Skip to main content

A Probabilistic Divide and Conquer Algorithm for the Minimum Tollbooth Problem

  • Conference paper
  • First Online:
  • 957 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11917))

Abstract

The tollbooth problem aims at minimizing the time lost through congestion in road networks with rational and selfish participants by demanding an additional toll for the use of edges. We consider a variant of this problem, the minimum tollbooth problem, which additionally minimizes the number of tolled edges. Since the problem is NP-hard, heuristics and evolutionary algorithms dominate solution approaches. To the best of our knowledge, for none of these approaches, a provable non-trivial upper bound on the (expected) runtime necessary to find an optimal solution exists.

We present a novel probabilistic divide and conquer algorithm with a provable upper bound of \(\mathcal {O}^*(m^{opt})\) on the expected runtime for finding an optimal solution. Here, m is the number of edges of the network, and opt the number of tolled roads in an optimal solution. Initial experiments indicate that in practice significantly less time is necessary.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arnott, R., Small, K.: The economics of traffic congestion. Am. Sci. 82(5), 446–455 (1994)

    Google Scholar 

  2. Bai, L., Hearn, D.W., Lawphongpanich, S.: A heuristic method for the minimum toll booth problem. J. Global Optim. 48(4), 533–548 (2010)

    Article  MathSciNet  Google Scholar 

  3. Bai, L., Rubin, P.A.: Combinatorial benders cuts for the minimum tollbooth problem. Oper. Res. 57(6), 1510–1522 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bai, L., Stamps, M.T., Harwood, R.C., Kollmann, C.J.: An evolutionary method for the minimum toll booth problem: the methodology. J. Manage. Inf. Decis. Sci. 11(2), 33 (2008)

    Google Scholar 

  5. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  6. Basu, S., Lianeas, T., Nikolova, E.: New complexity results and algorithms for the minimum tollbooth problem. In: Markakis, E., Schäfer, G. (eds.) WINE 2015. LNCS, vol. 9470, pp. 89–103. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48995-6_7

    Chapter  MATH  Google Scholar 

  7. Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Transportation. Yale University Press, New Haven (1956)

    Google Scholar 

  8. Bonifaci, V., Salek, M., Schäfer, G.: Efficiency of restricted tolls in non-atomic network routing games. In: Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 302–313. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24829-0_27

    Chapter  Google Scholar 

  9. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: Proceedings of STOC, pp. 67–73. ACM (2005)

    Google Scholar 

  10. Cole, R., Dodis, Y., Roughgarden, T.: Pricing network edges for heterogeneous selfish users. In: Proceedings of STOC, pp. 521–530. ACM (2003)

    Google Scholar 

  11. Colini-Baldeschi, R., Klimm, M., Scarsini, M.: Demand-independent optimal tolls. arXiv preprint arXiv:1708.02737 (2017)

  12. Erdős, P., Rényi, A.: On random graphs i. Publ. Math. Debrecen 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  13. Fleischer, L., Jain, K., Mahdian, M.: Tolls for heterogeneous selfish users in multicommodity networks and generalized congestion games. In: Proceedings of FOCS, pp. 277–285. IEEE (2004)

    Google Scholar 

  14. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956). https://doi.org/10.4153/CJM-1956-045-5

    Article  MathSciNet  Google Scholar 

  15. Harks, T., Kleinert, I., Klimm, M., Möhring, R.H.: Computing network tolls with support constraints. Networks 65(3), 262–285 (2015)

    Article  MathSciNet  Google Scholar 

  16. Harwood, R.C., Kollmann, C.J., Stamps, M.T.: A genetic algorithm for the minimum tollbooth problem (2005)

    Google Scholar 

  17. Hearn, D.W., Ramana, M.V.: Solving congestion toll pricing models. In: Marcotte, P., Nguyen, S. (eds.) Equilibrium and Advanced Transportation Modelling. Centre for Research on Transportation, pp. 109–124. Springer, Heidelberg (1998). https://doi.org/10.1007/978-1-4615-5757-9_6

    Chapter  Google Scholar 

  18. Krömer, P., Nowaková, J., Hasal, M.: Towards a new evolutionary algorithm for the minimum tollbooth problem. In: Chen, X., Sen, A., Li, W.W., Thai, M.T. (eds.) CSoNet 2018. LNCS, vol. 11280, pp. 116–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04648-4_10

    Chapter  Google Scholar 

  19. Nickerl, J.: The minimum tollbooth problem in atomic network congestion games with unsplittable flows. arXiv preprint arXiv:1906.09865 (2019)

  20. Pigou, A.C.: The Economics of Welfare. McMillan&Co., London (1920)

    Google Scholar 

  21. Roughgarden, T., Tardos, É.: How bad is selfish routing? JACM 49(2), 236–259 (2002)

    Article  MathSciNet  Google Scholar 

  22. Stefanello, F., et al.: On the minimization of traffic congestion in road networks with tolls. Ann. Oper. Res. 249(1–2), 119–139 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Todd, J.: Duke student math aims to alleviate tollbooth lines. Duke University News and Communications (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Nickerl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nickerl, J. (2019). A Probabilistic Divide and Conquer Algorithm for the Minimum Tollbooth Problem. In: Tagarelli, A., Tong, H. (eds) Computational Data and Social Networks. CSoNet 2019. Lecture Notes in Computer Science(), vol 11917. Springer, Cham. https://doi.org/10.1007/978-3-030-34980-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34980-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34979-0

  • Online ISBN: 978-3-030-34980-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics