Optimisation) have shown outstanding performance in
a variety of tasks, including Atari 2600, MuJoCo, and Roboschool test
suite. While these algorithms are fundamentally different, both suffer
from high variance, low sample efficiency, and hyperparameter sensitiv-
ity that in practice, make these algorithms a no-go for critical operations
in the industry.

On the other hand, model-based reinforcement learning focuses on learn-
ing the transition dynamics between states in an environment. If these
environment dynamics are adequately learned, a model-based approach
is perhaps the most sample efficient method for learning agents to act
in an environment optimally. The traits of model-based reinforcement
are ideal for real-world environments where sampling is slow and for
mission-critical operations. In the warehouse industry, there is an in-
creasing motivation to minimise time and to maximise production. Cur-
rently, autonomous agents act suboptimally using handcrafted policies
for significant portions of the state-space.

In this paper, we present The Dreaming Variational Autoencoder v2
(DVAE-2), a model-based reinforcement learning algorithm that increases
sample efficiency, hence enable algorithms with low sample efficiency
function better in real-world environments. We introduce Deep Ware-
house, a simulated environment for industry-near testing of autonomous
agents in grid-based warehouses. Finally, we illustrate that DVAE-2 im-
proves the sample efficiency for the Deep Warehouse compared to model-
free methods.

Keywords: Deep Reinforcement Learning ·Model-based Reinforcement
Learning · Reinforcement Learning · Neural Networks · Variational Au-
toencoder · Markov Decision Processes · Exploration · Artificial Intelli-
gence

ar
X

iv
:1

90
7.

11
97

1v
1

 [
cs

.A
I]

 2
7

Ju
l 2

01
9

1 Introduction

The goal of reinforcement learning is to maximise some notion of feedback
through interaction with an environment [23]. The environment can be known,
which makes this learning process trivial, or have hidden state information,
which typically increases the complexity of learning significantly. In model-free
reinforcement learning, actions are sampled from some policy that is optimised
indirectly through direct policy search (Policy gradients), a state-value function
(Q-learning), or a combination of these (Actor-Critic). There are many recent
contributions to these algorithms that increase sample efficiency [8], reduce vari-
ance [10], and increase training stability [21].

It is challenging to deploy model-free methods in real-world environments
because current state-of-the-art algorithms require millions of samples before
any optimal policy is learned. Due to this, model-based reinforcement learning
is an appealing approach because it has significantly better sample efficiency
compared to the model-free methods [17]. The goal of model-based algorithms
is to learn a predictive model of the real environment that is used to learn the
controller of an agent. The downside of model-based reinforcement learning is
that the predictive model may become inaccurate for longer time-horizons, or
collapse entirely in areas of state-space that has not observed.

We propose a model-based reinforcement learning approach for industry-
near systems where a predictive model is learned without direct interaction with
the environment. We use Automated Storage and Retrieval Systems (ASRS)
to benchmark our proposed algorithm. Learning a predictive model of the en-
vironment is isolated from the physical environment, which guarantees safety
during training. If a predictive model is sufficiently trained, a model-free al-
gorithm, such as DQN [19] can be trained off-line. Training can be done in
a large-scale distributed setting, which significantly reduces the training time.
When the model-free algorithm is trained sufficiently, it will be able to replace
a sub-optimal expert-system with minimal effort.

The paper is organised as follows. Section 2 discusses the current state of the
art in model-based reinforcement learning, and familiarise the reader of recent
work in ASRS systems. Section 3 briefly outlines relevant background litera-
ture on reinforcement learning. Section 4 introduces the DVAE-2 algorithm and
details the architecture thoroughly. Section 5 proposes the Deep Warehouse, a
novel high-performance environment for industry-near testing of reinforcement
learning algorithms. Section 6 presents our results using DVAE-2 in various
environments, including complex environments such as Deep Warehouse, Deep
RTS and Deep Line Wars. Finally, section 7 concludes our work and outlines a
roadmap for our future work.

2 Literature Review

Reinforcement Learning is a maturing field in artificial intelligence, where a
significant portion of the research is concerned with model-free approaches in

2

virtual environments. Reinforcement learning methods in large-scale industry-
near environments are virtually absent from the literature. The reason for this
could be that (1) model-free methods do not give the sample efficiency required
and that (2) there is little evidence that model-based approaches achieve reli-
able performance. In this section, we briefly discuss the previous work in ASRS
systems and present promising results for model-based reinforcement learning.

2.1 Automated Storage and Retrieval Systems (ASRS)

There is to our knowledge no published work where reinforcement learning
schemes are used to control taxi-agents in ASRS environments. The literature
is focused on heuristic-based approaches, such as tree-search and traditional
pathfinding algorithms. In [20], a detailed survey of the advancements in ASRS
systems which categorise an ASRS system into five components; System Config-
uration, Storage Assignment, Batching, Sequencing, and Dwell-point. We adopt
these categories in search of a reinforcement learning approach for ASRS systems

2.2 Model-based Reinforcement Learning

In model-based reinforcement learning, the goal is to learn state-transitions
based on observations from the environment, the predictive model. If the pre-
dictive model is stable, with low variance and improves monotonically during
training, it is, to some degree, possible to learn model-free agents to act opti-
mally in environments that have never been observed directly.

Perhaps the most sophisticated algorithm for model-based reinforcement
learning is the Model-based policy optimisation (MBPO) algorithm, proposed
by Janner et al. [16] The authors empirically show that MBPO performs signifi-
cantly better in continuous control tasks compared to previous methods. MBPO
proves to be monotonically improving given that the following bounds hold:

η[π] ≥ η̂[π]− C

where η[π] denotes the returns in the real environment under a policy whereas
η̂[π] denotes the returns in the predicted model under policy π. Furthermore,
the authors show that as long as they can improve the C, the performance will
increase monotonically [16].

Gregor et al. proposed a scheme to train expressive generative models to
learn belief-states of complex 3D environments with little prior knowledge. Their
method was effective in predicting multiple steps into the future (overshooting)
and significantly improve sample efficiency. In the experiments, the authors illus-
trated model-free policy training in several environments, including DeepMind
Lab. However, the authors found it difficult to use their predictive model in
model-free agents directly. [11]

Neural Differential Information Gain Optimisation (NDIGO) algorithm by
Azar et al. is a self-supervised exploration model that learns a world model repre-
sentation from noisy data. The primary features of NDIGO are its robustness to

3

noise due to their method to cancel out negative loss and to give positive learn-
ing more value. The authors show in their maze environment that the model
successfully converges towards an optimal world model even when introducing
noise. The author claims that the algorithm outperforms previous state-of-the-
art, being the Recurrent World Model from. [4]

The Dreaming Variational Autoencoder (DVAE) is an end-to-end solution
for prediction the probable future state p(ŝt+1|st, at. The authors showed that
the algorithm successfully predicted next state in non-continuous environments
and could with some error predict future states in continuous state-space en-
vironments such as the Deep Line Wars environment. In the experiments, the
authors used DQN, PPO, and TRPO using an artificial buffer to feed states to
the algorithms. In all cases, the DVAE algorithm was able to create buffers that
were accurate enough to learn a near-optimal policy. [3]

The algorithm VMAV-C is a combination of VAE and attention-based value
function (AVF), and mixture density network recurrent neural network (MDN-
RNN) from [12]. This modification to the original World Models algorithm im-
proved performance in the Cart Pole environment. They used the on-policy al-
gorithm PPO to learn the optimal policy from the latent representation of the
state-space [18].

Deep Planning Network (PlaNet) is a model-based agent that interpret the
pixels of a state to learn a predictive model of an environment. The environment
dynamics are stored into latent-space, where the agent sample actions based on
the learned representation. The proposed algorithm showed significantly better
sample efficiency compared to model-free algorithms such as A3C [14].

In Recurrent World Models Facilitate Policy Evolution, a novel architecture
for training RL algorithms using variational autoencoders. This paper showed
that agents could successfully learn the environment dynamics and use this as
an exploration technique requiring no interaction with the target domain. The
architecture is mainly three components; vision, controller, and model, the vi-
sion model is a variational autoencoder that outputs a latent-space variable of
an observation. The latent-space variable is processed in the model and is fed
into the controller for action decisions. Their algorithms show state-of-the-art
performance in self-supervised generative modelling for reinforcement learning
agents. [12]

Chua et al. proposed Probabilistic Ensembles with Trajectory Sampling (PETS).
The algorithm uses an ensemble of bootstrap neural networks to learn a dynam-
ics model of the environment over future states. The algorithm then uses this
model to predict the best action for future states. The authors show that the
algorithm significantly lowers sampling requirements for environments such as
half-cheetah compared to SAC and PPO. [9]

DARLA is an architecture for modelling the environment using β-VAE [15].
The trained model was used to learn the optimal policy of the environment using
algorithms such as DQN [19], A3C, and Episodic Control [5]. DARLA is to the
best of our knowledge, the first algorithm to introduce learning without access
to the ground-truth environment during training.

4

3 Background

Agent

��+1←�� ��+1

←�� ��+1 ��+1

��

Envrionment

Fig. 1: The agent-environment interaction in a Markov decision process [23]

Markov decision processes (MDP’s) are a mathematical framework commonly
used to define reinforcement learning problems, as illustrated in Figure 1. In
an MDP, we consider the tuple (S, A, r, P, P0, γ) 1where S is the state
space, A is the action space available to the agent, r : S × A → R is the
expected immediate reward function, P is the transition function which defines
the probability P(s′, s, a) = Pr(s′|s, a) and P0 is the probability for the initial
state s0.

The goal of a reinforcement learning agent is to encourage good behaviour
and to discourage bad behaviour. Optimal behaviour is achieved when the agent
finds a composition of parameters that maximise its performance, thus finds the
optimal policyπ∗. Consider

π∗ = arg max
π∈Π

J(π), (1)

where J(π) is the objective function for maximising the expected discounted
reward defined as

J(π) = Es0,a0,s1,...

[∞∑
t=0

γtr(st, at) | π, s0 ∼ P0

]
, (2)

where γ ∈ (0, 1) is the discounting factor of future rewards. If γ = 1, all future
state rewards are accounted for equally, while γ = 0, we are only concerned
about the current state.

4 Learning policies using predictive models

The Dreaming Variational Autoencoder v2 (DVAE-2) is an architecture for learn-
ing a predictive model of arbitrary environments [3]. In this work, we aim to

1 S and A is defined for discrete or continuous spaces. r : S × A → R where r is
commonly referred to as R(s, s′) in the literature.

5

improve the first version of the DVAE for better performance in real-world en-
vironments. A common problem in model-based reinforcement learning is that
it takes millions of samples to generalise well across sparse data. We aim to
approve sample efficiency from the original DVAE and if possible, surpass the
performance of model-free methods.

4.1 Motivation and Environment Safety

Real	Environment Sensor	Model

Expert	System

Prediction	Model

Intelligent	Agent��

�����������	���������

Fig. 2: The proposed model isolates the intelligent agent from the mission-critical
sensor model. The real environment projects onto a sensor model that the expert
system uses to control taxis in a real environment. The predictive model observes
the behaviour of the sensor model and the actions performed by the expert
system. The predictive model is trained using error gradients, where the loss
is the distance between the sensor model and the predictive model. When the
error becomes sufficiently low, an intelligent agent can be trained using only
data from the predictive model. Assuming that the intelligent agent converges
to some performance threshold, it can be deployed as a drop-in replacement to
the expert system.

Figure 2 shows an abstract overview of DVAE-2 training in an environment.
In real-world, industry-near environments, there is little room for interruptions.
In model-free reinforcement learning, the agent interacts with the environment to
learn its policy. Because this is not possible in many real-world environments, the
DVAE-2 algorithm only observes during training. During training, the DVAE-2
algorithm learns how the transition function behaves and learns an estimated
state-value function V that represent the value of being in that current state.

4.2 The Dreaming Variational Autoencoder v2

The original DVAE architecture had severe challenges with modelling of contin-
uous state-spaces [3], and many algorithms were added to the model to improve
performance across various environments including autoencoders, LSTMs, and
fine-tuned variations of these. The DVAE-2 extends this with a split into three

6

SWA

GAN

RNN/LSTM

SWAGAN

Convolutional

Feedforward

Temporal

Convolutional

Deep	Q-Learning

Policy	Gradients

Genetic	Algorithms

ℎ�

�

��

�

��

�

��

���� �����������������

� ̂ �
�+1 � ̂ �

�

←�� � ̂ �
�+1

Inference

Optional

�������

Training

(1)
(2)

(3)

(4)

(5)

…

…

��

�

(6)

Decoder

…

Fig. 3: The component-based DVAE-2 architecture.

individual components; forming the View, Reason and Control (VRC) model.
The VRC model embeds all improvements into a single model and learns which
algorithms to use under certain conditions in an environment

Figure 3 shows an overview of the proposed VRC. (1) A state st is observed.
During training, this observation stems from the real-environment while at in-
ference time, from the predictive model. The observation is encoded in the view
component (e.g. via AE or GAN) and outputs an embedding z at time t w.r.t
policy π. (2) The reason component learns the time dynamics between state
sequences. Encoded states are accumulated into a buffer Zπt = {zt−n . . . zt}π and
are then used to predict the hidden-state hπt w.r.t the encoded state sequence.
The reason component typically consists of a model with RNN-like structure
that generalises well on sequence data. (3) The hidden state is then used to
evaluate an action using policy π, and (4) is sent to the environment and the
view for the next iteration. (5) The decoder, prepares the hidden-state hπt and
encoded state zπt , producing the succeeding state ŝπt+1. The prediction is then
used in the next iteration as current state st, which leads back to (1). As an
optional mechanism, the controller can use the output from the decoder, instead
of the hidden state information. This is beneficial when working with model-free
algorithms such as deep q-networks [19].

4.3 Model selection

During technique selection in the components, we perform the following evalu-
ation. An observation st is sent to the view component of DVAE-2. All of the

7

view techniques are initially assumed to be uniformly qualified to encode and
predict future states. For each iteration, the computed error is summarised as
a score, and during inference, the technique with the lowest score is used2. We
use the same method for determining the best reasoning algorithm in a specific
environment.

4.4 Implementation

The implementation of the DVAE-2 algorithm with dynamic component se-
lection enabled several significant improvements to over the previous DVAE
model [3]. Notably, the k-step model rollout from [16] is implemented to stabilise
training. We found that using shorter model-rollouts provided better control poli-
cies, but at the cost of higher sample efficiency. Also, by embedding time into
the encoded state improved the model stability and prediction capabilities [13].
The DVAE-2 algorithm is defined as follows.

Algorithm 1 DVAE-2: Minimal Implementation

1: Initialize policy πθ(st|at), predictive model pψ(ŝt+1, r̂, ht|st, aπt)
2: Let Z = {zπt−n . . . zπt }, a vector of encoded states
3: Initialize encoder ENC(zπt |st, aπt), temporal reasoner TR(hπt |Z)
4: for N epochs do
5: Denv ← Collect samples from penv under predefined policy π
6: Train model pψ on data batch Denv via MLE3

7: for M epochs do
8: Sample initial state s0 ∼ U(0, 1) from Denv
9: Construct {Dpψ |t < k, TR(h

πθ
t |ENC(zt|st, at)πθ), st = s0}

10: Update policy πθ using pairs of (ŝt, at, r̂t, ŝt+1)πθ

Algorithm 1 works as follows. (Line 1) We initialise the control policy and
the predictive model (DVAE-2) parameters. (Line 2) The Z variable denotes a
finite set of sequential view model (ENC) predictions that are used to capture
time dependency between states in the reason model (TR). (Line 5) We collect
samples from the real environment penv under a predefined policy, such as an
expert system, see Figure 2. (Line 6) The predictive model pψ is then trained
using the collected data Denv via maximum likelihood estimation. In our case,
we use mean squared error to measure the error distance MSE(pψ‖penv). When
the DVAE-2 algorithm has trained sufficiently, the model-free algorithm will
train for M epochs (Line 7) using the predictive model pψ instead of penv. (Line
8) First, we sample the initial state s0 uniformly from the real dataset Denv.
(Line 9) We then construct a prediction dataset Dpψ and predict future states
using the control policy (i.e. sampling from the predictive model). (Line 10)

2 In this setting, the lowest score is the technique with least accumulated error.
3 We use the mean squared error (MSE) loss in our implementation.

8

The parameterised control policy is then optimised using (ŝt, at, r̂t, ŝt+1)πθ pairs
during rollouts.

5 The Deep Warehouse Environment

Training algorithms in real-world environments is known to have severe safety
challenges during training and suffers from low sampling speeds [6]. It is therefore
practical, to create a simulation of the real environment so that researches can
quickly test algorithm variations with quick feedback on its performance.

This section presents the Deep Warehouse4 environment for discrete and con-
tinuous action and state spaces. The environment has a wide range of configura-
tions for time and agent behaviour, giving it tolerable performance in simulating
proprietary automated storage and retrieval systems.

5.1 Motivation

In the context of warehousing, an Automated Storage and Retrieval System
(ASRS) is a composition of computer programs working together to maximise
the incoming and outcoming throughput of goods. There are many benefits of
using an ASRS system, including high scalability, increased efficiency, reduced
operating expenses, and operation safety. We consider a cube-based ASRS envi-
ronment where each cell is stacked with item containers. On the surface of the
cube, taxi-agents are collecting and delivering goods to delivery points placed
throughout the surface. The taxi-agents are controlled by a computer program
that reads sensory data from the taxi and determines the next action.

Although these systems are far better than manual labour warehousing, there
is still significant improvement potential in current state-of-the-art. Most ASRS
systems are manually crafted expert systems, which due to the high complexity
of the multi-agent ASRS systems only performs sub-optimally. [20].

5.2 Implementation

Figure 4 illustrates the state-space in the deep warehouse environment. In a
simple cube-based ASRS configuration, the environment consists of (B) passive
and (C) active delivery-points, (D) pickup-points, and (F) taxis. Also, the sim-
ulator can model other configurations, including advanced cube and shelf-based
automated storage and retrieval systems. In the deep warehouse environment,
the goal is to store and retrieve goods from one location to another where each
cell represents several layers of containers that a taxi can pick up. A taxi (F)
receives feedback based on the time used on the task it performs. A taxi can
move using a discrete or continuous controller. In discrete mode, the agent can
increase and decrease thrust, and move in either direction, including the diag-
onals. For the continuous mode, all of these actions are floating point numbers

4 The deep warehouse environment is open-source and freely available at https://

github.com/cair/deep-warehouse

9

https://github.com/cair/deep-warehouse
https://github.com/cair/deep-warehouse

Fig. 4: Illustration of the graphical interface in the deep-warehouse environment
using cube-based ASRS configuration.

between (off) 0 and (on) 1, giving a significantly harder action-space to learn.
The simulator also features continuous mode for the state-space, where actions
are performed asynchronously to the game loop. It is possible to create custom
support modules for mechanisms such as task scheduling, agent controllers and
fitness scoring.

A significant benefit of the deep warehouse is that it can accurately model
real warehouse environments at high speed. The deep warehouse environment
runs 1000 times faster on a single high-end processor core compared to real-
world systems measured from the speed improvement by counting how many
operations a taxi can do per second. The simulator can be distributed across
many processing units to increase the performance further. In our benchmarks,
the simulator was able to collect 1 million samples per second during the training
of deep learning models using high-performance computing (HPC).

6 Experimental Results

In this section, we present our preliminary results of applied model-based rein-
forcement learning using DVAE-2. We aim to answer the following questions.

(1) Does the DVAE-2 algorithm improve sample efficiency compared to
model-free methods? (2) How well do DVAE-2 perform versus model-free meth-
ods in the deep warehouse environment? (3) Which of DVAE-2 VRC components
is preferred by the model?

10

6.1 The importance of compute

According to AI pioneer Richard S. Sutton “The biggest lesson that can be read
from 70 years of AI research is that general methods that leverage computation
are ultimately the most effective, and by a large margin.” [22]. It is therefore
not surprising that compute is still the most decisive factor when training a
large model, also for predictive models. DVAE-2 was initially trained using two
NVIDIA 2080 RTX TI GPU cards that, if tuned properly, can operate at ap-
proximately 26.9 TFLOPS. For simpler problems, such as grid-warehouses of size
5 × 5 and CartPole, the compute was enough to train the model in 5 minutes,
but for larger environments, this time grew exponentially. To somewhat mitigate
the computational issue for larger environments, we performed the experiments
with approximately 1.25 PFLOPS of compute power. This led to significantly
faster training speeds, and made large experiments feasible5

6.2 Results

Figure 5 shows that the average return value of DVAE-2 training four tasks,
including Deep RTS [2], Deep Warehouse, Deep Line Wars [1] and CartPole [7].

Deep Warehouse: The environment is a contribution in this paper for
industry-near testing of autonomous agents. The DVAE-2 algorithm outperforms
both PPO and DQN in terms of sampling and performance during 150000 game
steps. The score function is a counter of how many tasks the agent has performed
during the episode. If the agent manages to collect and retrieve 300 packages,
the agent has sufficient performance to beat many handcrafted algorithms in
ASRS systems. The environment is multi-agent, and in this experiment, we used
a 30× 30 grid with 20 taxis running the same policy.

Deep RTS is a flexible real-time strategy game (RTS) engine with multiple
environments for unit control and resource management. In this experiment, we
used the resource harvester environment where the goal is to harvest 500 wood
resources before the time limit is up. The score is measured from -500 to 0,
where 0 is the best score. For every wood harvested, the score increase with
1. We consider the task mastered if the agent has less than -200 score at the
terminal state. DVAE-2 outperform the baseline algorithms in terms of sample
efficiency but falls behind PPO in terms of score performance. [2]

Deep Line Wars: Surprisingly, the DQN policy outperforms the DVAE-2
and PPO policy in 11× 11 discrete action-space environment. Because we used
PPO as the policy for DVAE-2, we still see a marginal improvement over the
same algorithm in a model-free setting yielding better performance and better
sample efficiency. We found that DQN quickly learned the correct Q-values due
to the small environment size. In future experiments, we would like to include
larger map sizes that would increase the state-space significantly, hence making
Q-values more challenging to learn. [1]

5 We recognise large experiments to consist of environments where the agents require
significant sampling to converge.

11

0k 100k 200k
step

0

200

400

600

av
er

ag
e

re
tu

rn

Deep Line Wars

0k 100k 200k
step

400

200

av
er

ag
e

re
tu

rn

Deep RTS

0k 50k 100k 150k
step

0

200

400

av
er

ag
e

re
tu

rn

Deep Warehouse

0k 25k 50k 75k
step

50

100

150

200

av
er

ag
e

re
tu

rn

CartPole

DQN PPO DVAE-2 convergence

Fig. 5: We compare DVAE-2 using two baseline algorithms, DQN and PPO. The
solid curve illustrates the mean of 12 trials and shaded regions is the standard
deviation between all trials. The x-axis shows the number of episodes performed
and the y-axis shows the average return.

CartPole: As a simple baseline environment, we use CartPole from the Ope-
nAI Gym environment suite [7]. The goal of this environment is to balance a
pole on a moving cart using a discrete action-space of 2 actions. We found that
DVAE-2 and PPO had similar performance, but DVAE-2 had marginally better
sample efficiency after 25000 steps.

In terms of VRC, the algorithm tended to choose Convolutional + LSTM and
Temporal Convolution and GAN for continuous control tasks (see Figure 1). It
should be noted that PPO and DVAE-2 are presented with the same hyper-
parameters, and are therefore directly comparable. We used PPO as our policy
for DVAE-2, and we see that DVAE-2 is more sample efficient and performs
equally good or better than model-free PPO in all tested scenarios.

7 Conclusion and Future Work

In this paper, we present DVAE-2, a novel model-based reinforcement learning
algorithm for improved sample efficiency in environments where sampling is not
available. We also present the deep warehouse environment for training reinforce-
ment learning agents in industry-near ASRS systems. This section concludes our
work and defines future work for DVAE-2..

Although the deep warehouse does not behave identical to a real-world sys-
tem, it is adequate to determine the training time and performance. DVAE-2 is

12

presented as a VRC model for training reinforcement learning algorithms with a
learned model of the environment. The method is tested in the Deep warehouse
several continuous game environments. Our algorithm reduces training time and
depends less on data sampled from the real environment compared to model-free
methods.

We find that a carefully tuned policy gradient algorithms can converge to
near-optimal behaviour in simulated environments. Model-free algorithms are
significantly harder to train in terms of sample efficiency and stability, but per-
form better if there is unlimited sampling available from the environment.

Our work shows promising results for reinforcement learning agents in ASRS.
There are, however, open research questions that are essential for safe deploy-
ment in real-world systems. We wish to pursue the following questions to achieve
safety deployment in real-world environments. (1) How do we ensure that the
agent acts within defined safety boundaries? (2) How would the agent act if
parts of the state-space changes to unseen data (i.e. a fire occurs, or a collision
between agents.) (3) Can agents with a non-stationary policy function well in a
multi-agent setting?

References

1. Andersen, P.A., Goodwin, M., Granmo, O.C.: Towards a deep reinforcement learn-
ing approach for tower line wars. In: Bramer, M., Petridis, M. (eds.) Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics). vol. 10630 LNAI, pp. 101–114 (2017).
https://doi.org/10.1007/978-3-319-71078-5 8

2. Andersen, P.A., Goodwin, M., Granmo, O.C.: Deep RTS: A Game Environment for
Deep Reinforcement Learning in Real-Time Strategy Games. Proceedings of the
IEEE International Conference on Computational Intelligence and Games (aug
2018), http://arxiv.org/abs/1808.05032

3. Andersen, P.A., Goodwin, M., Granmo, O.C.: The Dreaming Variational Au-
toencoder for Reinforcement Learning Environments. In: Max Bramer, Petridis,
M. (eds.) Artificial Intelligence, vol. 11311, pp. 143–155. Springer, Cham, xxxv
edn. (dec 2018). https://doi.org/10.1007/978-3-030-04191-5 11, http://link.

springer.com/10.1007/978-3-030-04191-5{_}11

4. Azar, M.G., Piot, B., Pires, B.A., Grill, J.B., Altché, F., Munos, R.: World Discov-
ery Models. arxiv preprint arXiv:1902.07685 (feb 2019), http://arxiv.org/abs/
1902.07685

5. Blundell, C., Uria, B., Pritzel, A., Li, Y., Ruderman, A., Leibo, J.Z., Rae,
J., Wierstra, D., Hassabis, D.: Model-Free Episodic Control. arxiv preprint
arXiv:1606.04460 (jun 2016), http://arxiv.org/abs/1606.04460

6. Botvinick, M., Ritter, S., Wang, J.X., Kurth-Nelson, Z., Blundell, C., Hass-
abis, D.: Reinforcement Learning, Fast and Slow. Trends in cognitive sciences
23(5), 408–422 (may 2019). https://doi.org/10.1016/j.tics.2019.02.006, http://

www.ncbi.nlm.nih.gov/pubmed/31003893

7. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: OpenAI Gym. arxiv preprint arXiv:1606.01540 (jun 2016), http:
//arxiv.org/abs/1606.01540

13

https://doi.org/10.1007/978-3-319-71078-5_8
http://arxiv.org/abs/1808.05032
https://doi.org/10.1007/978-3-030-04191-5_11
http://link.springer.com/10.1007/978-3-030-04191-5{_}11
http://link.springer.com/10.1007/978-3-030-04191-5{_}11
http://arxiv.org/abs/1902.07685
http://arxiv.org/abs/1902.07685
http://arxiv.org/abs/1606.04460
https://doi.org/10.1016/j.tics.2019.02.006
http://www.ncbi.nlm.nih.gov/pubmed/31003893
http://www.ncbi.nlm.nih.gov/pubmed/31003893
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540

8. Buckman, J., Hafner, D., Tucker, G., Brevdo, E., Lee, H.: Sample-Efficient Rein-
forcement Learning with Stochastic Ensemble Value Expansion. Advances in Neu-
ral Information Processing Systems 32 pp. 8224–8234 (jul 2018), http://arxiv.
org/abs/1807.01675

9. Chua, K., Calandra, R., McAllister, R., Levine, S.: Deep Reinforcement Learning
in a Handful of Trials using Probabilistic Dynamics Models. Advances in Neural In-
formation Processing Systems 31 (may 2018), http://arxiv.org/abs/1805.12114

10. Greensmith, E., Bartlett, P.L., Baxter, J.: Variance reduction techniques for gra-
dient estimates in reinforcement learning. Journal of Machine Learning Research
5(Nov), 1471–1530 (2004)

11. Gregor, K., Rezende, D.J., Besse, F., Wu, Y., Merzic, H., van den Oord, A.:
Shaping Belief States with Generative Environment Models for RL. arxiv preprint
arXiv:1906.09237 (jun 2019), http://arxiv.org/abs/1906.09237

12. Ha, D., Schmidhuber, J.: Recurrent World Models Facilitate Policy Evolution.
Advances in Neural Information Processing Systems 31 (sep 2018), http://arxiv.
org/abs/1809.01999

13. Ha, D., Schmidhuber, J.: World Models. arxiv preprint arXiv:1803.10122 (mar
2018). https://doi.org/10.5281/zenodo.1207631, https://arxiv.org/abs/1803.

10122

14. Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., Davidson, J.:
Learning Latent Dynamics for Planning from Pixels. Proceedings of the 36 th
International Conference on Machine Learning (nov 2018), http://arxiv.org/

abs/1811.04551

15. Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mo-
hamed, S., Lerchner, A.: beta-VAE: Learning Basic Visual Concepts with a Con-
strained Variational Framework. International Conference on Learning Represen-
tations (nov 2016), https://openreview.net/forum?id=Sy2fzU9gl

16. Janner, M., Fu, J., Zhang, M., Levine, S.: When to Trust Your Model: Model-
Based Policy Optimization. arXiv preprint arXiv:1906.08253 (jun 2019), http:

//arxiv.org/abs/1906.08253

17. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement Learn-
ing: A Survey. Journal of Artificial Intelligence Research (apr 1996).
https://doi.org/10.1.1.68.466, http://arxiv.org/abs/cs/9605103

18. Liang, X., Wang, Q., Feng, Y., Liu, Z., Huang, J.: VMAV-C: A Deep Attention-
based Reinforcement Learning Algorithm for Model-based Control. arxiv preprint
arXiv:1812.09968 (dec 2018), http://arxiv.org/abs/1812.09968

19. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing Atari with Deep Reinforcement Learning. Neural Informa-
tion Processing Systems (dec 2013), http://arxiv.org/abs/1312.5602

20. Roodbergen, K.J., Vis, I.F.A.: A survey of literature on automated stor-
age and retrieval systems. European Journal of Operational Research (2009).
https://doi.org/10.1016/j.ejor.2008.01.038

21. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal Pol-
icy Optimization Algorithms. arxiv preprint arXiv:1707.06347 (jul 2017), http:

//arxiv.org/abs/1707.06347

22. Sutton, R.S.: The Bitter Lesson (2019), http://www.incompleteideas.net/

IncIdeas/BitterLesson.html

23. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT Press
(2018)

14

http://arxiv.org/abs/1807.01675
http://arxiv.org/abs/1807.01675
http://arxiv.org/abs/1805.12114
http://arxiv.org/abs/1906.09237
http://arxiv.org/abs/1809.01999
http://arxiv.org/abs/1809.01999
https://doi.org/10.5281/zenodo.1207631
https://arxiv.org/abs/1803.10122
https://arxiv.org/abs/1803.10122
http://arxiv.org/abs/1811.04551
http://arxiv.org/abs/1811.04551
https://openreview.net/forum?id=Sy2fzU9gl
http://arxiv.org/abs/1906.08253
http://arxiv.org/abs/1906.08253
https://doi.org/10.1.1.68.466
http://arxiv.org/abs/cs/9605103
http://arxiv.org/abs/1812.09968
http://arxiv.org/abs/1312.5602
https://doi.org/10.1016/j.ejor.2008.01.038
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

	Towards Model-based Reinforcement Learning for Industry-near Environments

