l‘)

Check for
updates

Formal Verification of an Industrial
Safety-Critical Traffic Tunnel Control
System

Wytse Oortwijn®™) and Marieke Huisman ()

University of Twente, Enschede, The Netherlands
{w.h.m.oortwijn,m.huisman}@utwente.nl

Abstract. Over the last decades, significant progress has been made
on formal techniques for software verification. However, despite this
progress, these techniques are not yet structurally applied in industry.
To reduce the well-known industry—academia gap, industrial case studies
are much-needed, to demonstrate that formal methods are now mature
enough to help increase the reliability of industrial software. Moreover,
case studies also help researchers to get better insight into industrial
needs.

This paper contributes such a case study, concerning the formal verifi-
cation of an industrial, safety-critical traffic tunnel control system that is
currently employed in Dutch traffic. We made a formal, process-algebraic
model of the informal design of the tunnel system, and analysed it
using mCRL2. Additionally, we deductively verified that the implemen-
tation adheres to its intended behaviour, by proving that the code refines
our mCRL2 model, using VerCors. By doing so, we detected undesired
behaviour: an internal deadlock due to an intricate, unlucky combination
of timing and events. Even though the developers were already aware of
this, and deliberately provided us with an older version of their code, we
demonstrate that formal methods can indeed help to detect undesired
behaviours within reasonable time, that would otherwise be hard to find.

1 Introduction

Despite tremendous progress over the last decades on both the theory and prac-
tice of formal techniques for software verification [13], these techniques are not
yet structurally applied in industrial practice, not even in the case of safety-
critical software. Even though formal methods have shown to be able to increase
software reliability [6,8,10], their application is often time consuming and may
additionally require expert knowledge. Nevertheless, especially in the case of
safety-critical software where reliability demands are high, industry can benefit
greatly from the current state-of-the-art in formal verification research.

To make this apparent, industrial case studies are needed, that show industry
and society that formal methods are now ready to help increase software depend-
ability in practice. In turn, such industrial case studies also help researchers and
© Springer Nature Switzerland AG 2019

W. Ahrendt and S. L. Tapia Tarifa (Eds.): IFM 2019, LNCS 11918, pp. 418-436, 2019.
https://doi.org/10.1007/978-3-030-34968-4_23


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34968-4_23&domain=pdf
https://doi.org/10.1007/978-3-030-34968-4_23

Formal Verification of a Safety-Critical Traffic Tunnel Control System 419

developers of verification tools to get insight into the needs of industry. By doing
S0, researchers can improve and adapt their techniques to industrial needs, and
thereby reduce the well-known gap between academia and industry.

This paper discusses such an industrial case study. It elaborates on our expe-
riences and results of the formal verification of a safety-critical component of a
control system for a traffic tunnel that is currently in use in the Netherlands. This
particular software component is responsible for handling emergencies. When a
fire breaks out inside the tunnel, or a traffic accident occurs, it should start an
emergency procedure that evacuates the tunnel, starts the fans to blow away
any smoke, turns on the emergency lights to guide people out, and so on. Natu-
rally, the Dutch government imposes very high reliability demands on the traffic
tunnel control software, and in particular on this emergency component, which
are specified in a document of requirements that is over 500 pages in length [16].

The tunnel control software is developed by Technolution [22], a Dutch soft-
ware and hardware development company located in Gouda. Technolution has
hands-on experience in developing safety-critical, industrial software!. The devel-
opment process of the traffic tunnel control system came together with a very
elaborate process of quality assurance/control, to satisfy the high demands on
reliability. Significant time and energy has been spent on software design and
specification, code inspection, peer reviewing, unit and integration testing, etc.

In particular, during the design phase, the intended behaviour of the tunnel
control software has been worked out in great detail: all system behaviours have
been specified in pseudo code beforehand. Moreover, these pseudo code descrip-
tions together have been structured further into a finite state machine, whose
transitions describe how the different software behaviours change the internal
state of the system. Nevertheless, both the pseudo code and this finite state
machine have been specified informally, and do not have a precise, checkable for-
mal semantics. Throughout the software development process, no formal meth-
ods or techniques have been used to assist in the major effort of quality control.

In this case study, we investigate how formal methods can help Technolu-
tion to find potential problems in their specification and (Java) implementation,
with realistic effort, and preferably at an early stage of development. Technolu-
tion is above all interested in establishing whether: (1) the specification is itself
consistent, by not being able to reach problematic states, e.g., deadlocks in the
finite state machine; and (2) whether the Java code implementation is written
correctly with respect to the pseudo code specification of the intended behaviour.

To address both these properties, we use a combination of existing verifica-
tion techniques, to deal with their different nature. More specifically, for (1) we
construct a formal model of the pseudo code specification and the underlying
finite state machine. This model is specified as a process algebra with data, using
the mCRL2 modelling language. After that, we use the mCRL2 model checker to
verify whether the model adheres to certain requirements (e.g., deadlock freedom
and strong connectivity), which we formalise in the modal p-calculus.

! To illustrate, Technolution also delivers commercial software written in Rust.



420 W. Oortwijn and M. Huisman

For (2), we use VerCors [3] to deductively verify whether the control system
is correctly implemented with respect to the pseudo code specification. This is
done by proving that the implementation is a refinement of our mCRL2 model,
using our earlier work on model-based deductive verification [17,18].

Our verification effort actually led to the detection of undesired behaviour:
the system can potentially reach an internal state in which the calamity proce-
dure is not invoked when an emergency has occurred, due to an intricate, unlucky
combination of timing and events. Even though Technolution was well-aware of
this—they deliberately provided us with an older version of their specification
and implementation—we demonstrate that formal methods can indeed help to
find such undesired behaviours at an early stage of development. We also demon-
strate that formal techniques are able to provide results within reasonable time,
that are otherwise hard to find manually. To illustrate, this undesired behaviour
was found within approximately 7 working days.

1.1 Contributions and Outline

This paper contributes a successful industrial verification case study that con-
cerns real-world, safety-critical code, and discusses our verification effort and
results. The contributions of the case study itself are:

— A formal process-algebraic model of the informal pseudo code description of
the tunnel control software, that is defined using mCRL2.

— An analysis of this mCRL2 model, via state-space exploration, and by check-
ing desired pu-calculus properties on the model, like deadlock-freedom.

— A machine-checked proof that the (Java) implementation adheres to the
pseudo code specification, by proving that the program refines our mCRL2
model. This refinement proof is done using the automated verifier VerCors.

Here we should note that the actual Java implementation of the tunnel con-
trol system is confidential, as well as the documents from the design phase, and
therewith also the mCRL2 model and VerCors files that we produced. We there-
fore sometimes slightly simplify their presentation for the purpose of this paper,
for example by using different variable/method /transition names. Nevertheless,
the presentation of the case study does not deviate very much from the original,
so this paper still gives an accurate overview of our approach and results.

Outline. The remainder of this paper is organised as follows. Section 2 gives pre-
liminaries on the use of mCRL2 and VerCors. Then, Sect. 3 gives more detail on
how the tunnel control system is informally specified by Technolution, by dis-
cussing the structure of the pseudo code and the finite state machine. Section 4
explains how we modelled this informal specification in mCRL2, after which
Sect. 5 discusses its analysis. Section 6 explains how VerCors is used to deduc-
tively prove that the tunnel control system correctly implements our mCRL2
model. Section7 relates our work to existing approaches and industrial case
studies, before Sect. 8 concludes.



Formal Verification of a Safety-Critical Traffic Tunnel Control System 421

1 sort AccessType = read | write; S3

2 lock(write) <\ ) unlock(write)
3 act lock, unlock : AccessType;

4 — S1

5 proc lock(read) < ,> unlock(read)
6 S1 2 lock(read)-S2(1) + lock(write)-S3;

7 SZ(n : N>0) S 52(1)

8 n < N — lock(read) - S2(n+1) + Lock (read) Q ;unlock(read)
9 1 <n —unlock(read)-S2(n—1) +
10 n =1— unlock(read) - S1;
11 S3 £ unlock(write) - S1; lock(read) C 3 unlock(read)
12
13 init S1; S2(N)

(a) The mCRL2 model of a RW lock. (b) The underlying state machine.

Fig. 1. An mCRL2 specification of a RW lock, and the underlying state space.

2 Preliminaries

This section gives preliminaries on the use of mCRL2 (Sect.2.1) and VerCors
(Sect. 2.2).

2.1 Modelling and Analysis with mCRL2

During the case study, we modelled the (informal) tunnel control software spec-
ification as a process algebra with support for data. This was done using the
specification language of mCRL2 [11]. mCRL2 is a toolset that comes with an
ACP-style process-algebraic modelling language, and contains more than sixty
tools to support visualisation, simulation, minimisation, state-space generation
and model checking of these mCRL2 processes [4]. The model checking back-end
takes as input an mCRL2 model, together with a temporal property specified in
the modal p-calculus, and determines whether the model satisfies this property.
By default this is done via exhaustive (symbolic) state space analysis.

We further illustrate how this modelling and analysis works by means of a
small example, that is presented in Fig. 1. This example demonstrates how a
simple read—write (RW) lock can be specified and verified with mCRL2. A RW
lock can be acquired multiple times for read-only purposes, but can also provide
exclusive write access for a single client: a multiple-reader/single writer lock.

Figure 1b shows the corresponding state machine. Initially the RW lock is
unlocked (S1). From here the lock can be acquired once for the purpose of writ-
ing (S3), via a lock(write) action, and can subsequently be released again via
unlock(write). Similarly, from S1, the lock can be acquired/released multiple
times for reading purposes. The state S2(n) represents a read lock that has been
acquired n times, where n is bounded to some constant threshold N.

Figure 1a presents the mCRL2 encoding of this locking protocol. The specifi-
cation language of mCRL2 has various built-in data types (like positive numbers;



422 W. Oortwijn and M. Huisman

see line 7), but also allows defining custom abstract data types, as sort’s. Line 1
defines a sort that enumerates the different kinds of accesses that can be granted
by the RW lock: read-only (read) access, and read/write (write) access.

Line 3 defines the actions for the locking protocol, which represent the basic,
observable behaviours of the system. In this example, there are only two observ-
able events, namely locking and unlocking. In mCRL2, actions can be param-
eterised by data. In this case, both actions are parameterised by AccessType.

These two actions can be composed into processes (lines 5-11). This example
defines three processes, corresponding to the three locking states: S1 (unlocked),
S2 (locked for reading purposes), and S3 (locked for read /write purposes).

Processes are of the following form, where e is an expression:

PQ:=c|d|lalE)|7|P-Q|P+Q|b— P|X(e) (processes)

Of course, the mCRL2 modelling language is actually much richer than the
above language [11], for example by supporting parallel compositions. Yet this
is the fraction of the mCRL2 language that we will use throughout the paper.

Clarifying the constructs: € is the empty process, without behaviour, whereas
¢ is the deadlocked process, which neither progresses nor terminates. The process
a(€) is an action invocation, with € a sequence of arguments, while 7 is a special,
reserved action that models internal, unobservable system events. P - @ is the
sequential composition of P and (Q, whereas P + () is their non-deterministic
choice. The process b — P is the conditional process, that behaves as P if b is a
Boolean expression that evaluates to true, and behaves as ¢ if b evaluates to false.
Finally, X (€) is the invocation of a process named X, with input arguments e.

Moving back to the example, the S1 process can either perform a 1lock(read)
action, followed by the process invocation S2(1), or can do a Lock(write), after
which S3 is invoked (see line 6). Here the - connective has the highest precedence,
followed by —, and then +. Process S3 (line 11) is only able to release the write
lock and therewith to continue as S1. Finally, S2(n) allows to (re)acquire/release
read locks, depending on n being small/large enough, respectively, on lines 8-10.

For the actual case study, we modelled the tunnel control system in a similar
way: by studying the state machine specification, and encoding it into mCRL2.

Modal p-calculus. After having constructed a model, mCRL2 allows to analyse
it, by checking whether it satisfies a given temporal specification. These specifi-
cations are written in the modal p-calculus, a powerful formalism that allows to
specify properties about sequences of actions, i.e., traces of the input model.
Properties in the modal p-calculus are defined by the following language.

a,B = true | a(@) | ~a|la-flat+ 8| a” (action formulae)
G, = Db d | dAY | () | [a]d | px.¢ | va.d (state formulae)

The actual specification language of mCRL2 is again much richer; we refer
to [11] for a complete overview and a more detailed description.

Properties in the modal p-calculus are defined in terms of action and state
formulae. Action formulae a describe sequences of actions a(€), where true stands



Formal Verification of a Safety-Critical Traffic Tunnel Control System 423

for any action. Such descriptions are negatable: ~« expresses any sequence except
for a. Action formulae can also sequentially be composed, a; - ag, or alternatively
be composed, a1 + a9, and o is the repetition (Kleene iteration) of .

State formulae ¢, express properties that should hold in the current state.
These properties may for example be built from pure Boolean expressions b, but
may also contain modalities, ()¢ and [a]¢, to express that ¢ must hold after a
certain sequence of actions « has been observed. More specifically, (a)¢ is the
may modality, which expresses that, from the current state, the model is able to
perform a sequence of actions complying with «, after which ¢ directly holds.
Its dual is the must modality, [a]¢, which expresses that, from the current state,
after the performance of any action sequence «, the property ¢ directly holds.

State formulae may also contain fizpoint operators, i and v, to specify infinite
system behaviour. Here pz.¢ is the least fizpoint of ¢, i.e., the smallest reachable
set of states satisfying ¢, where x is the fixpoint variable. These are used to
express liveness properties. Its dual is the greatest fizpoint, vx.¢, used to express
safety properties, representing the largest reachable set of states satisfying ¢.

Below we give three example properties that hold for our RW lock model:

[unlock(read)|false (1)
ve.((true® - Lock(write))true A [true*]|x) (2)
ve.([(—unlock(write))™ - lock(read)]false A [true* - Lock(write)]z) (3)

Property (1) states that read locks cannot be released from the initial state,
as initially no locks have been acquired. Furthermore, (2) expresses that it always
remains possible to acquire the write lock. Finally, (3) states that, when holding
the write lock, no read lock can be obtained until the write lock is released.

2.2 Deductive Verification with VerCors

Besides modelling the tunnel software specification in mCRL2, we also used
deductive techniques to automatically prove that the code implementation
adheres to this specification. This is done using VerCors [3], an automated
deductive verifier that targets programs written in high-level languages, like
Java and (subsets of) C, that are annotated with JML-like (pre/postcondition)
specifications.

VerCors actually specialises in concurrency verification, and is, among other
things, able to reason about: fork/join concurrency in Java, GPU kernels in the
context of OpenCL, and OpenMP directives for loop parallelisation. Neverthe-
less, we use VerCors in a purely sequential setting for the purpose of this case
study, as the tunnel software does not use any concurrency.

In particular, we use our earlier work on model-based verification [17,18],
to mechanically establish that the code implementation of the tunnel control
system correctly implements (refines) our mCRL2 specification. This resolves a
well-known problem in model checking, known as the abstraction problem: is the
model a sound behavioural abstraction of the modelled system?



424 W. Oortwijn and M. Huisman

1 shared int r_count; 8 requires Proc(unlock(read) - P+ Q);
2 9 ensures Proc(P);
3 modifies r_count; 10 void releaseRead() {
4 guard 0 < r_count; 11 action unlock(read) {
5 effect r_count = \old(r_count)—1; 12 r_count := r_count — 1;
6 action unlock(read); 13}
7 14 }
(a) The action contract for unlock(read).  (b) Simple read lock release method.

Fig. 2. A simple example of our model-based verification approach, showing the action
contract of the unlock(read) action (a), and a code implementation (b).

This refinement approach considers process-algebraic models to be abstract
descriptions of shared-memory behaviour. Any (say, Java) implementation of the
RW lock would use shared memory to implement the locking functionality, for
example by maintaining a shared integer field r _count to administer how many
times a read lock has currently been acquired. These shared-memory behaviours
are specified in terms of action and process contracts, which are essentially pre/-
postcondition extensions to the mCRL2 language. Figure2a shows a possible
action contract for the unlock(read) action, that consists of: a modifies clause
that determines which shared fields are modified; a guard clause that deter-
mines the condition under which the action is allowed to be performed; and an
effect clause that logically describes the effect on shared memory of performing
the action. In this case, performing unlock(read) has the effect of decreasing
r_count by one in the implementation, given that it was positive beforehand.

These actions and their contracts can be related to program code by means
of code annotations. Figure 2b shows the (simplified) annotations that would be
required for a simple implementation of releasing read locks. The program and
process are related via process ownership predicates, Proc(P), which express that
the remaining program is allowed to behave as specified by (the action sequences
of) P, with respect to shared memory behaviour. As a precondition, a process
of the form unlock(read)- P+ @ is required by releaseRead, for some P and
Q. This implies that the method has the choice to behave as unlock(read), and
the remaining program to execute according to P (as is ensured on line 9).

Furthermore, action blocks are used to relate process-algebraic actions to
program code. Lines 11-13 show an action block specification that links the per-
formance of unlock(read) on process level, to the decrement of » count in pro-
gram code. VerCors checks that all modifications to r_count are made within
such action blocks, and also automatically verifies whether the decrement of
r__count on line 12 is actually allowed according to the process-algebraic speci-
fication. These checks enable VerCors to prove that a process-algebraic model is
a sound abstraction of the shared-memory behaviour of the modelled program.

For the actual case study, we enriched the actions of our mCRL2 model of
the tunnel system with action contracts in a similar way, which we derived from
the informal pseudo code. Moreover, we added annotations to the program code,
and used VerCors to verify that the implementation adheres to the model.



Formal Verification of a Safety-Critical Traffic Tunnel Control System 425

1

Operational PossibleCalamity Calamity Maintenance

B S B
@ |

Fig. 3. A simplified visual representation of the FSM. The two transitions that are
later written-out as pseudo code in Fig. 4 are labelled A and B.

3 Informal Tunnel Software Specification

Before detailing how mCRL2 and VerCors are applied on the actual case study,
let us first discuss the informal specification of the traffic tunnel control system.

Technolution invested significantly in an extensive design phase, to ensure
the quality of the control system and to cope with the high reliability demands.
During this phase, the intended behaviour of the control software was written-
out in pseudo code, together with domain experts. These pseudo code specifica-
tions were further structured into a finite state machine (FSM). The states of
this FSM are the operational states of the tunnel system (e.g., operating nor-
mally, under repair, evacuating, etc.), while the transitions are the pseudo code
descriptions of the system behaviour. The FSM thus illustrates how the different
behaviours/events of the tunnel system should change its operational state.

Moreover, during the development phase, significant time and effort were
invested in ensuring that the code was correctly implemented with respect to
this specification. This was done primarily via unit testing and code reviewing.

This section gives more detail on how the tunnel control software was (infor-
mally) specified. Section3.1 discusses the structure of the FSM, after which
Sect. 3.2 elaborates on the pseudo code specification, i.e., the transitions of the
FSM.

3.1 Structure of the FSM

Figure 3 illustrates the structure of the FSM specification of the tunnel control
system. This illustration is simplified for confidentiality reasons: the actual FSM
contains many more states and transitions. Nevertheless, the overall structure
and the described behaviour are close to the original FSM specification.

The operational states are organised in a 2-layer hierarchy. For example, the
composite state Operational contains two sub-states: Normal and StandBy. Tran-
sitions come in two flavours. Solid transitions (—) represent manual interactions,
made by human operators through control panels. Dashed transitions (-+) are



426 W. Oortwijn and M. Huisman

automatic events that are taken autonomously by the control system itself, for
example to react to time-outs or sensor input. Any transition whose source is a
composite state can also be taken by any of the underlying substates. Moreover,
the composite PossibleCalamity state (displayed in grey) is a ghost state. Ghost
states are special, in the sense that the system can be in a ghost state while also
being in a non-ghost state (e.g., to specify that a GUI dialog is being displayed).
For example, the tunnel system can be in Alert and Normal simultaneously.

The functional meaning of the specification is roughly as follows. Being in
Normal means that the system is in the normal operating state. From Normal the
system may autonomously go in StandBy state, as result of, e.g., smoke or heat in
the traffic tunnel that is detected via sensor reading. If the system finds enough
reason to suspect a real calamity, it may autonomously decide to go from Oper-
ational to the Alert state. The Alert state can also manually be entered, when a
human operator presses the emergency button on a control panel. The Possible-
Calamity composite ghost state starts a timer upon entering. While in this state,
if a human operator does not intervene in time by manually cancelling the alert
status (thereby going back to the Operational state), the system will automati-
cally launch the Calamity programme, for example to evacuate the traffic tunnel.
Such calamities can be recovered from via Maintenance: manually repairing or
resolving the calamity’s cause. By doing so, the system can manually be brought
back to the Normal operating state. However, it may also re-enter Alert in case
new potential calamities are detected during maintenance.

3.2 Pseudo Code Specification

Figure4 gives an idea of the structure of the pseudo code specification of the
tunnel system. These pseudo code descriptions were provided by the Dutch Min-
istry of Infrastructure and Water Management, as part of a national standard on
traffic tunnels [16]. The figure highlights two transitions of Fig. 3, labelled as A
and B, that describe interesting, important key system behaviours. Transition A
specifies how the control system should autonomously request a calamity status
when it suspects the traffic tunnel to be in an emergency situation. This will
cause the system to go into the Alert ghost state, and therewith start the timer.
Transition B specifies what should happen when this timer expires.

Elaborating on the textual format, all autonomous/manual system
behaviours are specified in pseudo code style. Any such system behaviour cor-
responds to a transition in the FSM (denoted by transition) and is given a
unique identifier (name). The internal state of the system is determined by the
values of a set of pseudo-variables, which are prefixed with a # in the figure. The
effect clauses exactly describe how the transition changes the internal state.
The condition clauses specify under which conditions these state changes are
allowed.

Transition A is able to request the calamity procedure to be initiated, by
setting #request_calamity to true, given that #possible_calamity_
detected has been set to true by some other system behaviour, e.g., as
result of sensor reading. Such a request will also configure a timer, named



Formal Verification of a Safety-Critical Traffic Tunnel Control System 427

1 transition: A (autonomous)

2 name: ‘ProceedToAlertStatus’®

3 condition:

4 #possible_calamity_detected = true &&

5 #request_calamity = false &&

6 #state = Operational;

7 effect:

8 #request_calamity := true;

9 #calamity_timeout := now() + __calamity_timeout_frame;

11 transition: B (autonomous)
12 name: ‘StartCalamityProgrammeAfterTimeout®
13 condition:

14 #state != Calamity &é&

15 #request_calamity = true &&
16 now () > #calamity_timeout;
17 effect:

18 #request_calamity := false;
19 #state := Calamity::Full;

20 invoke CalamityProgramme () ;

Fig. 4. The format of the textual specification of the tunnel system.

#calamity_timeout, for cancelling the request. Transition B specifies what
should happen when this timer expires: in that case the system should
enter the operational state Calamity (if not already in there) and start the
CalamityProgramme ().

The control software of every Dutch traffic tunnel is required to comply with
these specifications. This is checked by an external code review committee.

4 Modelling the Tunnel Control System Using mCRL2

Even though the tunnel control software has been specified extensively, prior to
our work there had been no formal, structural effort to establish whether the
specification itself obeys the desired properties. For Technolution, the main prop-
erties of interest concern reliability and recoverability: does the system always go
into the Calamity state in real emergency situations? And is it always possible to
recover from calamities, and thereby go back to the Normal operational state?

To automatically check for such desired properties, we modelled the pseudo
code specifications and the underlying FSM as a process in the mCRL2 language.
Figure 5 shows the main structure of our mCRL2 model. This is again a simplified
representation; the actual model consists of roughly 700 lines of code.

mCRL2 allows new data types to be defined using the sort keyword. We
use data sorts to explicitly model the different operational states that the tunnel
system might be in, as the structured sort State, defined on line 2. Also explicitly



428 W. Oortwijn and M. Huisman

1 sort

2 State £ struct Normal | StandBy | Alert | Full | ---;

3 Var £ struct possibleCalamityDetected | requestCalamity | ---;

4 Val 2 struct true | false | unknown | ---;

5

6 act enter : State;

7

8 proc

9 %% Encoding of transition A (autonomous)

10 ProceedToAlertStatus (state : State, o : Var — Val, phase : Nat) =
11 o (possibleCalamityDetected) N —o(requestCalamity) A

12 isInOperational (state) —

13 enter (Alert) - System (state, o[requestCalamity := true], phase) ;
14

15 %% Encoding of transition B (autonomous)

16 StartCalamityProgrammeAfterTimeout (state, o, phase) =

17 —isInCalamity (state) A o(requestCalamity) —

18 enter (Full) - System (Full, o[requestCalamity := false], phase) ;
19
20 %% Encoding of the top-level specification
21 System (state : State, o : Var — Val, phase : Nat) £
22 %% First phase: handling GUI input
23 (phase =1) —
24 (CancelPossibleCalamity (state, o, phase) +
25 + 7 - System (state, o, 2)) +
26 %% Second phase: handling internal/external controls and function calls
27 (phase = 2) — ( + T - System (state, o, 3)) +
28 %% Third phase: processing autonomous system behaviour
29 (phase = 3) —
30 (ProceedToAlertStatus (state, o, phase) +
31 StartCalamityProgrammeAfterTimeout (state, o, phase) +
32 + 7 - System (state, o, 4)) +
33 %% Fourth phase: processing sensor data and update all variables
34 (phase = 4) — (7 - System (state, updateVars (o), 1));
35

36 init System (Maintenance, oinit, 1) ;

Fig. 5. The main structure of the mCRL2 formalisation of the specification.

modelled are the various “pseudo-variables” that are used in the textual specifi-
cation (defined on line 3), together with a domain of values for these variables
(on line 4). These three data types are used to model the internal state of the
tunnel control system.

Line 6 covers the definition of actions, which model the basic, observable units
of computation. One of the main challenges was to determine which observable
behaviours of the tunnel system to model explicitly. We experienced that mod-



Formal Verification of a Safety-Critical Traffic Tunnel Control System 429

elling too many behaviours leads to state space explosions, while modelling too
few hampers analysis. As the main properties of interest are properties of oper-
ational state reachability, the most important observable events to model are
the transitions between the operational states. These are modelled as enter (s)
actions, where s € State is the operational state that is being entered.

The traffic tunnel control system is modelled as the System (state, o, phase)
process (lines 21-34), whose arguments determine the internal state of the tun-
nel. In particular, state determines its operational state, whereas o provides a
valuation for all pseudo-variables. The third argument, phase, is maintained for
technical reasons. This is because the overall system is specified and implemented
as a (busy) working loop, that continuously cycles through four different phases,
to (1) handle GUI input, (2) process internal requests, (3) autonomously make
decisions, and (4) read from sensors and update all variables accordingly. These
phases have been made explicit in our model, using phase. Every phase has the
non-deterministic choice to advance to the next phase, as an internal 7 action.

The earlier highlighted transitions A and B both describe autonomous
behaviour, and thus are both handled in phase 3 (lines 30-31). Their behaviours
are modelled on lines 9-18, and closely follow the pseudo code specification.

Finally, line 36 specifies the initial state of the control system. The system
initialises in Maintenance state, and starts by handling phase 1 events. The map-
ping o, is a constant that holds the initial valuation of pseudo-variables.

5 Analysing the Tunnel Control System with mCRL2

Now that we have a formal model of the tunnel system specification in mCRL2,
we can study its state space, and determine whether it satisfies desired proper-
ties, formulated in the modal p-calculus, with relatively little effort. Technolution
was primarily interested in verifying these properties: (i) Deadlock freedom and
strong connectivity: are all operational states reachable at any point during exe-
cution? (ii) Reliability: does the system automatically go to Full after detecting
an emergency, unless this is manually cancelled? (iii) Recoverability: can calami-
ties always be recovered from, by getting the system back to Normal?

A major challenge during analysis was to keep the model’s state space small
enough to be able to analyse it in a reasonable time. In particular, we needed
to improve our mCRL2 model various times, as earlier versions suffered from
state space explosions resulting from the explicit modelling of time. Recall that
the informal specification includes software behaviours that depend on time, for
example the timers that are maintained by the PossibleCalamity ghost state. In
earlier versions of our model, these timers were modelled explicitly, as discrete
values: natural numbers that were bounded by some threshold. However, their
analysis was only feasible with thresholds no larger than three time units, which
is insufficient. We later solved this scalability issue by modelling time implicitly,
by constructing the model in such a way that certain actions must happen before
others. More specifically, instead of having certain actions depend on timers or
timeouts to happen before others, we let them happen non-deterministically, but
in such a way that the original order of action occurrences is preserved.



430 W. Oortwijn and M. Huisman

Our latest model has an underlying state space of roughly 4.200 states and
25.400 transitions, which takes about 4 min to generate?. This clearly shows that
the tunnel system specification comprises far too many behaviours for software
designers/developers to comprehend, without the help of automated tooling.
In fact, mCRL2 helped us further, by allowing to minimise this state space
modulo branching bisimilarity [12], leaving only 27 states and 98 transitions.
This reduction gave us better insight into the system’s behaviour.

Together with Technolution, we formulated several dozens of desired prop-
erties as p-calculus formulae, and checked these on the reduced mCRL2 model.
An example of such a formula is given below, expressing that the StandBy state
can only ever be reached via the Normal state of operation.

va.( [(—enter (Normal) )* - enter (StandBy) |false A (4a)
[true* - enter (StandBy) ]z ) (4b)

More precisely, this greatest fixed-point formula expresses that StandBy can-
not be reached via any path of non-“enter (Normal)” actions (by 4a), and that
this reachability property remains preserved each time StandBy is entered (4b).

In addition to checking these properties, we also inspected the state space of
the minimised model and discussed its structure with Technolution. Ultimately,
our verification exposed an intricate violation of the requirement of reliability.
We found that the control system can reach a potentially dangerous situation, in
which the Calamity state cannot automatically be entered after having detected
a potential emergency (unless a human operator manually interferes), due to
an intricate, unlucky combination of timing and events. The following reliability
property exposes this behaviour, by stating that, while being in the Alert ghost
state, it must always be possible to directly enter Full, unless the alert status is
manually cancelled. This property does not hold for our mCRL2 model.

[true* - enter (Alert)] va.( (5a)
[-(cancel + enter (Full) )*|{enter (Full) Ytrue A (5b)
[true* - enter (Alert) |z ) (5¢)

Nevertheless, this is precisely the violating behaviour that Technolution
hoped we would find. This is because they already found it, by chance, and
deliberately provided us with an older version of their specification and imple-
mentation. Our case study therefore shows that formal techniques can indeed
help to find such problematic behaviours in a more reliable and structural man-
ner, and at an early stage of development, within reasonable time: we found it
within 7 working days.

2 On a Macbook with an Intel Core i5 CPU with 2.9 GHz, and 8Gb internal memory.



Formal Verification of a Safety-Critical Traffic Tunnel Control System 431

1 shared bool possibleCalamityDetected, requestCalamity;
2 shared State state;

3

4 modifies state;

5 effect state = s;

6 action enter (State s);

7

8 // The encoding of transition A, as a single action

9 accesses possibleCalamityDetected, state;

10 modifies requestCalamity;

11 guard possibleCalamityDetected N\ —requestCalamity;

12 guard isInOperational (state);

13 effect requestCalamity;

14 action ProceedToAlertStatus;

15

16 accesses state;

17 modifies requestCalamity;

18 guard —isInCalamity (state) A requestCalamity;

19 effect —requestCalamity;
20 action flipCalamityRequest;
21
22 // The encoding of transition B, as a sequential composition of two actions
23 process StartCalamityProgrammeAfterTimeout £
24 flipCalamityRequest - enter (Full);

Fig. 6. The VerCors encoding of transitions A and B, as processes with contracts.

6 Specification Refinement Using VerCors

As a next step, we use VerCors to deductively verify that the code implementa-
tion adheres to the FSM and pseudo code specification. This is done by proving
that the code correctly implements (refines) our mCRL2 model, using our earlier
work on model-based verification. Such a proof also adds value to the model, as
it establishes that the model is a sound abstraction of the program’s behaviour.

As explained in Sect. 2.2, the process algebra language that VerCors uses is
an extension of mCRL2, in which all process and action definitions are enriched
with pre/postcondition-style contracts. These contracts are used to connect/link
processes and actions to program code: they logically describe how the perfor-
mance of an action corresponds to an update to shared memory, very much like
the effect and condition clauses used in the pseudo code specification. With
these contracts we can mechanically prove with VerCors that every execution of
the program corresponds to an action trace (a run) in the mCRL2 model. These
links between programs and models preserve safety properties (i.e., vx.®).

For this project, we manually encoded our mCRL2 model into the process
algebra language of VerCors®. Figure6 shows an excerpt of this encoding, in

3 Both these languages can be translated into one another, and we are actively working
on mechanising these translations.



432 W. Oortwijn and M. Huisman

which transitions A and B are again highlighted. The VerCors encoding consists
of a large number of action declarations, corresponding to the FSM transitions,
with contracts that closely follow the pseudo code specifications. Moreover, this
version does not use a valuation o for the pseudo variables, like in Sect. 4, but
rather connects to the actual shared fields in the program code (e.g., lines 1-
2). The variables state and phase have been translated likewise. Our VerCors
encoding is intended, but not (yet) proven, to be equivalent to the mCRL2
version.

Line 6 defines the enter (s) action, whose performance has the effect of
modifying the shared variable state, by assigning s to it. Lines 9-14 give the spec-
ification of transition A, as a single action, with a contract that closely follows
the corresponding textual specification. Transition B is defined to be composed
out of two actions: flipCalamityRequest for setting the requestCalamity
flag to false, and enter for changing the operating state of the tunnel to Full.

Program Annotations. The next step is to deductively prove that the imple-
mentation adheres to the VerCors encoding of the specification, as explained in
Sect. 2.2. The actual tunnel control system is implemented in Java. However, we
converted this implementation to PVL—an object-oriented toy input language
of VerCors—since our model-based verification approach is currently best sup-
ported by the PVL front-end (we are currently improving its support for Java).

Figure 7 shows and highlights the annotations of the PVL code implementa-
tions of transitions A (lines 2-16) and B (lines 19-35). The yields bool branch
annotations on lines 2 and 19 indicate that branch is an extra output parameter
that only exists for the sake of specification. In the figure, branch represents
which branch has been executed by the program, and is used in the postcondi-
tions to ensure the matching, corresponding process-algebraic choice.

The contract of proceedToAlertStatus states that it will execute as prescribed
by the process ProceedToAlertStatus-P+Q for some P and @ (line 3), and
depending on the execution branch taken, is left with either P (line 4) or with @
(line 5) upon termination. The contract of startCalamityProgrammeAfterTimeout
follows the same specification pattern, as well as most of the other methods. Since
this model-based verification approach is compositional, we could use it to verify
that the entire implementation complies with the process-algebraic specification.

Our deductive verification effort did not directly reveal any problems or viola-
tions in the implementation: all methods comply with their specified behaviour.
This is expected, as the implementation has been unit tested and code reviewed
very rigorously. Nevertheless, this compliance between specification and imple-
mentation is now confirmed, by means of a machine-checked proof.

However, this verification did help us, as tool developers, to better understand
the needs from industry, and to identify weaknesses in our approach and tooling.
To give an example, for future use, Technolution finds it important that our
model-based verification technique is applicable on Java code, instead of PVL,
and in a more automated manner. We are now actively working on this.



Formal Verification of a Safety-Critical Traffic Tunnel Control System 433

1 // The annotated code implementation of Transition A
2 yields bool branch;
3 requires Proc(ProceedToAlertStatus - P+ Q);
4 ensures branch = Proc(P);
5 ensures —branch = Proc(Q);
6 void proceedToAlertStatus() {
7 branch = false;
8 if (possibleCalamityDetected N —requestCalamity N
9 state = Normal V state = StandBy) {
10  action ProceedToAlertStatus {
11 requestCalamity := true;
12 }
13}
14 calamityTimeout := now () + __calamity_timeout_frame ();
15  branch := true;

[y
[

}

// The annotated code implementation of Transition B

=
®

19 yields bool branch;

20 requires Proc(StartCalamityProgrammeAfterTimeout - P 4 Q);
21 ensures branch = Proc(P);

22 ensures —branch = Proc(Q);

23 void startCalamityProgrammeAfterTimeout() {
24  branch := false;

25 if (“state is in calamity”’ A requestCalamity) {
26 action flipCalamityRequest {

27 requestCalamity := false;

28}

29 action enter (Full) {

30 state := Full;

31 calamityProgramme ();

32 }

33 branch = true;

34 }

35 }

Fig. 7. Relating the tunnel specification to the implementation using VerCors.

7 Related Work

Various earlier successes have been reported in the use of model checking in
industrial case studies. mCRL2, for example, maintains a gallery of industrial
showcases online [15], which includes, among others, the modelling and analysis
of firmware for a pacemaker [23], as well as control software used for experi-
ments at the Large Hadron Collider at CERN [14]. Glabbeek et al. formalised the
AODV wireless routing protocol in AWN (Algebra for Wireless Networks) [9]—
a process algebra for modelling mobile ad-hoc networks—and used it to rea-
son about safety-critical routing properties. Ruijters et al. [20] uses statistical



434 W. Oortwijn and M. Huisman

model checking to study different maintenance strategies for railway joint, in
collaboration with ProRail-—a Dutch national railway infrastructure manager.
Moreover, [1] reports on the experiences of the use of TLA+ at Intel.

In the context of deductive verification, in 2015, de Gouw et al. [10] success-
fully detected an intricate bug in the standard implementation of OpenJDK’s
TimSort algorithm, which is used daily by billions of users worldwide. Another
successful application of deductive verification is the use of Infer at Facebook [5],
to detect potential regressions during continuous integration testing. In [2], a for-
mal verification of a cloud hypervisor is reported, using Frama-C. Also OpenJML
has been used successfully for the verification of industrial code; [7] discusses sev-
eral observations and experiences. Moreover, [19] discusses four industrial case
studies that have been performed with VeriFast: two Java Card smart card
applets, a Linux networking component, and a Linux device driver.

Regarding combinations of deductive verification and model checking, in [21],
CBMC and Frama-C have been used to verify embedded software for satellite
launching. But apart from this work, we are not aware of any other industrial
applications of model checking combined with deductive verification.

8 Conclusion

During our case study, we found that, even though the specification of the tunnel
control system is informal, it is well-structured, and therefore has the potential to
be formalised within reasonable time. In roughly 7 working days, we constructed
a formal model of the informal specification, analysed it using mCRL2, and used
VerCors to deductively prove that the code implementation adheres to it. This
resulted in the detection of undesired behaviour, preventing the control system
from automatically starting the calamity procedure after an emergency has been
detected. Even though Technolution was already aware of this behaviour, they
found it coincidentally. We demonstrate that formal methods can indeed help to
find such undesired behaviours more structurally, and within realistic time.

As a follow-up, we will continue to collaborate with Technolution, by being
involved in an upcoming project in late 2019, concerning safety-critical software.
In this project, we will attempt to apply formal methods during the software
design and development process, rather than after the deployment phase.

This case study also helped us to learn about the needs from industry, and the
shortcomings of our tooling, which we will work on before starting the follow-up
project. More specifically, we will improve VerCors’s support for Java, and work
on automated translations between mCRL2 and the process algebra language of
VerCors. We will also investigate if the pseudo code specification language can
be formalised into a DSL, that is automatically translatable to mCRL2.

Acknowledgements. This work is partially supported by the NWO VICI 639.023.710
Mercedes project and by the NWO TOP 612.001.403 VerDi project.



Formal Verification of a Safety-Critical Traffic Tunnel Control System 435

References

10.

11.

12.

13.

14.

15.

Beers, R.: Pre-RTL formal verification: an intel experience. In: DAC, pp. 806-811
(2008). https://doi.org/10.1145/1391469.1391675

Blanchard, A., Kosmatov, N., Lemerre, M., Loulergue, F.: A case study on formal
verification of the anaxagoros hypervisor paging system with Frama-C. In: Nufiez,
M., Giidemann, M. (eds.) FMICS 2015. LNCS, vol. 9128, pp. 15-30. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19458-5 2

Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verification
of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.) IFM
2017. LNCS, vol. 10510, pp. 102-110. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66845-1 7

Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21-39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 2

Calcagno, C., et al.: Moving fast with software verification. In: Havelund, K., Holz-
mann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 3-11. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-17524-9 1

Clarke, E.M.: The birth of model checking. In: Grumberg, O., Veith, H. (eds.) 25
Years of Model Checking. LNCS, vol. 5000, pp. 1-26. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-69850-0 1

Cok, D.R.: Java automated deductive verification in practice: lessons from indus-
trial proof-based projects. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS,
vol. 11247, pp. 176-193. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03427-6_ 16

Filliatre, J.: Deductive software verification. STTT 13(5), 397-403 (2011). https://
doi.org/10.1007/s10009-011-0211-0

van Glabbeek, R., Héfner, P., Portmann, M., Tan, W.: Modelling and verifying the
AODV routing protocol. Distrib. Comput. 29(4), 279-315 (2016). https://doi.org/
10.1007/s00446-015-0262-7

de Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hahnle, R.: OpenJDK’s
Java.utils.Collection.sort() is broken: the good, the bad and the worst case. In:
Kroening, D., Pasireanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 273-2809.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 16

Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

Groote, J.F., Wijs, A.: An O(mlogn) algorithm for stuttering equivalence and
branching bisimulation. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS,
vol. 9636, pp. 607—624. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49674-9 40

Huisman, M., Joosten, S.J.C.: Towards reliable concurrent software. Principled
Software Development, pp. 129-146. Springer, Cham (2018). https://doi.org/10.
1007,/978-3-319-98047-8 9

Hwong, Y., Keiren, J., Kusters, V., Leemans, S., Willemse, T.: Formalising and
analysing the control software of the compact muon solenoid experiment at the
large hadron collider. SCP 78(12), 2435-2452 (2013). https://doi.org/10.1007 /978~
3-642-29320-7 12

mCRL2—Showcases. https://www.mcrl2.org/web/user _manual /showcases.html.
Accessed July 2019


https://doi.org/10.1145/1391469.1391675
https://doi.org/10.1007/978-3-319-19458-5_2
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-540-69850-0_1
https://doi.org/10.1007/978-3-030-03427-6_16
https://doi.org/10.1007/978-3-030-03427-6_16
https://doi.org/10.1007/s10009-011-0211-0
https://doi.org/10.1007/s10009-011-0211-0
https://doi.org/10.1007/s00446-015-0262-7
https://doi.org/10.1007/s00446-015-0262-7
https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1007/978-3-662-49674-9_40
https://doi.org/10.1007/978-3-662-49674-9_40
https://doi.org/10.1007/978-3-319-98047-8_9
https://doi.org/10.1007/978-3-319-98047-8_9
https://doi.org/10.1007/978-3-642-29320-7_12
https://doi.org/10.1007/978-3-642-29320-7_12
https://www.mcrl2.org/web/user_manual/showcases.html

436

16.

17.

18.

19.

20.

21.

22.
23.

W. Oortwijn and M. Huisman

Landelijke Tunnelstandaard (National Tunnel Standard). http://publicaties.
minienm.nl/documenten/landelijke-tunnelstandaard. Accessed June 2019
Oortwijn, W., Blom, S., Gurov, D., Huisman, M., Zaharieva-Stojanovski, M.: An
abstraction technique for describing concurrent program behaviour. In: Paskevich,
A., Wies, T. (eds.) VSTTE 2017. LNCS, vol. 10712, pp. 191-209. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-72308-2 12

Oortwijn, W., Blom, S., Huisman, M.: Future-based static analysis of message pass-
ing programs. In: PLACES, pp. 65-72 (2016). https://doi.org/10.4204/EPTCS.
211.7

Philippaerts, P., Miihlberg, J., Penninckx, W., Smans, J., Jacobs, B., Piessens, F'.:
Software verification with verifast: industrial case studies. SCP 82, 77-97 (2014).
https://doi.org/10.1016/j.scico.2013.01.006

Ruijters, E., Guck, D., van Noort, M., Stoelinga, M.: Reliability-centered mainte-
nance of the electrically insulated railway joint via fault tree analysis: a practical
experience report. In: DSN, pp. 662-669. IEEE Computer Society (2016). https://
doi.org/10.1109/DSN.2016.67

Silva, R., de Oliveira, J., Pinto, J.: A case study on model checking and deductive
verification techniques of safety-critical software. In: SBMF, Federal University of
Campina Grande (2012)

The Technolution. https://www.technolution.eu. Accessed June 2019
Wiggelinkhuizen, J.: Feasibility of formal model checking in the Vitatron environ-
ment. Master’s thesis, Eindhoven University of Technology (2007)


http://publicaties.minienm.nl/documenten/landelijke-tunnelstandaard
http://publicaties.minienm.nl/documenten/landelijke-tunnelstandaard
https://doi.org/10.1007/978-3-319-72308-2_12
https://doi.org/10.4204/EPTCS.211.7
https://doi.org/10.4204/EPTCS.211.7
https://doi.org/10.1016/j.scico.2013.01.006
https://doi.org/10.1109/DSN.2016.67
https://doi.org/10.1109/DSN.2016.67
https://www.technolution.eu

	Formal Verification of an Industrial Safety-Critical Traffic Tunnel Control System
	1 Introduction
	1.1 Contributions and Outline

	2 Preliminaries
	2.1 Modelling and Analysis with mCRL2
	2.2 Deductive Verification with VerCors

	3 Informal Tunnel Software Specification
	3.1 Structure of the FSM
	3.2 Pseudo Code Specification

	4 Modelling the Tunnel Control System Using mCRL2
	5 Analysing the Tunnel Control System with mCRL2
	6 Specification Refinement Using VerCors
	7 Related Work
	8 Conclusion
	References




