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Abstract. The automatic reconstruction of the patient’s treatment lines from
their Electronic Health Records (EHRs) is a significant step towards improving
the quality and the safety of the healthcare deliveries. With the recent rapid
increase in the adaption of EHRs and the rapid development of computational
science, we can discover new insights from the information stored in EHRs.
However, this is still a challenging task, being unstructured data analysis one of
them. In this paper, we focus on the most common challenges for reconstructing
the patient’s treatment lines, which are the Named Entity Recognition (NER),
temporal relation identification and the integration of structured results. We
introduce our Natural Language Processing (NLP) framework, which deals with
the aforementioned challenges. In addition, we focus on a real use case of
patients, suffering from lung cancer to extract patterns associated with the
treatment of the disease that can help clinicians to analyze toxicities and patterns
depending on the lines of treatments given to the patient.

Keywords: Electronic Health Records + Natural Language Processing - Named
Entity Recognition - Temporal relation identification

1 Introduction

Treatments target the symptoms, the disease, the impairments in physical and psy-
chosocial functioning, disabilities, comorbidities, and the trajectory of the disorder [1].
This makes the detection of treatment lines from the clinical texts a fundamental task in
the clinical information extraction, where a treatment line is a collection of drugs with
their dosage and its starting and ending time points. The detection of treatment lines has
several applications in the medical research such as assessing the healthcare quality [2],
understanding the patient’s treatment course [3] and improving the detection of adverse
drug reaction [4].

Towards the digitization of medical data, clinicians chronologically record the
details of the patient-clinician encounters in the computerized documents, known as
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“Electronic Health Records (EHRs)” [5]. EHRs are therefore textual (unstructured)
clinical documents containing several medical events related to the patient’s treatment
and the corresponding chronological sequence, which allows the reconstruction of the
treatment lines. A typical treatment line can be composed of many EHRs, including
tens of thousands of words. This makes the manual analysis of EHRs for identification
of such a line a time-consuming and costly task. For this reason, the automatic dis-
covery of treatment lines from clinical texts requires a great attention.

Identification of treatment lines includes several challenges: (1) NER, a paramount
step of NLP to extract drug concepts, dosage metrics and time expressions from clinical
texts; (2) temporal relation identification, to link treatment concepts to time expres-
sions; and (3) the integration of structured results, to deal with the redundant infor-
mation and to reconstruct the treatment lines.

Although, several NLP systems have been developed for extraction of information
from clinical texts such as Apache cTAKES [6], MEDLEE [7], MetaMap [8], H2A [9],
C-liKES [10], to name a few, the problem of the discovery of treatment lines from all
the patient’s EHRs still remains unsolved.

In this paper, we deal with the challenges associated with NER, temporal relation
identification and the integration of structured results for a specific use case related to
lung cancer domain. The EHRs of lung cancer patients used in our studies are available
in Spanish. The main objective of this research is to contribute to the existing solutions
by providing a prototype, indicating that analyzing EHRs enables the reconstruction of
the patient’s treatment lines. To do so, an NLP framework together with built in
modules to extract concepts, detect temporal relations and build treatment lines is being
designed.

The rest of paper is organized as follows: Sect. 2 explains the challenges associated
with reconstructing the patient’s treatment lines from their EHRs. Afterwards, Sect. 3 is
dedicated to explaining our framework and its application to lung cancer domain.
Finally, Sect. 4 describes the conclusions and future works.

2 Challenge for Reconstructing the Patient’s Treatment
Lines

Reconstruction of the patient’s treatment lines from EHRs entails three main chal-
lenges: (1) NER; (2) temporal relation identification; and (3) the integration of struc-
tured results. These challenges are discussed in detail in the following Sub-sections.

2.1 Named Entity Recognition Challenges

EHRs contain a vast amount of valuable information written in narrative form, which
lacks structure or have a structure depending on the hospital, service or the clinician
generating them. Thus, the extraction of information from clinical texts is difficult.
Annotation of treatment events is highly dependent on the dosage metrics. Within
clinical texts, recognition of these metrics introduces three main challenges. First of all,
although the NER process relies on ontologies such as SNOMED [11] and UMLS [12],
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these ontologies are limited to completely provide dosage metrics. Secondly, abbre-
viations are integral part of dosage metrics; it is thus difficult to assign semantics to
them. Finally, the dosage metrics can be mentioned as simple as including only one
variable or as complex as including several variables, which are very common, and yet
are difficult to decode in an exact way.

Another interesting challenge is related to the recognition of time expressions from
EHRs due to the limitation of ontologies to provide them, various formats, styles,
categories (i.e., relative and absolute) a time expression can be written in, and the
difficulty to interpret relative time expressions.

2.2 Temporal Relation Identification Challenges

Clinical texts include complex, diverse and sometimes, non-standard linguistics
mechanisms to mention temporal relations. In addition, in some cases, the time point
associated to the medical event is not even explicitly mentioned in EHRs. These make
the automatic detection of temporal relations a very challenging task.

2.3 The Integration of Structured Results Challenges

The problem of Information redundancy is a fundamental concept associated with
EHRs due to the interest of clinicians to “cut and paste” texts from past EHRs for
summarizing past information in the newly generated EHRs. This creates another layer
of complexity to reconstruct the patient’s treatment lines from EHRs as many redun-
dancies and references to the past treatments can appear with the current treatment
lines. In addition, it can happen that a treatment line has to be discontinued due to no
effect, toxicities or the side effects. This challenge also should be tackled in order to
find the lines of treatments of the patients.

3 Solution

The main goal of this research is to be able to reconstruct the patient’s treatment lines.
As mentioned in Sect. 1, we are working specifically on a use case related to the
patients suffering from lung cancer. Therefore, we present our framework to analyze
EHRs in order to reconstruct the lung cancer patient’s treatment lines (Fig. 1). Our
framework is responsible for analyzing EHRs to annotate concepts from clinical texts,
identify temporal relations and build the treatment lines.

We will describe in what follows, the annotators used and developed to be able to
recognize drug concepts, dosage metrics and time expressions from clinical texts.
In NER, the first step is to annotate concepts using standard ontologies. To recognize
drug concepts from clinical texts, we use the UMLS annotator of C-liKES [10], which
is built upon the Unstructured Information Management Architecture (UIMA) frame-
work. The UMLS annotator can identify noun and noun phrases concepts that have
relevant matches in the UMLS ontology. We here focus on recognizing the specific
treatments concepts of tyrosine kinase inhibitor, chemotherapy, radiotherapy,
immunotherapy, and antiangiogenic for our implementation.
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Fig. 1. Architecture of our framework

Apart from the treatment concepts, new annotators should be developed for
annotation of dosage metrics and time expressions as they are not provided in the
UMLS. To recognize dosage metrics associated with drugs for the aforementioned lung
cancer treatments, a rule-based NLP annotator is being developed. In addition, to
extract and normalize time variables appeared in the clinical texts, we use a rule-based
NLP annotator built over UIMA framework, named Temporal Tagger that is presented
in a previous work of the authors [13].

To process EHRs using these annotators, we have implemented them under a single
NER pipeline. Once the clinical texts are ingested, the outcomes of annotation process
are stored in a set of XML Metadata Interchange (XMI) files.

Then, a temporal relation identification process is implemented using a rule-based
approach to link annotated time expressions to treatment concepts in clinical texts.
Although once the information in EHRs has been annotated, one could use search
engines to retrieve the information. However, our aim here is to extract specific patterns
that can be used for reconstruction of treatment lines.

Afterwards, the information stored in XMI files and generated by the temporal
relation identification process is stored into a document-based relational database. As
this database only provides insights to the information at document level and does not
facilitate the integration of information for patients, so we cannot query the treatment
lines for patients. Therefore, the integration of structured information is still required
for reconstructing the patient’s treatment lines.

At this stage, a specific module is developed to integrate the information of
document-oriented database and to deal with information redundancy. As each patient
can have many EHRs generated for him during his treatment course, several redundant
information is included in these clinical documents. Therefore, there is a need for
development of a specific post-process module to deal with information redundancy to
be able to then reconstruct the lines of treatments. For this purpose, an algorithm with a
set of heuristics rules is being developed that is based on the clinician’s knowledge and
experience for determining what kind of treatments with specific dosage can be pre-
scribed for the patients at the same or different time intervals. This algorithm accepts
the structured information of document-oriented database and follows the steps dis-
cussed below:

e For each treatment type, temporally order the treatment concepts. Then, select the
earliest mention of its drug and dosage from EHRs, and start the treatment line X.
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e While the end time point of X is not found, include all the mentioned unique drug
concepts with their dosage from EHRs in X. The end time point of X is found when:

— More than N months have been passed without the mention of the last drug
concept of X within EHRs or without the mention of a new compatible drug.
Note that, the value of N for months is different for each treatment type.

— A new drug with a specific dosage is mentioned in an EHR that is not com-
patible with other drugs in X.

Once, the above algorithm is implemented and the lines of treatments are identified
for each patient, they will be stored into a patient-oriented database from which query
and answering process can be followed for having the detailed information for each
line. Figure 2 presents an example of the output stored by our framework in the patient-
oriented database for a patient, who has gone through the chemotherapy treatments.

Finally, Fig. 3 depicts the summary of the concepts extracted from EHRs towards
generating the patient’s treatment lines.

‘ Id Treatment Line  Init Finish Drugs Dosage

‘6695 chemotheraov 1 2017-06-01 2017-08-07 carboplatino 396 ma
6695 chemotheraov 2 2017-11-08  2018-02-22  docetaxelloemetrexed 75 ma/m21500 ma/m2

Fig. 2. Example of the output of our framework in the patient-oriented database
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Fig. 3. Concepts extracted From EHRs towards reconstructing the patient’s treatment lines

4 Conclusion and Future Work

In this paper, we have analyzed challenges associated with the process of recon-
structing the patient’s treatment lines from their EHRs. We have focused on the NER,
temporal relation identification and the integration of structured information. This work
is an ongoing research in which future works will be aimed at the validation and the
improvement of the framework. However, the validation of each of the modules in the
framework is a difficult and time-consuming task as it requires the manual inspection of
the EHRSs to check their performance accuracy. In addition, it is significant to note that
some of the steps of temporal relation identification and the integration of structured
results are not yet completely automatic as they are dependent on the way the clinical
texts are written. Thus, future improvements go to automatizing these processes
completely.
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