Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

CUDA virtualization and remoting for GPGPU based acceleration offloading at the edge

Mentone, Antonio; Di Luccio, Diana; Landolfi, Luca; Kosta, Sokol; Montella, Raffaele

Published in:
The 12th International Conference on Internet and Distributed Computing Systems

DOl (link to publication from Publisher):
10.1007/978-3-030-34914-1_39

Creative Commons License
CCBY 4.0

Publication date:
2019

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

Mentone, A., Di Luccio, D., Landolfi, L., Kosta, S., & Montella, R. (2019). CUDA virtualization and remoting for
GPGPU based acceleration offloading at the edge. In R. Montella, A. Ciaramella, G. Fortino, A. Guerrieri, & A.
Liotta (Eds.), The 12th International Conference on Internet and Distributed Computing Systems (Vol. 11874, pp.
414-423). Springer. https://doi.org/10.1007/978-3-030-34914-1_39

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 25, 2024

https://doi.org/10.1007/978-3-030-34914-1_39
https://vbn.aau.dk/en/publications/88cd2b3b-eed2-4266-b644-f1433ff9d9f9
https://doi.org/10.1007/978-3-030-34914-1_39

CUDA virtualization and remoting for GPGPU
based acceleration offloading at the edge

: 1[0000—0001—7546—4000] TY; ; : 1[0000—0002—0810—2250
Antonio Mentone!! }, Diana Di Lucciol!],

Luca Landolﬁl[0000700027797372209]’ Sokol Kosta2 [0000700027944174508]7 and
Raffaele Montellal [0000—0002—4767—2045]

L University of Naples ”Parthenope”, Science and Technologies Department, Napoli,
Ttaly
{antonio.mentone001,luca.landolfi}@studenti.uniparthenope.it
{diana.diluccio,raffaele.montella}@uniparthenope.it
2 Aalborg University Copenhagen, Department of Electronic Systems, Denmark
sok@cmi.aau.dk

Abstract. In the last decade, GPGPU virtualization and remoting have
been among the most important research topics in the field of computer
science and engineering due to the rising of cloud computing technolo-
gies. Public, private, and hybrid infrastructures need such virtualization
tools in order to multiplex and better organize the computing resources.
With the advent of novel technologies and paradigms, such as edge com-
puting, code offloading in mobile clouds, deep learning techniques, etc.,
the need for computing power, especially of specialized hardware such as
GPUs, has skyrocketed. Although many GPGPU virtualization tools are
available nowadays, in this paper we focus on improving GVirtuS, our
solution for GPU virtualization. The contributions in this work focus on
the CUDA plug-in, in order to provide updated performance enabling the
next generation of GPGPU code offloading applications. Moreover, we
present a new GVirtuS implementation characterized by a highly modu-
lar approach with a full multithread support. We evaluate and discuss the
benchmarks of the new implementation comparing and contrasting the
results with the pure CUDA and with the previous version of GVirtuS.
The new GVirtuS yielded better results when compared with its previ-
ous implementation, closing the gap with the pure CUDA performance
and trailblazing the path for the next future improvements.

Keywords: HPC - GPGPU - Cloud Computing - Virtualization.

1 Introduction

In a grid environment, computing power is offered on-demand to perform large
numerical simulations on a network of machines, potentially extended all over
the world [5]. Virtualization techniques represent a good solution to the problem
of executing generic complex high performance scientific software on a grid, and
have inspired a novel computing paradigm in which virtualized resources are
spread in a cloud of real high performance hardware infrastructures [6].

2 Mentone et al.

This model, well known as Cloud Computing, is an internet-based model provid-
ing a convenient on demand access to a shared pool of configurable computing
resources which can be rapidly assigned and released with a minimal management
effort or service provider interaction [9].

Latest-generation supercomputers take advantage of GPUs (Graphics Pro-
cessing Units) processing power in order to speed up calculations. GPUs are
parallel microprocessors attached to a graphics card. They are extremely flexi-
ble, completely programmable and able to achieve extremely high performance
during the parallel processing of large sets of data. GPUs’ high performance can
also be used for general purpose scientific computing and starting from this defi-
nition the GPGPU technology is born [2]. GPGPU is exploited by using parallel
programming environment such as OpenCL and CUDA [12].

In this paper, we consider the case of GVirtuS (GPU Virtualization Ser-
vice) [10], one of the state-of-the-art solutions that allows sharing the power of a
GPGPU among different applications running concurrently on a single machine.
GVirtuS uses a virtualization approach: the virtualized service is transparent to
the users running a GPGPU application, and there is little overhead compared to
bare metal GPGPU setup. The fields of application are many, including Internet
of Things, mobile code offloading, and others [11,13].

In this work, we present the evolution of GVirtuS3, featuring a redesigned

architecture and a general code refactoring. In order to modernize the framework
and improve its performance, we have adopted and integrated new technologies
and multi-threading techniques. We have also improved and restructured the
build process, in order to improve software portability and simplify the manage-
ment of external libraries.
The rest of the paper is organized as follows: Section 2 describes related work,
Section 3 contains a description of the software architecture and the main design
choices; Section 4 presents the new implementation of the GPU virtualization;
Section 5 describes the performance tests and the obtained results; and finally,
Section 6 draws conclusions and discusses some of the future planned develop-
ments.

2 Related work

A comprehensive survey about GPGPU virtualization and remoting techniques
is discussed in [7]. GPU virtualization solutions such as GVirtuS have been im-
plemented by other research projects such as rCUDA [17, 15, 4] and Distribuited-
Shared CUDA (DS-CUDA) [14]. They use an approach similar to GVirtu$S, pro-
viding CUDA API wrappers on the front-end application in the guest OS while
the back-end in the host OS accesses the CUDA devices. We now discuss some
of the differences between these solutions.

CUDA Toolkit supported version: all GPGPU computing solutions men-
tioned above implement their functionalities using the CUDA Runtime API.

3 https://github.com/gvirtus/GVirtuS

CUDA virtualization and remoting for GPGPU 3

None of them supports rendering specific graphic APIs, such as OpenGL* and
Direct3D®.

Communicator: the component that connects guest and host systems. GVirtuS
supports several communicator protocols: TCP/IP sockets, WebSocket, Unix
Sockets, VMSocket (for KVM based virtualization), and VMCI (for VMWare
based virtualization). By default, rCUDA and DS-CUDA use InfiniBand Verbs
and TCP/IP sockets as fallback.

Plug-in architecture: GVirtuS supports CUDA and OpenCL, while rCUDA
and DS-CUDA only support NVIDIA CUDA.

Transparency: using GVirtus and rCUDA, CUDA enabled software is able to
run on the remote GPUs without further changes to the source code. In order
to enable DS-CUDA support, an application must include DS-CUDA specific
extensions and it must be compiled using DS-CUDA specific tool-chain.
License: GVirtuS and DS-CUDA are both open source projects: the former is
licensed under the Apache 2.0, while the latter is licensed under the GPLv3.
rCUDA is proprietary software, but it is distributed for free under specified
terms and conditions of use.

ARM support: GVirtuS supports x86_64 and ARM hardware platforms. It
supports all combinations of ARM and x86_64 on the front-end and the back-
end (e.g. it is possible to run code from ARM front-end on a x86_64 back-
end, and vice-versa). rCUDA also supports ARM and x86.64 platforms in a
manner similar to GVirtuS [1], while DS-CUDA supports ARM front-ends but
only x86_64 back-ends [8].

3 System architecture and Design

GVirtuS is a generic virtualization framework for virtualization solutions. GVir-
tuS offers virtualization support for generic libraries such as accelerator libraries
(CUDA, OpenCL), with the advantage of independence from all the involved
technologies: hypervisor, communicator, and target virtualization. This feature
is possible thanks to the plug-in design of the framework, enabling the choice of
different communicators or different stub-libraries which mock the virtualization
targets. GVirtuS is transparent for developers: no changes in the software source
code are required to virtualize and execute applications, and there is no need to
recompile an already compiled executable.

3.1 Architecture

The virtualization system of GVirtuS is based on a split driver approach with
two main components, front-end and back-end. The front-end component is
deployed on the lightweight machines that don’t have a GPU, while the back-end
component is hosted on the real machine that accesses directly the GPU device.

* https://www.opengl.org/
® https://docs.microsoft.com/en-gb/windows/win32/direct3d

4 Mentone et al.

A hypervisor concurrently deploys the applications requiring access to the GPU
accelerators as VM appliances. The device is under control of the hypervisor.
An access to the GPU is routed via the front-end/back-end layers under control
of a management component, and data are moved from GPU to guest VM ap-
plication, and vice-versa. The front-end and the back-end layers implement the
decoupling between the hypervisor and the communication layer. A key property
of the proposed system is its ability to execute CUDA kernels and OpenCL with
an overall performance similar to that obtained by real machines with direct
access to the accelerators. This has been achieved by developing a component
that provides a high performance communication between virtual machines and
their hosts. The choice of the hypervisor deeply affects the efficiency of the com-
munication between the guest and host machines and then between the GPU
virtualization front-end and back-end. GVirtuS provides efficient communication
for VMwareS and KVM/Qemu” hypervisors.

| L]

GUEST VM

Hypervisor

(Backend)

[CUDA Library]

(NVIDIA Driver)

X 4

[Device]

Fig. 1. Block diagram of the GVirtuS architecture.

3.2 Design

The front-end /back-end communication is abstracted by the Communication in-
terface concretely implemented by each communicator component. The methods
implemented by concrete communicator classes support request preparation, in-
put parameters management, request execution, error checking, and output data
recovery. The back-end is executed on the host machine: it is a server program
that runs as a user with enough privileges to interact with the CUDA driver.

5 https://www.vmware.com/
" https://www.linux-kvm.org

CUDA virtualization and remoting for GPGPU 5

Guest : Host

Communicators
TCP/IP

VMSocket
H OpenCL

Library

CUDA
Application

Guest , Host

Fig. 2. The GVirtuS components.

The back-end accepts new connections and spawns a new process to serve
the front-end requests. The CUDA enabled application running on the virtual
or remote machine requests GPGPU resources to the virtualized device using
the stub-library. Each function in the stub-library follows these steps:

1. Obtains a reference to the single Frontend instance;

2. Uses Frontend class methods for setting the parameters;

3. Invokes the Frontend handler method specifying the remote procedure name;
4. Checks the remote procedure call results and handles output data.

GVirtuS strictly depends on the CUDA API version, because of the nature of
the transparent virtualization and remoting. Given that CUDA is a proprietary
solution and not open source, the use of a virtualization/remoting layer becomes
inherently non trivial.

3.3 A novel approach

With the third generation of GVirtuS many new features have been added.
The loading process of the Communicator has changed. Before, the Communi-
cator was part of a static library and it was linked at compile time. In the new
version, it is loaded at run time using a dynamic loading technique, the same
used with the plug-in libraries. Moreover, the back-end can now use several
Communicator objects: in this way the server can listen on multiple endpoints,
each of them using a different communication protocol.
When the server is started, it launches a new process for each type of commu-
nicator indicated in the configuration file. When a process receives a request, it
creates a new thread that serves it, and then it keeps listening for new requests
from the clients. Thanks to this new thread model, each module and dynamic
library is now loaded at startup and it is not unloaded after a request is served,
whereas the old version loaded and unloaded modules for each different request.
As a result, the overall overhead is reduced for subsequent requests, as we show
in section 5.2.

There are several other features that have been added, such as JSON con-
figuration file, signal state handlers, exceptions hierarchy, and much more. In

6 Mentone et al.

v v) '

Process 1 Process 2 Process 3 Process N
(TCP/IP Socket) (VMCI) (VMSocket) (zMQ)

Thread 2.1 Thread 2.N Thread N.1 Thread N.N
(server 1st req) (serve Nth req) (server 1st req) (serve Nth req)

. .
Thread 1.1 Thread 1.N Thread 3.1 Thread 3.N
(server 1st req) (serve Nth req) (server 1st req) (serve Nth req)

Fig. 3. The new back-end design.

order to support these changes, the overall architecture of the framework has
undergone a substantial re-design.

4 Implementation details

Several new technologies have been used in the new version of GVirtuS.
‘Web-Sockets have been added to the Communicator suite, facilitating real-
time data transfers from and to the server. GTest and GMock, powered by
Google, have made possible to write test units quickly and easily. An important
effort has been made to update the framework to the latest standards, such
as the new C++1z standard®, and many tools like JSON (JavaScript Object
Notation), TLS (Transport Layer Security), and zlib® (DEFLATE data com-
pression algorithm). Finally, an initial effort to introduce asynchronous I/0 has
been made, using the libuv library!? (Node.js engine written in C). However,
this feature is not fully tested and is not meant to be used in production yet.

5 Performance evaluation

5.1 Workstation setup

The workstation used for testing is equipped with a double Intel®Xeon® ES5-
2609 v3 @ 1.90 GHz, a six-core hyper-threaded CPU with 15 MB cache, and
32 GB of DDR4 RAM. The GPU sub-system is composed of two NVIDIA
GeForce GTX TITAN X GM200'!. They are equipped with 3072 CUDA cores

8 https://isocpp.org/std/status
9 https://www.zlib.net/
10 https://github.com/libuv/libuv
" https:/ /www.geforce.com /hardware/desktop-gpus/geforce-gtx-titan-
x/specifications

CUDA virtualization and remoting for GPGPU 7

T
I GVINuS g
450 H i
EGVituS , o
400 | [——cuoA

Local Virtualized Remote

Fig. 4. Matrix multiplication test. Three physical setups are showed for each frame-
work. The bare-metal CUDA performance is also showed as a benchmark line.

and 12 GB of GDDR5 memory. The CUDA cores run at 1000 MHz, and the
graphic memory runs at 1753 MHz. The testing system has been built on top
of the CentOS 7 Linux operating system, the NVIDIA CUDA/OpenCL driver,
and the SDK/Toolkit version 9.0.

5.2 Benchmarks

In this section, we show the benchmarks executed to test the performance of the
latest version of GVirtuS, namely GVirtuSsg19 in the rest of the paper, against
the bare CUDA and against the previous implementation of the framework,
namely GVirtuSgapip. The performance has been measured using a program
that computes matrix multiplication, a classic but highly relevant problem in
scientific computing. The size of the real valued matrices (using 32 bit floating
point arithmetic) used for testing are 320 x 320 and 320 x 640. First, we perform
the matrix multiplication on the bare-metal CUDA setup, which is used as a
benchmark for the other results achieved in the other physical setups, which are
the following:

Local The front-end and back-end is running on the same machine.

Virtualized The front-end is running inside a virtual machine.

Remote The front-end is running on a remote host and communicates with the
back-end using TCP/IP sockets.

Figure 4 presents the results of the experiments, where the execution times us-
ing three physical setups for each framework are shown. Each column presents
the average execution time of 1000 runs of the matrix multiplication program
using the matrices described above. Notice that in the presented experiments

8 Mentone et al.

1 1
8 16 32 64 128 256
Parallel Requests

Fig. 5. Average times of parallel requests to the old and new version of GVirtuS.

the matrices remain the same during all the executions. However, randomizing
the values of the matrices still yields the same results. As it can be seen from
the figure, the new release of GVirtuS has improved significantly from its pre-
vious version, performing 20% better in the Local setup and 25% better in the
Virtualized and the Remote setups.

Figure 5 shows the average response time for an increasing number of parallel re-
quests to the GVirtuS back-end, and compares the performance between the old
and the new implementation. The new GVirtuS exhibits remarkably better over-
all performance due to the modern multi-threaded architecture. In particular, it
can sustain a higher load than the old version. In our tests, the old framework
was indeed not able to sustain more than 128 concurrent requests. Moreover,
GVirtuSgg19 performance exhibits a linear growth with respect to the number
of parallel requests, while the old GVirtuS degrades almost quadratically. To
perform the parallel tests we have used the GNU Parallel power tool [18].
Finally, Figure 6 shows the impact of the caching system presented in 3.3 on
the performance of GVirtuSsp19 compared to GVirtuSgapip. The first request
is served in a time comparable to the old version, but each subsequent request
greatly benefits from the reduced overhead due to the now eliminated load-
ing/unloading of the dynamic libraries.

6 Conclusions and Future directions

In this paper, we presented the third generation of the GVirtuS framework,
a GPU virtualization and sharing service. The main aim of this upgrade was
to improve the performance of the framework and to make it compliant with
the latest technological standards. We have reported the results of an extensive

CUDA virtualization and remoting for GPGPU 9

1 1 1
0 5 10 15 20 25 30 35 40 45 50
Sequential Requests

Fig. 6. After the first request is served, response times are reduced in GVirtuSzo19.

testing process. We compared the performance of GVirtuSsg19 against the pre-
vious version, GVirtuSgapip. The results clearly show the performance boost
achieved by GVirtuSsg19 compared to its predecessor. Moreover, considering
benchmarks available in literature [3] and experiments performed with rCUDA,
which we could not present in this paper due to its license restrictions'?, rCUDA
performs slightly better than GVirtuSsg19. On the other hand, GVirtuS still of-
fers advantages compared to a proprietary solution like rCUDA: it has an open
source license, it supports a vast series of communication protocols, and provides
OpenCL back-end support.

As future work, we will explore the performance of GVirtuS on high per-
formance networks like 10G Ethernet and add the support for the Infiniband
protocol [16].

References

1. Castell6, A., Duato, J., Mayo, R., Penia, A.J., Quintana-Ort1, E., Roca, V., Silla,
F.: On the use of remote gpus and low-power processors for the acceleration of
scientific applications. In: The Fourth International Conference on Smart Grids,
Green Communications and IT Energy-aware Technologies (ENERGY). pp. 57-62
(2014)

2. Di Lauro, R., Giannone, F., Ambrosio, L., Montella, R.: Virtualizing general pur-
pose gpus for high performance cloud computing: an application to a fluid simu-
lator. In: 2012 IEEE 10th International Symposium on Parallel and Distributed
Processing with Applications. pp. 863-864. IEEE (2012)

3. Duato, J., Pena, A.J., Silla, F., Fernandez, J.C., Mayo, R., Quintana-Orti, E.S.:
Enabling cuda acceleration within virtual machines using rcuda. In: 2011 18th
International Conference on High Performance Computing. pp. 1-10. IEEE (2011)

2 http://www.rcuda.net/pub/rCUDA _TOS.pdf

10

10.

11.

12.

13.

14.

15.

16.

17.

18.

Mentone et al.

Duato, J., Pena, A.J., Silla, F., Mayo, R., Quintana-Orti, E.S.: rcuda: Reducing
the number of gpu-based accelerators in high performance clusters. In: 2010 Inter-
national Conference on High Performance Computing & Simulation. pp. 224-231.
IEEE (2010)

Foster, 1., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-
degree compared. arXiv preprint arXiv:0901.0131 (2008)

Giunta, G., Montella, R., Agrillo, G., Coviello, G.: A gpgpu transparent virtualiza-
tion component for high performance computing clouds. In: European Conference
on Parallel Processing. pp. 379-391. Springer (2010)

Hong, C.H., Spence, 1., Nikolopoulos, D.S.: Gpu virtualization and scheduling
methods: A comprehensive survey. ACM Computing Surveys (CSUR) 50(3), 35
(2017)

Martinez-Noriega, E.J., Kawai, A., Yoshikawa, K., Yasuoka, K., Narumi, T.: Cuda
enabled for android tablets through ds-cuda (2013)

Mell, P.: The nist definition of cloud computing v15. http://csrc. nist.
gov/groups/SNS/cloud-computing/ (2009)

Montella, R., Coviello, G., Giunta, G., Laccetti, G., Isaila, F., Blas, J.G.: A general-
purpose virtualization service for hpc on cloud computing: an application to gpus
pp. 740-749 (2011)

Montella, R., Ferraro, C., Kosta, S., Pelliccia, V., Giunta, G.: Enabling android-
based devices to high-end gpgpus. In: Carretero, J., Garcia-Blas, J., Ko, R.K.,
Mueller, P., Nakano, K. (eds.) Algorithms and Architectures for Parallel Process-
ing. pp. 118-125. Springer International Publishing, Cham (2016)

Montella, R., Giunta, G., Laccetti, G., Lapegna, M., Palmieri, C., Ferraro, C.,
Pelliccia, V., Hong, C.H., Spence, 1., Nikolopoulos, D.S.: On the virtualization of
cuda based gpu remoting on arm and x86 machines in the gvirtus framework.
International Journal of Parallel Programming 45(5), 1142-1163 (2017)
Montella, R., Kosta, S., Oro, D., Vera, J., Fernndez, C., Palmieri,
C., Di Luccio, D., Giunta, G., Lapegna, M., Laccetti, G.: Accelerat-
ing linux and android applications on low-power devices through re-
mote gpgpu offloading. Concurrency and Computation: Practice and
Experience ~ 29(24), €4286 (2017). https://doi.org/10.1002/cpe.4286,
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4286, e4286 cpe.4286
Oikawa, M., Kawai, A., Nomura, K., Yasuoka, K., Yoshikawa, K., Narumi, T.: Ds-
cuda: A middleware to use many gpus in the cloud environment. pp. 1207-1214
(2012)

Reano, C., Silla, F.: A performance comparison of cuda remote gpu virtualization
frameworks. In: 2015 IEEE International Conference on Cluster Computing. pp.
488-489. IEEE (2015)

Reano, C., Silla, F.: Reducing the performance gap of remote gpu virtualization
with infiniband connect-ib. In: 2016 IEEE Symposium on Computers and Com-
munication (ISCC). pp. 920-925. IEEE (2016)

Reano, C., Silla, F., Shainer, G., Schultz, S.: Local and remote gpus perform sim-
ilar with edr 100g infiniband. In: Proceedings of the Industrial Track of the 16th
International Middleware Conference. p. 4. ACM (2015)

Tange, O., et al.: Gnu parallel-the command-line power tool. The USENIX Maga-
zine 36(1), 42-47 (2011)

