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Abstract

In this paper, we present the first leader election protocol in the population protocol model that sta-
bilizes O(log n) parallel time in expectation with O(log n) states per agent, where n is the number of
agents. Given a rough knowledge m of the population size n such that m ≥ log2 n and m = O(log n),
the proposed protocol guarantees that exactly one leader is elected and the unique leader is kept forever
thereafter.

1 Introduction

We consider the population protocol (PP) model [Ang+06] in this paper. A network called population consists of a
large number of finite-state automata, called agents. Agents make interactions (i.e., pairwise communication) each
other by which they update their states. The interactions are opportunistic, that is, they are unpredictable. Agents are
strongly anonymous: they do not have identifiers and they cannot distinguish their neighbors with the same states. As
with the majority of studies on population protocols, we assume that the network of agents is a complete graph and
that the scheduler selects an interacting pair of agents at each step uniformly at random.

In this paper, we focus on leader election problem, which is one of the most fundamental and well studied problems
in the PP model. The leader election problem requires that starting from a specific initial configuration, a population
reaches a safe configuration in which exactly one leader exists and the population keeps that unique leader thereafter.

There have been many works which study the leader election problem in the PP model (Tables 1 and 2). Angluin et
al. [Ang+06] gave the first leader election protocol, which stabilizes in O(n) parallel time in expectation and uses only
constant space of each agent, where n is the number of agents and “parallel time” means the number of steps in an
execution divided by n. If we stick to constant space, this linear parallel time is optimal; Doty and Soloveichik [DS18]
showed that any constant space protocol requires linear parallel time to elect a unique leader. Alistarh and Gelashvili
[AG15] made a breakthrough in 2015; they achieve poly-logarithmic stabilization time (O(log3 n) parallel time) by
increasing the number of states from O(1) to only O(log3 n). Thereafter, the stabilization time has been improved by
many studies [Bil+17; AAG18; GS18; GSU18; MST18]. Gąsieniec et al. [GSU18] gave a state-of-art protocol that
stabilizes in O(log n · log logn) parallel time with only O(log logn) states. Its space complexity is optimal; Alistarh
et al. [Ali+17] shows that any leader election algorithm with o(n/(polylog n)) parallel time requires Ω(log logn)
states. Michail et al. [MST18] gave a protocol with O(log n) parallel time but with a linear number of states. Those
protocols with non-constant number of states [AG15; Ali+17; Bil+17; AAG18; GS18; GSU18] are not uniform, that
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Table 1: Leader Election Protocols. (Stabilization time is shown in terms of parallel time and in expectation.)

States Stabilization Time
[Ang+06] O(1) O(n)

[AG15] O(log3 n) O(log3 n)

[Ali+17] O(log2 n) O(log5.3 n · log logn)
[AAG18] O(log n) O(log2 n)

[GS18] O(log logn) O(log2 n)
[GSU18] O(log logn) O(log n · log logn)
[MST18] O(n) O(log n)
This work O(log n) O(log n)

Table 2: Lower Bounds for Leader Election (Stabilization time is shown in terms of parallel time and in expectation.)

States Stabilization Time
[DS18] O(1) Ω(n)

[Ali+17] < 1/2 log logn Ω(n/(polylog n))
[SM19] any large Ω(logn)

is, they require some rough knowledge of n. For example, in the protocol of [GS18], an Θ(log logn) value must be
hard-coded to set the maximum value of one variable (named l in that paper). One can find detailed information about
the leader election in the PP model in two survey papers [AG18; ER18].

The stabilization time of [MST18] is optimal; any leader election algorithm requires Ω(logn) parallel time if it
uses any large number of states and assumes the exact knowledge of population size n [SM19]. At the beginning of
an execution, all the agents are in the same initial state specified by a protocol. Therefore, simple analysis on Coupon
Collector’s problem shows that we cannot achieve o(log n) parallel stabilization time if an agent in the initial state is
a leader. The lower bound of [SM19] shows that we cannot achieve o(log n) parallel time even if we define the initial
state such that all the agents are non-leaders initially.

Our Contribution In this paper, we present the first time-optimal leader election protocol PLL with sub-polynomial
number of states. Specifically, the proposed protocol PLL stabilizes in O(log n) parallel time and uses only O(log n)
states per agent. Compared to the state or art protocol [GSU18], PLL achieves shorter (and best possible) stabilization
time but uses larger space of each agent. Compared to [MST18], PLL achieves drastically small space while main-
taining the same (and optimal) stabilization time. The protocol PLL is non-uniform as with the existing non-constant
space protocols; it requires a rough knowledge m of n such that m ≥ log2 n and m = Θ(logn).

We give PLL as an asymmetric protocol in the main part of this paper only for simplicity of presentation and
analysis of stabilization time. Actually, we can change PLL to a symmetric protocol, which we discuss in Section 4.
In particular, that section proposes the first implementation of totally independent and fair (i.e., unbiased) coin flips in
the symmetric version of the PP model. Although the implementation of coin flips in [Ali+17] is almost independent
and fair, the totally independent and fair coin clips achieved in this paper can contribute a simple analysis in a variety
kind of protocols in the PP model.

2 Preliminaries

A population is a network consisting of agents. We denote the set of all the agents by V and let n = |V |. We assume
that a population is complete graph, thus every pair of agents (u, v) can interact, where u serves as the initiator and v
serves as the responder of the interaction. Throughout this paper, we use the phrase “with high probability” to denote
probability 1−O(n−1).
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A protocol P (Q, sinit, T, Y, πout) consists of a finite set Q of states, an initial state sinit ∈ Q, a transition function
T : Q×Q→ Q ×Q, a finite set Y of output symbols, and an output function πout : Q→ Y . Every agent is in state
sinit when an execution of protocol P begins. When two agents interact, T determines their next states according to
their current states. The output of an agent is determined by πout: the output of an agent in state q is πout(q). In this
paper, we assume that a rough knowledge of an upper bound of n is available. Specifically, we assume that an integer
m such that m ≥ log2 n and m = Θ(logn) are given, thus we can design P (Q, sinit, T, Y, πout) using this input m,
i.e., the parameters Q,sinit,T ,Y , and πout can depend on m.

A configuration is a mapping C : V → Q that specifies the states of all the agents. We define Cinit,P as the
configuration of P where every agent is in state sinit. We say that a configuration C changes to C′ by the interaction
e = (u, v), denoted by C

e
→ C′, if (C′(u), C′(v)) = T (C(u), C(v)) and C′(w) = C(w) for all w ∈ V \ {u, v}.

A schedule γ = γ0, γ1, · · · = (u0, v0), (u1, v1), . . . is a sequence of interactions. A schedule determines which
interaction occurs at each step, i.e., interaction γt happens at step t under schedule γ. In particular, we consider a
uniformly random scheduler Γ = Γ0,Γ1, . . . in this paper: each Γt of the infinite sequence of interactions is a random
variable such that Pr(Γt = (u, v)) = 1

n(n−1) for any t ≥ 0 and any distinct u, v ∈ V . Note that we use capital letter
Γ for this uniform random scheduler while we refer a deterministic schedule with a lower case such as γ. Given an
initial configuration C0 and a schedule γ, the execution of protocol P is uniquely defined as ΞP (C0, γ) = C0, C1, . . .

such that Ct
γt

→ Ct+1 for all t ≥ 0. Note that the execution ΞP (C0,Γ) = C0, C1, . . . under the uniformly random
scheduler Γ is a sequence of configurations where each Ci is a random variable. For a schedule γ = γ0, γ1, . . .
and any t ≥ 0, we say that agent v ∈ V participates in γt if v is either the initiator or the responder of γt. We
say that a configuration C of protocol P is reachable if there exists a finite schedule γ = γ0, γ1, . . . , γt−1 such that
ΞP (Cinit,P , γ) = C0, C1, . . . , Ct and C = Ct. We define Call(P ) as the set of all reachable configurations of P .

The leader election problem requires that every agent should output L or F which means “leader” or “follower”
respectively. Let SP be the set of configurations such that, for any configuration C ∈ SP , exactly one agent outputs
L (i.e., is a leader) in C and no agent changes its output in execution ΞP (C, γ) for any schedule γ. We say that a
protocol P is a leader election protocol or solves the leader election problem if execution ΞP (Cinit,P ,Γ) reaches a
configuration in SP with probability 1. For any leader election protocol P , we define the expected stabilization time
of P as the expected number of steps during which execution ΞP (Cinit,P ,Γ) reaches a configuration in SP , divided
by the number of agents n. The division by n is needed because we evaluate the stabilization time in terms of parallel
time.

We write the natural logarithm of x as lnx and the logarithm of x with base 2 as lg x. We do not indicate the base
of logarithm in an asymptotical expression such as O(log n). By an abuse of notation, we will identify an interaction
(u, v) with the set {u, v} whenever convenient.

Throughout this paper, we will use the following three variants of Chernoff bounds.

Lemma 1 ([MU05], Theorems 4.4, 4.5). Let X1, . . . , Xs be independent Poisson trials, and let X =
∑s

i=1 Xi. Then

∀δ, 0 ≤ δ ≤ 1 : Pr(X ≥ (1 + δ)E[X ]) ≤ e−δ2E[X]/3, (1)

∀δ, 0 < δ < 1 : Pr(X ≤ (1 − δ)E[X ]) ≤ e−δ2E[X]/2. (2)

In the proposed protocol, we often use one-way epidemic [AAE08]. The notion of one-way epidemic is formalized
as follows. Let γ = γ0, γ1, . . . be an infinite sequence of interactions, V ′ be a set of agents (V ′ ⊆ V ), and r be an agent
in V ′. The epidemic function IV ′,r,γ : [0,∞) → 2V is defined as follows: IV ′,r,γ(0) = {r}, and for t = 1, 2, . . . ,
IV ′,r,γ(t) = IV ′,r,γ(t− 1)∪ (γt−1 ∩ V ′) if IV ′,r,γ(t− 1) ∩ γt−1 6= ∅; otherwise, IV ′,r,γ(t) = IV ′,r,γ(t− 1). We say
that v is infected at step t if v ∈ IV ′,r,γ(t) in the epidemic in V ′ and under γ starting from agent r. At step 0, only r is
infected; at later steps, an agent in V ′ becomes infected if it interacts with an infected agent. Once an agent becomes
infected, it remains infected thereafter.

This abstract notion plays an important role in analyzing the expected stabilization time of a population protocol.
For example, consider an execution ΞP (C0,Γ) = C0, C1, . . . where agents in V ′ have different values in variable
var in configuration C0 and the larger value is propagated from agent to agent whenever two agents in V ′ have an
interaction. Clearly, all agents in V ′ have the maximum value of var when all agents in V ′ are infected in one-way
epidemic in V ′ and under Γ starting from the agent with the maximum value var in configuration C0.
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Angluin et al. [Ang+06] prove that one-way epidemic in the whole population V from any agent r ∈ V finishes
(i.e., all agents are infected) within Θ(n logn) interactions with high probability. Furthermore, Sudo et al. [Sud+12]
give a concrete lower bound on the probability that the epidemic in the whole population finishes within a given
number of interactions. We generalize this lower bound for an epidemic in any set of agents (sub-population) V ′ ⊆ V
as follows while the proof is almost the same as the one in [Sud+12].

Lemma 2. Let V ′ ⊆ V , r ∈ V ′, n′ = |V ′|, and t ∈ N. We have Pr(IV ′,r,Γ(2⌈n/n
′⌉t) 6= V ′) ≤ ne−t/n.

Proof. For each k (2 ≤ k ≤ n′), we define T (k) as integer t such that |IV ′,r,Γ(t − 1)| = k − 1 and |IV ′,r,Γ(t)| = k,
and define T (1) = 0. Intuitively, T (k) is the number of interactions required to infect k agents in V ′. Let Xpre =

T (⌈n
′+1
2 ⌉) and Xpost = T (n′)− T (n′ − ⌈n

′+1
2 ⌉+ 1).

Let k be any integer such that 1 ≤ k ≤ n′. When k agents are infected, an agent is newly infected with probability
k(n′ − k)/nC2 at every step. When n′ − k agents are infected, an agent is newly infected also with probability
k(n′ − k)/nC2 at every step. Therefore, T (k+ 1)− T (k) and T (n′ − k + 1)− T (n′ − k) have the same probability

distribution. Thus, Xpre = T (⌈n
′+1
2 ⌉) =

∑⌈(n′+1)/2⌉−1
j=1 T (j+1)−T (j) and Xpost = T (n′)−T (n′−⌈n

′+1
2 ⌉+1) =

∑⌈(n′+1)/2⌉−1
j=1 T (n′ − j + 1)− T (n′ − j) have the same probability distribution. Moreover, Xpre +Xpost ≥ T (n′)

holds because ⌈n
′+1
2 ⌉ ≥ n′ − ⌈n

′+1
2 ⌉+ 1.

In what follows, we bound the probability that Xpost > ⌈n/n′⌉t. We denote T (n′−⌈n
′+1
2 ⌉+1) by Thalf . For any

agent v ∈ V , let Tv be the minimum non-negative integer such that v ∈ IV ′,r,Γ(Tv), i.e., agent v becomes infected at
the Tv-th step. We define Xv = max(TC0,Γ(v)−Thalf , 0). Consider the case v /∈ IV ′,r,Γ(Thalf). At any step t ≥ Thalf ,
at least n′−⌈n

′+1
2 ⌉+1 (≥ n′

2 ) agents are infected. Therefore, each interaction Γt such that (t ≥ Thalf) infects v with

the probability at least 1
nC2

·n
′

2 > n′

n2 , hence we havePr(Xv > ⌈n/n′⌉t) ≤
(

1− n′

n2

)nt/n′

≤ e−t/n. Since the number

of non-infected agents at step Thalf is at most n′/2, Pr(Xpost > ⌈n/n′⌉t) ≤ Pr(
∨

v∈V (Xv > ⌈n/n′⌉t)) ≤ n′

2 · e
−t/n

holds.
By the equivalence of the distribution of Xpre and Xpost, we have

Pr (IV ′,r,Γ (2⌈n/n
′⌉t) 6= V ′) ≤ Pr (Xpre > ⌈n/n

′⌉t) + Pr (Xpost > ⌈n/n
′⌉t) ≤ ne−t/n.

3 Logarithmic Leader Election

3.1 Key Ideas

In this subsection, we give key ideas of the proposed protocol PLL. Each agent v keeps output variable v.leader ∈
{false, true}. An agent outputs L when the value of leader is true and it outputs F when it is false . An execution of
PLL can be regarded as a competition by agents. At the beginning of the execution, every agent has leader = true,
that is, all agents are leaders. Throughout the execution, every leader tries to remain a leader and tries to make
all other leaders followers so that it becomes the unique leader in the population. The competition consists of three
modules QuickElimination(), Tournament(), and BackUp(), which are executed in this order. These three modules
guarantees the following properties:

QuickElimination(): An execution of this module takes O(log n) parallel time in expectation. For any i ≥ 2,
exactly i leaders survive an execution of QuickElimination() with probability at most 21−i. The execution
never eliminates all leaders, i.e., at least one leader always survives.

Tournament(): An execution of this module takesO(log n) parallel time in expectation. By an execution ofTournament(),
which starts with i ≥ 2 leaders, the unique leader is elected with probability at least 1−O(i/ logn). This lower
bound of probability is independent of an execution of the previous moduleQuickElimination(). The execution
never eliminates all leaders, i.e., at least one leader always survives.
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BackUp(): An execution of this component elects a unique leader within O(log2 n) parallel time in expectation.

From above, it holds that, after executions of QuickElimination() and Tournament() finish, the number of

leaders is exactly one with probability at least 1−
∑n

i=2 O
(

i
2i−1 logn

)

= 1−O(1/ logn). Therefore, combined with

BackUp(), protocol PLL elects a unique leader within (1−O(1/ logn)) · log n+O(1/ logn) ·O(log2 n) = O(log n)
parallel time in expectation.

In the remainder of this subsection, we briefly give key ideas to design the three modules satisfying the above
guarantees. We will present a way to implement the following ideas with O(log n) states per agent in the next subsec-
tion (Section 3.2). In this subsection, keep in mind only that these ideas are easily implemented with poly-logarithmic
number of states per agent, that is, with a constant number of variables with O(log logn) bits. For the following
description of the key ideas, we assume a kind of global synchronization, for example, we assume that each agent
begins an execution of Tournament() after all agents finish necessary operations of QuickElimination(). We also
present a way to implement such a synchronization in Section 3.2.

3.1.1 Key Idea for QuickElimination()

The goal of this module is to reduce the number of leaders such that, for any i ≥ 2, the resulting number of leaders
is exactly i with probability at most 21−i while guaranteeing that not all leaders are eliminated. This module is based
on almost the same idea as the lottery protocol in [Ali+17]. The protocol PLL achieves much faster stabilization time
than the lottery protocol thanks to tighter analysis on the number of surviving leaders, which we will see below, and
the combination with the other two modules.

First, consider the following game:

• (i) Each agent in V executes a sequence of independent fair coin flips, each of which results in head with
probability 1/2 and tail with probability 1/2, until it observes tail for the first time,

• (ii) Let sv be the number of heads that v observes in the above coin flips and let smax = maxv∈V sv

• (iii) The agents v with sv = smax are winners and the other agents are losers.

Let i ≥ 2 and j ≥ 0. Consider the situation that exactly i agents observe that their first j coin flips result in head and
define pi,j as the probability that all the i agents wins the game in the end starting from this situation. Starting from this
situation, if all the i agents observe tail in their j+1-st coin flips then exactly i agents win the game with probability 1; if
all the i agents observe head in their j+1-st coin flips then exactly i agents win with probability pi,j+1; Otherwise, the
number of winners of the game is less than i with probability 1. Therefore, we have pi,j = 2−i+2−i ·pi,j+1. Since we
have pi,j = pi,j+1 thanks to memoryless property of this game, solving this equality gives pi,j = 1/(2i − 1) ≤ 21−i.
Let ki be the minimum integer j such that exactly i agents observes that all of their first j coin flips result in head. We
define kn = 0 for simplicity. Then, for any i ≥ 0, we have

Pr(|{v ∈ V | sv = smax}| = i) =

∞
∑

j=0

Pr(ki = j) · pi,j ≤ 21−i
∞
∑

j=0

Pr(ki = j) ≤ 21−i.

Module QuickElimination() simulates this game in the population protocol model. Every time an agent v has an
interaction, we regard the interaction as the coin flip by v. If v is an initiator at the interaction, we regard the result
of the coin flip as head; Otherwise we regard it as tail. The correctness of this simulation for coin flips comes from
the definition of the uniformly random scheduler: at each step, an interaction where v is an initiator happens with
probability 1/n and an interaction where v is a responder also happens with probability 1/n. Strictly speaking, this
simple simulation of coin flips does not guarantee independence of coin flips by u and v for any distinct u, v ∈ V .
However, the actual PLL defined in Section 3.2 completely simulates independent coin flips of leaders and we will
explain it in Section 3.2. Each agent v computes and stores sv on variable v.levelQ by counting the number of
interactions that it participates in as an initiator until it interacts as a responder for the first time. After every agent v
computes sv on v.levelQ, the maximum value of levelQ, i.e., smax, is propagated from agent to agent via one-way

epidemic [AAE08], that is,
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• each agent memorizes the largest value of levelQ it has observed, and

• the larger value is propagated to the agent with smaller value at every interaction.

It is proven in [AAE08] that all agents obtain the largest value within O(log n) parallel time with high probability by
this simple propagation. If agent v knows sv < smax, v changes v.leader from true to false , that is, v becomes a
follower. Thus, when one-way epidemic of smax finishes, only the agents v satisfying sv = smax are leaders. From
the above discussion, for any i ≥ 2, the number of such surviving leaders is exactly i with probability at most 21−i.
On the other hand, there are at least one agent v with sv = smax, thus this module never eliminates all leaders. A
logarithmic number of states is sufficient for levelQ because each agent v gets more than c lgn consecutive heads
with probability at most n−c for any c ≥ 1.

3.1.2 Key Idea for Tournament()

Starting from a configuration where the number of leaders is i, the goal of Tournament() is to reduce the number
of leaders from i to one with probability 1 − O(i/ logn) while guaranteeing that not all leaders are eliminated. The
idea of this component is simple. As with the QuickElimination(), we use coin flips in Tournament(). Every
leader v maintains variable v.rand. Initially, v.rand = 0. Every time it has an interaction, it updates v.rand by
v.rand ← 2v.rand + j where j indicates whether v is a responder in the interaction or not, i.e., j = 0 if v is a
initiator and j = 1 if v is a responder. This operation stops when v encounters ⌈log2 m⌉ = O(log logn) interactions.
Thus, when all the i leaders encounter at least ⌈log2 m⌉ interactions, for every leader v, v.rand is a random variable
uniformly chosen from {0, 1, . . . , 2⌈log2

m⌉ − 1}. Although u.rand and v.rand are not independent of each other
for any distinct leader u and v, we will present a way to remove any dependence between u.rand and v.rand in
Section 3.2. As with QuickElimination(), the maximum value rand is propagated to the whole population via one-
way epidemic within O(log n) parallel time with high probability and only leaders with the maximum value remains
leaders in the end of Tournament().

Let v1, v2, . . . , vi be the i leaders that survive QuickElimination(). Let r1, r2, . . . , ri be the resulting value of
vi.rand and define rmax(j) = max(r1, r2, . . . , rj) for any j = 1, 2, . . . , i. Clearly, the number of leaders at the
end of Tournament() is exactly one if rj+1 6= rmax(j) holds for all j = 1, 2, . . . , i − 1. By the union bound and
independence between r1, r2, . . . , ri, this holds with probability at least 1−

∑i−1
j=1 2

−⌈log
2
m⌉ ≥ 1−i/m ≥ 1−i/(lgn).

On the other hand, an execution of Tournament() never eliminates all leaders since there always at least one leader
vj that satisfies rj = rmax(i).

3.1.3 Key Idea for BackUp()

The goal of BackUp() is to elect a unique leader within O(log2 n) parallel time in expectation. We must guarantee
this expected time regardless of the number of the agents that survive both QuickElimination() and Tournament()
and remain leaders at the beginning of an execution of BackUp(). We can only assume that at least one leader exists
at the beginning of the execution. We use coin flips also for BackUp(). Every leader v maintains v.levelB . Initially,
v.levelB = 0. Every leader v repeats the following procedure until v.levelB reaches 5m or v becomes a follower.

• Make a coin flip. If the result is head (i.e., v participates in an interaction as an initiator), v increments v.levelB
by one. If the result is tail, v does nothing.

• Wait for sufficiently long but logarithmic parallel time so that the maximum levelB propagates to the whole
population via one-way epidemic. If it observes larger value in the epidemic, it becomes a follower, that is, it
executes v.leader ← false . Furthermore, if v interacts with another leader with the same level during this
period and v is a responder in the interaction, v becomes a follower.

Let j be an arbitrary integer such that 1 ≤ i ≤ 5m. Consider the first time that levelB of some leader, say v, reaches
j. Let V ′ ⊆ V be the set of leaders at that time. By the definition of the above procedure, every u ∈ V ′ other than
v satisfies u.levelB < j, and u makes a coin flip at most once with high probability until the maximum value j is
propagated from v to u. If the result of the one coin flip is tail, u becomes a follower. Therefore, with probability at least
1/2−O(n−1) > 1/3, no less than half of leaders in V ′ \v becomes followers, that is, the number of leaders decreases

6



Table 3: Variables of PLL

Groups Variables Initial values

All agents

leader ∈ {false, true} true

tick ∈ {false, true} false

status ∈ {X,A,B} X
epoch ∈ {1, 2, 3, 4} 1
init ∈ {1, 2, 3, 4} 1
color ∈ {0, 1, 2} 0

VB count ∈ {0, 1, . . . , cmax − 1} Undefined

VA ∩ V1
levelQ ∈ {0, 1, . . . , lmax} Undefined
done ∈ {false, true} Undefined

VA ∩ (V2 ∪ V3)
rand ∈ {0, 1, . . . , 2Φ − 1} Undefined
index ∈ {0, 1, . . . ,Φ− 1} Undefined

VA ∩ V4 levelB ∈ {0, 1, . . . , lmax} Undefined

to at most 1 + ⌊|V ′|/2⌋. Chernoff bound guarantees that the number of leaders becomes one with high probability
until v.levelB for every leader v reaches 5m. Even if multiple leaders survive at that time, we have simple election
mechanism to elect a unique leader; when two leaders with the same level interacts with each other, one of them
becomes a follower. This simple election mechanism elects a unique leader within O(n) parallel time in expectation.
Therefore, the total expected parallel time to elect a unique leader is O(m log n) +O(n−1) ·O(n) = O(log2 n).

3.2 Detailed Description

In this subsection, we present detailed description of the proposed protocol PLL. The key ideas presented in the
previous subsection achieve O(log n) stabilization time if it is implemented correctly. However, they need some kind
of global synchronization. Furthermore, a naive implementation of the key ideas requires a poly-logarithmic number
of states (i.e., O(logc n) states for c > 1) per agent while our goal is to achieve O(log n) states per agent. In this
subsection, we will give how we achieve synchronization and implement the ideas shown in Section 3.1 with only
O(log n) states per agent.

All variables of PLL are listed in Table 3. All agents manage six variables leader, tick, status, epoch,
init, and color. To implement the key ideas above with O(log n) states, we divide the population into multiple
sub-populations or groups, as in [GSU18], where agents in different groups manage different variables in addition
to the above six variables. In the remainder of this paper, we refer the above six variables by common variables

and other variables by additional variables. The population is divided to six groups based on two common variables
status ∈ {X,A,B} and epoch ∈ {1, 2, 3, 4}, that is, VX , VB , VA ∩ V1, VA ∩ (V2 ∪ V3), VA ∩ V4 where we denote
VZ = {v ∈ V | v.status = Z} for Z ∈ {X,A,B} and Vi = {v ∈ V | v.epoch = i} for i ∈ {1, 2, 3, 4}. We
have no additional variables for agents in group VX , one additional variable count ∈ {0, 1, . . . , cmax − 1} for agents
in VB where cmax = 41m, two additional variables levelQ ∈ {0, 1, . . . , lmax} and done ∈ {false, true} for agents
in VA ∩ V1 where lmax = 5m, two additional variables rand ∈ {0, 1, . . . , 2Φ − 1} and index ∈ {0, 1, . . . ,Φ − 1}
for agents in VA ∩ (V2 ∪ V3) where Φ = ⌈ 23 lgm⌉, and one additional variable levelB ∈ {0, 1, . . . , lmax} for agents
in VA ∩ V4. Agents in any group have only O(log n) states. This is because every common variable has constant
size domain, every group other than VA ∩ (V2 ∪ V3) has at most one non-constant additional variable and any of such
variables can take O(log n) values, and an agent in VA ∩ (V2 ∪ V3) has two additional variables rand and index and
the combination of the two variables can take 2Φ · Φ = O(m2/3 logm) ⊂ O(log n) values. Therefore, the number of
states per agent used by PLL is O(log n).

Lemma 3. The number of states per agent used by PLL is O(log n).

Independently of the six groups defined above, we define another groups VL and VF based on a common variable
leader; VL (resp., VF ) is the set of agents v ∈ V such that v.leader = true (resp., v.leader = false). We introduce
these two groups only for simplicity of notation.
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Algorithm 1: PLL

Notations:
lmax = 5m, cmax = 41m, Φ = ⌈ 23 lgm⌉
VZ = {v ∈ V | v.status = Z} for Z ∈ {X,A,B}
Vi = {v ∈ V | v.epoch = i} for i ∈ {1, . . . , 4}

Output function πout:

if v.leader = true holds, then the output of agent v is L, otherwise F .

Interaction between initiator a0 and responder a1:

1: if a0, a1 ∈ VX then

2: (a0.status, a0.levelQ, a0.done, a0.leader)← (A, 0, false, true)
3: (a1.status, a1.count, a1.leader)← (B, 0, false)
4: else if ∃i ∈ {0, 1} : ai ∈ VX ∧ a1−i /∈ VX then

5: (ai.status, ai.levelQ, ai.done, ai.leader)← (A, 0, true, false)
6: end if

7: a0.tick← a1.tick← false

8: CountUp()
9: for all i ∈ {0, 1} such that ai.tick do ai.epoch = max(ai.epoch+ 1, 4) endfor

10: a0.epoch← a1.epoch← max(a0.epoch, a1.epoch)

11: for all i ∈ {0, 1} such that ai.epoch > ai.init do // Initialize variables for each group
12: if ai ∈ VA ∩ (V2 ∪ V3) then (ai.rand, ai.index)← (0, 0) endif

13: if ai ∈ VA ∩ V4 then ai.levelB ← 0 endif

14: ai.init← ai.epoch
15: end for

16: if a0, a1 ∈ V1 then

17: Execute QuickElimination()
18: else if a0, a1 ∈ V2 ∨ a0, a1 ∈ V3 then

19: Execute Tournament()
20: else if a0, a1 ∈ V4 then

21: Execute BackUp()
22: end if

The pseudo code ofPLL is given in Algorithm 1 and its modulesCountUp(), QuickElimination(), Tournament(),
and BackUp() are presented in Algorithm 2, 3, 4, and 5, respectively. The main function of PLL (Algorithm 1) con-
sists of four parts. The first part (Lines 1-6) assigns status A or B to each agent. The second part (Lines 7-10) manages
variable epoch using module CountUp(). Initially, v.epoch = 1 holds, that is, v ∈ V1 holds for all v ∈ V . In an
execution of PLL, v.epoch never decreases and increases by one every sufficiently large logarithmic parallel time in
expectation until it reaches 4 as we will explain later. In the third part (Lines 11-15), we initialize additional variables
when an agent increases its epoch. Each agent v has a common variable init, which is set to 1 initially. Whenever
v.epoch increases, v.epoch > v.init must hold, then v initialize additional variables according to v’s group and
executes v.init ← v.epoch. For example, when the epoch of agent v ∈ VA changes from 3 to 4 i.e., v moves from
group VA ∩ V3 to VA ∩ V4, it initializes an additional variable ai.levelB to 0 (Line 13). Additional variables for
groups VB and VA ∩ V1 are initialized not in this part but in the first part as we will explain in Section 3.2.1. In the
fourth part (Lines 16-22), agents execute modules based on the values of their epoch. Specifically, agents execute
QuickElimination(), Tournament(), and BackUp() while they are in V1, V2 ∪ V3, and V4 respectively.

In the remainder of this subsection, we explain how PLL assigns status to agents, PLL synchronizes the population
by CountUp(), and the implementation of the three modules QuickElimination(), Tournament(), and BackUp().
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Algorithm 2: CountUp()

Interaction between initiator a0 and responder a1:
23: for all i ∈ {0, 1} such that ai ∈ VB do

24: ai.count← ai.count+ 1 (mod cmax)
25: if ai.count = 0 then

26: ai.color← ai.color+ 1 (mod 3)
27: ai.tick← true

28: end if

29: end for

30: if ∃i ∈ {0, 1} : a1−i.color = ai.color+ 1 (mod 3) then

31: ai.color← a1−i.color
32: ai.tick← true

33: if ai ∈ VB then ai.count← 0 endif

34: end if

3.2.1 Assignment of Status

At the beginning of an execution, all agents are in VX , that is, the statuses of all agents are the “initial” status X .
Every agent is given status A or B at its first interaction where A means “leader candidate” and B means “timer
agent”. As we will explain later, the unique leader is elected from VA and agents in VB are mainly used to synchronize
the population with their count-up timers.

Agents determine their status, A or B, by the following simple way. When two agents in VX meet, the initiator and
the responder are given status A and B, respectively (Line 2-3). The initiator initializes its additional variable levelQ
and done to 0 and false respectively and remains a leader (Line 2) while the responder initializes its additional variable
count to 0 and becomes a follower by leader← false (Line 3). When an agent in VX meets an agent in VA or VB ,
it gets status A but it becomes a follower. It also initialize its additional variable levelQ and done to 0 and true

respectively (Line 5). For agent v, assigning true to v.done means that v never joins a game with coin flips in
QuickElimination().

No agent changes its status once it gets status A or B, and no follower becomes a leader in an execution of PLL.
Therefore, we have the following lemma.

Lemma 4. In an execution of PLL, |VA| ≥ n/2, |VF | ≥ n/2, and |VB| ≥ 1 always hold after every agent gets status

A or B.

Proof. Consider any configuration in Call(PLL) where every agent has status A or B. Let x (resp., y and z) be the the
number of agents which get status A (resp., B and A) by Line 2 (resp., Line 3 and Line 5). We have x = y ≤ n/2
by the definition of PLL, which gives |VA| = x + z = n − y ≥ n/2. Moreover, |VL| ≤ x ≤ n/2 holds because
the number of leaders is monotonically non-increasing in an execution of PLL. The first interaction of the execution
assigns one agent with status VB , hence |VB| ≥ 1 holds.

3.2.2 Synchronization and Epochs

When a unique leader exists in the population, we can synchronize the population by Phase clocks with constant space
per agent [AAE08]. Recently, in [GS18] and [GSU18], it is proven that even when we cannot assume the existence of
the unique leader, Phase clocks can be used for synchronization if we are allowed to use O(log log n) states per agent.
Since we use O(log n) states for another modules, we achieve synchronization in simpler way with O(log n) states
per agent.

For synchronization, we use common variables color ∈ {0, 1, 2} in all agents and an additional variable count ∈
{0, 1, . . . , cmax− 1} for agents in group VB . Initially, all agents have the same color, namely, 0. The color of an agent
is incremented by modulo 3 when the agent changes its color. We say that the agent gets a new color when this event
happens. Roughly speaking, our goal is to guarantee that
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• (i) whenever one agent gets a new color (e.g., changes its color from 0 to 1), the new color spreads to the whole
population within O(log n) parallel time with high probability,

• (ii) thereafter, all agents keeps the same color for sufficiently long but Θ(logn) parallel time with high proba-
bility.

Specifically, “sufficiently long but Θ(logn) time” in (ii) means sufficiently long period such that any O(log n) parallel
time operations in QuickElimination(), Tournament(), and BackUp(), such as one-way epidemic of some value,
finishes with high probability during the period.

At every interaction, module CountUp() is invoked (Line 8) and variables color and count can be changed only
in this module. In CountUp(), every agent in VB increments its count by one modulo cmax (Line 24). For every
v ∈ VB , if this incrementation changes v.count from cmax − 1 to 0, v gets a new color by incrementing v.color by
one modulo 3 (Line 26). Once one agent gets a new color, the new color spreads to the whole population via one-way
epidemic in the whole population. Specifically, if agents u and v satisfying u.color = v.color+ 1 (mod 3) meets,
v execute v.color← u.color and resets its count to 0 (Line 31-33).

Every time an agent v gets a new color, it raise a tick flag, i.e., assigns v.tick ← true (Lines 27 and 32). This
common variable v.tick is used only for simplicity of the pseudo code and it does not affect the transition at v’s
next interaction (v.tick is reset to false in Line 7), unlike any other variable. When v.tick is raised, v.epoch
increases by one unless it has already reached 4 (Line 9). After two agents u and v execute Lines 7-9 at an interaction,
u.epoch = v.epoch usually holds. However, this equation does not hold when synchronization fails. For this case,
we substitute max(u.epoch, v.epoch) into u.epoch and v.epoch in Line 10.

As mentioned above, every agent gets a new color in every sufficiently large Θ(logn) parallel time with high prob-
ability. This means that, for every v ∈ V , v.tick is raised and v.epoch increases by one with high probability in every
sufficiently large Θ(logn) parallel time until v.epoch reaches 4. If this synchronization fails, e.g., some agent gets
a color 1 without keeping color 0 for Θ(logn) parallel time, the modules QuickElimination() and Tournament()
may not work correctly. However, starting from any configuration after a synchronization fails arbitrarily, module
CountUp() and Lines 7-10 guarantees that all agents proceeds to the forth epoch within O(log n) parallel time in
expectation, and thereafter BackUp() guarantees that exactly one leader is elected within O(n) parallel time in ex-
pectation. Hence, PLL guarantees that a unique leader is elected with probability 1. The above O(n) parallel time
never prevent us from achieving stabilization time of O(log n) parallel time in expectation because synchronization
fails with probability at most O(log n/n) as we will see later.

Definition 1. For any i = 0, 1, 2, we define Ccolor(i) as the set of all configurations in Call(PLL) where every agent
has color i.

Definition 2. For any i = 0, 1, 2, we define Cstart(i) as the set of all configurations in Call(PLL) each of which satisfies
all of the following conditions:

• some agent has color i,

• v.count = 0 holds for all v ∈ VB such that v.color = i, and

• no agent has color i+ 1 (mod 3).

Lemma 5. In an execution of Ξ(Cinit,PLL
,Γ), each agent in VB always gets a new color within O(log n) parallel

time with high probability.

Proof. Simple Chernoff bound gives the lemma because any agent has an interaction with probability 2/n at each step
and each agent in VB gets a new color before it has cmax interactions.

The goal of our synchronization, (i) and (ii), are formalized as follows.

Lemma 6. Let i ∈ {0, 1, 2}, C0 ∈ Cstart(i), and ΞPLL
(C0,Γ) = C0, C1, . . . . Then, all of the following propositions

hold.

• P1: No agent gets color i+ 1 (mod 3) by the first ⌊21n lnn⌋ steps in ΞPLL
(C,Γ) with high probability.
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Algorithm 3: QuickElimination()

Interaction between initiator a0 and responder a1:
35: if ∃i ∈ {0, 1} such that ai ∈ VL ∧ a1−i ∈ VF ∧ ¬ai.done then

36: if i = 0 then a0.levelQ ← max(a0.levelQ + 1, lmax) endif

37: if i = 1 then a1.done← true endif

38: end if

39: if a0, a1 ∈ VA ∧ a0.done ∧ a1.done ∧ ∃i ∈ {0, 1} : ai.levelQ < a1−i.levelQ then

40: ai.leader← false

41: ai.levelQ ← a1−i.levelQ
42: end if

• P2: ExecutionΞPLL
(C0,Γ) reaches a configuration in Ccolor(i) by the first ⌊4n lnn⌋ steps with high probability.

• P3: Execution ΞPLL
(C0,Γ) reaches a configuration in Cstart(i + 1 (mod 3)) within O(log n) parallel time

with high probability.

Proof. Propositions P2 and P3 immediately follows from Lemma 2 with n′ = n and Lemma 5, respectively. In
the following, we prove proposition P1. Starting from a configuration C0 ∈ Cstart(i), no agent gets color i + 1
(mod 3) until some agent in VB participates in no less than cmax interactions. For any agent v, v participates in
an interaction with probability 2/n at every step. Therefore, letting X be a binomial random variable such that
X ∼ B(⌊21n lnn⌋ , 2/n), v participates in no less than cmax interactions with probability Pr(X ≥ cmax), which is
bounded as follows.

Pr(X ≥ cmax) = Pr
(

X ≥
cmax

42 lnn
E[X ]

)

≤ Pr

(

X ≥
58

42
E[X ]

)

≤ exp

(

−
(58− 42)2

422 · 3
E[X ]

)

≤ exp(−2 lnn+ 0.05)

= O
(

n−2
)

.

where we use cmax ≥ 41 lgn ≥ 58 lnn for the second inequality and Chernoff Bound in the form of (1) in Lemma
1 for the third inequality. Thus, the union bound gives that no agent gets color i + 1 (mod 3) by the first ⌊21n lnn⌋
interactions in ΞPLL

(C,Γ) with probability 1−O(n−1).

3.2.3 QuickElimination()

The module QuickElimination() uses additional variables levelQ ∈ {0, 1, . . . , lmax− 1} and done ∈ {false, true}
of group VA ∩ V1. Each agent v executes this module only when v.epoch = 1 holds. As mentioned in section 3.2.1,
when an agent v is assigned with status VA, it holds that v is a leader and v.done = false or v is a follower and
v.done = true.

In an execution of module QuickElimination(), each leader v ∈ VA makes fair coin flips repeatedly until it sees
“tail” for the first time and stores on v.levelQ the number of times it observes “heads”. Specifically, a leader with
v.done = false makes a fair coin flip every time it interacts with a follower (i.e., an agent in VF ). If the result is head
(i.e., v is an initiator at the interaction), it increments levelQ by one (Line 36). Otherwise, it stops coin flipping by
assigning v.done← true (Line 37). The largest levelQ among all agents in VL spreads to the whole sub-population
VA via one-way epidemic. Specifically, when two stopped agents u, v ∈ VA meet, they update their levelQ to
max(u.levelQ, v.levelQ) (Line 41). When an agent v ∈ VA meets an agent with larger levelQ than v.levelQ, it
becomes a follower (Line 40). The correctness of QuickElimination() is formalized as the following lemma.
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Algorithm 4: Tournament()

Interaction between initiator a0 and responder a1:
43: if i ∈ {0, 1} : ai ∈ VL ∧ a1−i ∈ VF ∧ ai.index < Φ then

44: ai.rand← 2ai.rand+ i
45: ai.index← max(ai.index+ 1,Φ)
46: end if

47: if a0, a1 ∈ VA ∧ a0.index = a1.index = Φ ∧ ∃i ∈ {0, 1} : ai.rand < a1−i.rand then

48: ai.leader← false

49: ai.rand← a1−i.rand
50: end if

Lemma 7. Let Ξ = ΞPLL
(Cinit,PLL

,Γ) = C0, C1, . . . . In a configuration C⌊21n lnn⌋, Pr(|VL| = i) < 21−i + ǫi
holds for any i = 2, 3, . . . , n where ǫi is a non-negative number such that

∑n
i=2 ǫi = O(n−1).

Proof. Coin flips in QuickElimination() are not only fair but also independent of each other. This is because we
assume the uniformly random scheduler Γ and at most one agent makes a coin flip at each step (i.e., at each interaction)
since a coin flip is made only when a leader and a follower meet. Therefore, an execution of this module correctly
simulates the competition game introduced in Section 3.1.1 and the simulation of the game finishes within the first
⌊21n lnn⌋ interactions if all of the following conditions hold in C⌊21n lnn⌋;

• every agent v is still in the first epoch, i.e., v.epoch = 1 holds,

• v.levelQ < lmax holds for all v ∈ VA

• all agents in VA has the same levelQ and v.done = true holds for all v ∈ VA.

Intuitively, the second condition guarantees that no agent increases levelQ to the upper limit lmax within the first
⌊21n lnn⌋ interactions and the third condition means that every leader finishes coin flips and the maximum value
of levelq propagates to the whole sub-population VA within the first ⌊21n lnn⌋ interactions. The second condition
∀v ∈ VA : v.levelQ < lmax is necessary because if some agent in VA increases levelQ to lmax, then it may fail to
simulate the competition game successfully.

Note that the competition game guarantees that exactly i agents survives the game with probability at most 21−i.
Therefore, it suffices to prove that all the three conditions hold with high probability, i.e., with probability 1−O(n−1).
Since Cinit,PLL

∈ Cstart(0) holds, it directly follows from Lemma 6 that the first condition holds with high probability.
The second condition holds with high probability because the second condition does not hold only when some leader
gets head lmax times in a row and the probability that such an event happens is at most n(1/2)lmax ≤ n · 2−5 lgn =
O(n−1).

In what follows, we prove that the third condition holds with high probability. In the similar way to analyze
the probability of the second condition, we can easily prove that no leader gets head 2 lgn times in a row with
high probability. Furthermore, at each step, any leader meets a follower with probability at least |VF |/nC2 ≥ 1/n
by Lemma 4, hence it holds with probability 1 − n · n−2 = 1 − O(n−1) by Chernoff bound in the form of (2)
in Lemma 1 that every leader meets a follower no less than 2 lgn times during the first ⌊9n lnn⌋ (≥ ⌈6n lgn⌉)
interactions. Therefore, with high probability, all agents in VA finish making coin flips within the first ⌊9n lnn⌋
interactions. Thereafter, the maximum value of levelQ is propagated to the whole sub-population VA by one-way
epidemic in VA. The epidemic finishes within the next ⌊8n lnn⌋ interactions with high probability by Lemma 2. Since
⌊9n lnn⌋+ ⌊8n lnn⌋ < ⌊21n lnn⌋, the third condition also holds with high probability.

Note that an execution of QuickElimination() never eliminates all leaders from population because a leader v
with v.levelQ = maxu∈VA

u.levelQ never becomes a follower.
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Algorithm 5: BackUp()

Interaction between initiator a0 and responder a1:
51: if a0.tick ∧ a0 ∈ VL ∧ a1 ∈ VF then

52: a0.levelB ← max(a0.levelB + 1, lmax)
53: end if

54: if a0, a1 ∈ VA ∧ ∃i ∈ {0, 1} : ai.levelB < a1−i.levelB then

55: ai.levelB ← a1−i.levelB
56: ai.leader← false

57: end if

58: if ∀i ∈ {0, 1} : ai ∈ VL then a1.leader← false endif

3.2.4 Tournament()

In the key idea depicted in Section 3.1.2, each leader v makes fair coin flips exactly ⌈lgm⌉ = Θ(log logn) times.
However, this requires Ω(logn · log logn) states per agent because this procedure requires not only variable v.rand
that stores the results of those flips but also variable v.index to memorize how many times v already made coin flips.
Therefore, in an execution of Tournament(), each agent makes fair coin flips only Φ = ⌈ 23 lgm⌉ times, and we
execute this module Tournament() twice. That is why we assign two epochs (i.e., the second and the third epochs)
to Tournament().

In an execution of Tournament(), each leader v gets a random number, say nonce, uniformly at random from
{0, 1, . . . , 2Φ − 1} by making coin flips Φ times, and stores it in v.rand (Line 43-46). The uniform randomness of
this nonce is guaranteed because these coin flips are not only fair but also independent of each other, as mentioned
in Section 3.2.3. Leaders who finishes generating a nonce begins one-way epidemics of the largest value of these
nonces (Lines 47-50). By Chernoff bound, it holds with high probability that all leaders finishes generating its nonce
within O(log n) parallel time and the largest value of these nonces propagates to the whole sub-populations VA within
O(log n) parallel time. Note that an execution of Tournament() never eliminates all leaders from population because
a leader with the largest nonce never becomes a follower.

Lemma 8. In an execution Ξ = ΞPLL
(Cinit,PLL

,Γ) = C0, C1, . . . , the number of leaders become exactly one before

some agent enters the fourth epoch (i.e., epoch = 4) with probability 1−O(1/ logn).

Proof. By Lemmas 6 and 7, there exist at most ⌈lg lg n⌉ leaders and all agents are still in the first epoch in configuration

C⌊21n lnn⌋ with probability 1−
(

∑n
i=⌈lg lgn⌉+1 2

1−i
)

−O(n−1) = 1−O(1/ logn). Thereafter, execution Ξ reaches

a configuration in Cstart(1) within the next O(n log n) interactions with high probability by Lemmas 4 and 5.
Therefore, in order to prove the lemma, we can assume that there exists an integer t′ = O(n log n) such that

there exists at most ⌈lg lgn⌉ leaders in Ct′ , every agent is in the first or the second epoch in Ct′ , and Ct′ ∈ Cstart(1)
holds. We say that an execution of module Tournament() finishes completely if every leader finishes generating a
nonce and the maximum value of nonces is propagated to the whole sub-population VA. Since a leader generates
a nonce uniformly at random among {0, 1, . . . , 2Φ − 1} in each of the two executions of Tournament(), the same
arguments in section 3.1.2 yields that exactly one leader exists with probability at least 1 − (⌈lg lgn⌉ − 1) · 2−Φ ≥

1−O(log logn/ log2/3 n) after one execution of module Tournament() finishes completely.
Each leader generates a nonce by meeting a follower Φ = O(logm) = O(log logn) times while any leader meets

a follower with probability at least 1
n at each step by Lemma 4. Therefore, by Chernoff bound and Lemma 2, an

execution of Tournament() finishes completely within ⌊21n lnn⌋ − ⌊4n lnn⌋ ≥ ⌊17n lnn⌋ interactions with high
probability for sufficiently large n. Hence, by Lemma 6, both the first and the second executions of Tournament()
finish completely in the next O(n log n) steps with high probability. Therefore, by Lemma 6, the two executions of
Tournament decreases the number of leaders from at most ⌈lg lg n⌉ to exactly one before some agent enters the fourth
epoch with probability 1−O((log logn/ log2/3 n)2) = 1−O(1/ logn).
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3.2.5 BackUp()

This moduleBackUp() uses only one additional variable levelB to elect the unique leader. For any v ∈ VA, variables
v.levelB is initialized by v.levelB ← 0 at the first time v.epoch = 4 holds (Line 9).

As long as synchronization succeeds, each v.tick is raised every Θ(logn) (but sufficiently long) parallel time. In
an execution of BackUp(), each leader has a chance of making a coin flip every time its tick is raised. Specifically, a
leader v makes a coin flip when v has an interaction with a follower and v.tick is raised at that interaction. If v sees
“head” (i.e., it is an initiator at that interaction), it increments v.levelB by one unless v.levelB already reaches lmax

(Lines 51-53). The largest value of levelB is propagated via one-way epidemic in sub-population VA (Lines 54-57).
If a leader v observes the larger value of levelB than v.levelB , it becomes a follower (Line 56). Furthermore,
this module includes simple leader election [Ang+06]; when two leaders interact and they observe that they have the
same value of levelB at Line 58, then the responder becomes a follower. Note that an execution of BackUp() never
eliminates all leaders from population because a leader with the largest value of levelB never becomes a follower.

Lemma 9. Let C be any configuration in Call(PLL) and let Ξ = ΞPLL
(C,Γ) = C0, C1, . . . . Execution Ξ reaches

a configuration where all agents are in the fourth epoch within O(log n) parallel time with high probability and in

expectation.

Proof. After the first step of Ξ, at least one agent v in VB always exists. By Lemma 5, v enters the forth epoch within
O(log n) parallel time with high probability and in expectation. Since the largest value of epoch is propagated to the
whole population via one-way epidemic, all agents enters the fourth epoch within O(log n) parallel time with high
probability and in expectation by Lemma 2.

Lemma 10. Let C be any configuration where all agents are in the fourth epoch and let Ξ = ΞPLL
(C,Γ) =

C0, C1, . . . . Then Ξ reaches a configuration where there exists exactly one leader within O(n) parallel time in expec-

tation.

Proof. Execution Ξ elects the unique leader within O(n) parallel time in expectation because module BackUp()
includes the simple leader election mechanism [Ang+06], i.e., one leader becomes a follower when two leaders meet.

Definition 3. We define Bstart as the set of all configurations in Ccolor(0) where every agent is in the fourth epoch
(i.e., epoch = 4), and v.levelB ≤ 1 holds for all agents v ∈ VA.

Lemma 11. Execution Ξ = ΞPLL
(Cinit,PLL

,Γ) reaches a configuration in Bstart within O(log n) parallel time with

high probability.

Proof. This lemma directly follows from Lemma 6 and the definition of BackUp().

Lemma 12. Let C be any configuration in Bstart and let Ξ = ΞPLL
(C),Γ) = C0, C1, . . . . Then Ξ reaches a

configuration where there exists exactly one leader within O(log2 n) parallel time in expectation

Proof. By applying Lemma 6 repeatedly, it holds for sufficiently large O(log2 n) parallel time with probability 1 −
O(log n/n) that synchronization does not fail and no agent raises tick twice within any ⌊21n lnn⌋ − ⌈4n lnn⌉ ≥
⌈17 lnn⌉ steps. Thus, in the following, we assume that no agent raises tick twice within any ⌈17 lnn⌉ steps.

Define B = maxv∈VA∩V4
v.levelB . By Lemma 6, each leader raises its tick in every O(log n) parallel time

with high probability and makes a coin flip if it meets a follower at that interaction. Thus, each leader increments
its levelB with probability 1/4 in every O(log n) parallel time because |VF | ≥ n/2 by Lemma 4. Therefore, the
maximum value B is increased by one within O(log n) parallel time in expectation, thus B reaches lmax within
O(log2 n) parallel time in expectation.

Consider that now B is increased from k to k + 1. At this time, only one leader has the largest value B = k + 1
in levelB . Thereafter, this value k + 1 is propagated to the whole sub-population VA within ⌈8n lnn⌉ steps with
high probability by Lemma 2, during which no leader makes coin flips twice by the above assumption. Therefore, the
number of leaders decreases almost by half, specifically decreases from 1 + i to at most 1 + ⌊i/2⌋, with probability
1/2 − O(1/n). Clearly, in execution Ξ, B is eventually increased from 0 or 1 to lmax. Therefore, ignoring the
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probability that synchronization fails or the one-way epidemic does not finish within ⌊8n lnn⌋ steps, we can observe
by Chernoff bound that the number of leaders becomes one before B reaches lmax with probability 1−O(log n/n).

Even if B reaches lmax before one leader is elected, Ξ elects the unique leader within O(n) parallel time in
expectation thereafter by Lemma 10. Therefore, Ξ reaches a configuration where exactly one leader exists within
O(log2 n) +O(log n/n) ·O(n) = O(log2 n) in expectation.

Theorem 1. Let Ξ = ΞPLL
(Cinit,PLL

,Γ) = C0, C1, . . . . Execution Ξ reaches a configuration where exactly one

leader exists within O(log n) parallel time in expectation.

Proof. First, Lemmas 8 and 9, execution Ξ reaches a configuration where exactly one leader exists within O(log n)
parallel time with probability 1 − O(1/ logn). Second, by Lemma 11, execution Ξ reaches a configuration in Bstart
within O(log n) parallel time with high probability. Thereafter, execution Ξ reaches a configuration where exactly
one leader exists within O(log2 n) parallel time in expectation by Lemma 12. Finally, Lemmas 9 and 10 shows that
starting from any configuration in Call(PLL), Ξ reaches a configuration where exactly one leader is elected within
O(n) parallel time in expectation. To conclude, starting from initial configuration Cinit,PLL

, execution Ξ reaches a
configuration where the unique leader is elected within O(log n)+O(1/ logn)·O(log2 n)+O(1/n)·O(n) = O(log n)
parallel time in expectation.

4 Discussion towards Symmetric Transitions

In the field of PP model, several works are devoted to design a symmetric protocol. Suppose that two agents have
an interaction and their states changes from p, q to p′, q′, respectively. A protocol is symmetric if p = q ⇒ p′ = q′

always hold. In other words, a symmetric protocol is a protocol that does not utilize the roles of the two agents at
an interaction, initiator and responder. This property is important for some applications such as chemical reaction
networks.

The proposed protocolPLL described above is not symmetric, however, we can make it symmetric by the following
strategy. Protocol PLL performs asymmetric actions only for assignment of status (Section 3.2.1) and flipping fair and
independent coins (Sections 3.2.3, 3.2.4, and 3.2.5). To assign the agents their statuses by symmetric transitions, we
only have to add additional status Y and make the following three rules: X × X → Y × Y , Y × Y → X × X ,
X × Y → A × B. Furthermore, similarly to the original rules of PLL, when an agent v with status X or Y meets
an agent with status A or B, v gets status A but it becomes a follower. This modification does not make any harmful
influence on the analysis of stabilization time, at least asymptotically. Coin flips are dealt with in the same way. We
assign a coin status J , K , F0, or F1 to each follower. Every time a leader v becomes a follower, initial status J is
assigned to v. Thereafter, when two followers meet, they change their coin statuses according to the following rules:
J × J → K ×K , K ×K → J × J , J ×K → F0×F1. These rules guarantees that the numbers of the followers
with state F0 and F1 are always equal. Therefore, a leader can make a fair and independent coin flip every time it
meets a follower whose coin state is F0 or F1. If it meets a follower with coin state F0 (resp. F1), it recognizes that
the result of the flip is head (resp. tail).

5 Conclusion

In this paper, we gave a leader election protocol with logarithmic stabilization time and with logarithmic number
of agent stats in the population protocol model. Given a rough knowledge m of the population size n such that
m ≥ log2 n and m = O(log n), the proposed protocol guarantees that exactly one leader is elected from n agents
within O(log n) parallel time in expectation.
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