arXiv:1905.02472v1 [cs.DS] 7 May 2019

Self-Adjusting Linear Networks

Chen Avin! Ingo van Duijn? Stefan Schmid?

! Ben Gurion University of the Negev
2 Aalborg University
3 University of Vienna

Abstract. Emerging networked systems become increasingly flexible
and “reconfigurable”. This introduces an opportunity to adjust net-
worked systems in a demand-aware manner, leveraging spatial and tem-
poral locality in the workload for online optimizations. However, it also
introduces a tradeoff: while more frequent adjustments can improve per-
formance, they also entail higher reconfiguration costs.

This paper initiates the formal study of linear networks which self-adjust
to the demand in an online manner, striking a balance between the ben-
efits and costs of reconfigurations. We show that the underlying algorith-
mic problem can be seen as a distributed generalization of the classic dy-
namic list update problem known from self-adjusting datastructures: in a
network, requests can occur between node pairs. This distributed version
turns out to be significantly harder than the classical problem in gener-
alizes. Our main results are a {2(logn) lower bound on the competitive
ratio, and a (distributed) online algorithm that is O(logn)-competitive
if the communication requests are issued according to a linear order.

Keywords: Self-adjusting datastructures - competitive analysis - dis-
tributed algorithms - communication networks.

1 Introduction

Communication networks are becoming increasingly flexible, along three main
dimensions: routing (enabler: software-defined networking), embedding (enabler:
virtualization), and topology (enabler: reconfigurable optical technologies, for
example [I5]). In particular, the possibility to quickly reconfigure communica-
tion networks, e.g., by migrating (virtualized) communication endpoints [§] or
by reconfiguring the (optical) topology [I1]], allows these networks to become
demand-aware: i.e., to adapt to the traffic pattern they serve, in an online and
self-adjusting manner. For example, in a self-adjusting network, frequently com-
municating node pairs can be moved topologically closer, saving communica-
tion costs (e.g., bandwidth, energy) and improving performance (e.g., latency,
throughput).

However, today, we still do not have a good understanding yet of the algorithmic
problems underlying self-adjusting networks. The design of such algorithms faces

2 Avin et al.

several challenges. As the demand is often not known ahead of time, online
algorithms are required to react to changes in the workload in a clever way;
ideally, such online algorithms are “competitive” even when compared to an
optimal offline algorithm which knows the demand ahead of time. Furthermore,
online algorithms need to strike a balance between the benefits of adjustments
(i.e., improved performance and/or reduced costs) and their costs (i.e., frequent
adjustments can temporarily harm consistency and/or performance, or come at
energy costs).

The vision of self-adjusting networks is reminiscent of self-adjusting datastruc-
tures such as self-adjusting lists and splay trees, which optimize themselves to-
ward the workload. In particular, the dynamic list update problem, introduced
already in the 1980s by Sleator and Tarjan in their seminal work [21], asks for
an online algorithm to reconfigure an unordered linked list datastructure, such
that a sequence of lookup requests is served optimally and at minimal reconfigu-
ration costs (i.e., pointer rotations). It is well-known that a simple mowve-to-front
strategy, which immediately promotes each accessed element to the front of the
list, is dynamically optimal, that is, has a constant competitive ratio.

This paper initiates the study of a most basic self-adjusting linear network,
which can be seen as a distributed variant of the dynamic list update problem,
generalizing the datastructure problem to networks: while datastructures serve
requests originating from the front of the list (the “root”) to access data items,
networks serve communication requests between pairs of nodes. The objective
is to move nodes which currently communicate frequently, closer to each other,
while accounting for reconfiguration costs.

1.1 Formal Model

We initiate the study of pairwise communication problems in a dynamic network
reconfiguration model, using the following notation:

— Let dg(u,v) denote the (hop) distance between u and v in a graph G.
— A communication request is a pair of communicating nodes from a set V.

— A configuration of V in a graph N (the host network) is an injection of V'
into the vertices of N; Cy <,y denotes the set of all such configurations.

— A configuration h € Cy <,y is said to serve a communication request (u,v) €
V x V at cost dy(h(u), h(v)).

— A finite communication sequence o = (0¢,01,...,0n) is served by a sequence
of configurations hg, h1,...,hm € Cyn.

— The cost of serving ¢ is the sum of serving each o; in h; plus the reconfigu-
ration cost between subsequent configurations h;, hjy1.

Self-Adjusting Linear Networks 3

— The reconfiguration cost between h;, h;41 is the number of migrations nec-
essary to change from h; to h;y1; a migration swaps the images of two nodes
u and v under h.

— E; = {01,...,0;} denotes the first i requests of o interpreted as a set of
edges on V, and R(o) = (V, E,;,) denotes the request graph of o.

In particular, we study the problem of designing a self-adjusting linear network:
a network whose topologoy forms a d-dimenstional grid. We are particularly
interested in the 1-dimensional grid in this paper, the line:

Definition 1 (Distributed List Update). Let V, h, and o be as before, with
N=({1,...,n},{(1,2),(2,3),...,(n—1,n)}

representing a list network. The cost of serving a o; = (u,v) € o is given by
|h(u) — h(v)]|, i.e. the distance between u and v on N. Migrations can only occur
between nodes configured on adjacent vertices in N .

Recall that the cost incurred by an algorithm A on ¢ is the sum of communication
and reconfiguration costs. In the realm of online algorithms and competitive
analysis, we compare an online algorithm ON to an offline algorithm OFF which
has complete knowledge of o ahead of time. We want to devise online algorithms
ON which minimize the competitive ratio p:

ax cost(ON(0))
o cost(OFF(o))

As a first step, we in this paper consider the DISTRIBUTED LIST UPDATE prob-
lem for the case where the request graph R(c) has constant graph bandwidth:
i.e. graphs for which there is a configuration in a line network such that any re-
quest can be served at constant cost. We refer to such a request graph as linear
demand.

p:

1.2 Contributions

This paper initiates the study of a most basic self-adjusting network, a line,
which optimizes itself toward the dynamically changing linear demand, while
amortizing reconfiguration cost. The underlying algorithmic problem is natural
and motivated by emerging reconfigurable communication networks (e.g., based
on virtual machine migration or novel optical technologies [9T5]). The problem
can also be seen as a distributed version of the fundamental dynamic list up-
date problem. Our first result is a negative one: we show that unlike the classic
dynamic list update problem, which admits for constant-competitive online al-
gorithms, there is an {2(logn) lower bound on the competitive ratio of any deter-
ministic online algorithm for the distributed problem variant. Our second main
contribution is a (distributed) online algorithm which is O(logn)-competitive
for long enough sequences.

4 Avin et al.

1.3 Organization

The remainder of this paper is organized as follows. In Section [2] we put the
problem and its challenges into perspective with respect to the list update prob-
lem. We then first derive the lower bound in Section [3|and present our algorithm
and upper bound in Section [@] After discussing related work in Section [B] we
conclude in Section [Gl

2 From List Update to Distributed List Update

To provide an intuition of the challenges involved in designing online algorithms
for distributed list update problems and to put the problem into perspective,
we first revisit the classic list update problem and then discuss why similar
techniques fail if applied to communicating node pairs, i.e., where requests not
only come from the front of the list.

The (dynamic) list update problem [21] introduced by Sleater and Tarjan over
30 years ago is one of the most fundamental and oldest online problems: Given
a set of n elements stored in a linked list, how to update the list over time
such that it optimally serves a request sequence 7 = (71,72, ...) where for each
i, 7, € V is an arbitrary element stored in the list? The cost incurred by an
algorithm is the sum of the access costs (i.e. scanning from the front of the list
to the accessed element) and the number of swaps (switching two neighboring
elements in the list). As accesses to the list elements start at the front of the
list, it makes sense to amortize high access costs by moving frequently accessed
elements closer to the front of the list. In fact, the well-known Mowe-To-Front
(MTF) algorithm even moves an accessed element to the front immediately, and
is known to be constant competitive: its cost is at most a factor 2 (or some other
constant, depending on the cost model) worse than that of an optimal offline
algorithm which knows the entire sequence 7 ahead of time [21I]. Throughout
the literature, slightly different cost models have been used for the list update
problem, though they only differ by a constant factor. Generally, a cursor is
located at the head of the list at each request. Then, the algorithm can perform
two operations, each operation incurring unit cost. i) Move the cursor to the
left, or to the right, one position; the element in the new position is referred to
as touched. ii) Swap the element at the cursor with the element one position to
the left or right; the cursor also moves.

In the DISTRIBUTED LiST UPDATE problem, upon a request o; = (s;,t;), the
cursor is placed at s; instead of the head of the list, and t; needs to be looked up.
To demonstrate the significance of this difference, we first present a paraphrased
version of the proof by Tarjan and Sleator showing the dynamic optimality of
MTF. After that, we showcase a simple access sequence differentiating the two
problems.

Self-Adjusting Linear Networks 5
2.1 An Expositional Proof for the Optimality of MTF

While the potential argument used to show dynamic
optimality of the move-to-front strategy for the list
access problem yields a very elegant and succinct
proof [21], it lacks intuition which makes it diffi-
cult to generalise the argument. The key idea in the
potential argument is to compare the execution of
MTF to the execution of an arbitrary algorithm A.
The algorithm is fixed for the analysis, but any valid
algorithm can be used, e.g. the optimal offline algo-
rithm. The state (represented by a list) of MTF and
A are juxtaposed at every access, comparing how
the order of elements in both lists differ. In fact, it
is sufficient to only considers the relative order of
two fixed elements v and v as follows. Consider the
order of w and v in the state of A before it per-
forms the ith access. If this order is the same as in
MTF before it performs the ith acces, let b; = 0 and
otherwise b; = 1. Similarly, if the relative order is
the same in MTF after its ith access, let a; = 0 and
otherwise a; = 1. This describes an inversion se- Fig.1. MTF (yellow) and A
quence biaibsas .. .bya,,. Figure [I] illustrates this (blue) on 7=6,3,1,3,6

for MTF and an arbitrarily chosen algorithm A on

a sequence 7 = 6,3,1, 3,6, with the inversions of 1

and 6 described by the sequence 01111011100.

Suppose that 7; € {u,v} and that MTF touches u and v while accessing 7;. The
proof by Tarjan and Sleator boils down to three observations.

Observation 1 MTF inverts u and v relative to A by accessing T, i.e. b; # a;.

Observation 2 If b; = 0, MTF and A agree on the order of u and v before ;.
Since MTF touches both, A also touches both in order to access T;.

Observation 3 For b; = 1, let j < i be the largest index such that b; = 0 or
a; = 0 (note that j exists because by = 0). When a; =0, and thus bj;1 =1, A
inverts u and v and therefore must have touched both. When b; = 0, and thus
a; = 1, MTF inverts u and v and one of them is 7;. By Observation@, ifbj =0
and MTF touches u and v to access 7;, then A does as well.

The last observation is essentially the amortised argument rephrased as a charg-
ing argument. We can now easily prove the dynamic optimality of MTF.

Theorem 1 (Tarjan & Sleator). MTF is 4-optimal.

Proof. We prove that for all 7; = v where MTF touches u, there is a move by
A touching u. MTF first moves the cursor to 7;, and then swaps 7; to the front.

6 Avin et al.

Along the way it touches u twice, once with a move and once with a swap,
incurring a cost of 2.

For b; = 0 (resp. b; = 1), we use Observation [2] (resp. B to charge the cost to A
touching v while accessing 7; (resp. 7;). By Observation b; # a;, and thus for
any 7 € {u,v} with ¢ < k, the largest index j’ < k with bj; = 0 or aj; = 0 must
be at least 4, and therefore j < ¢ < j’. This guarantees that MTF charges at most
a cost of 4 to one move of A. Since all the cost incurred by MTF is charged to
some move of A, the claim follows. O

In the original work by Tarjan and Sleator, MTF is shown to be 2-optimal. This
is because their cost model allows accessed elements to be moved to the front
‘for free’. If we allow this as well, the cursor touches u only once to access v,
resulting in a factor 2.

2.2 The Challenge of Distributed List Update

Generalizing dynamic list update to Dis-
TRIBUTED LIST UPDATE introduces a num-
ber of challenges which render the problem
more difficult. First, the natural inversion ar-
gument no longer works: a reference point
such as the front of the list is missing in the
distributed setting. This makes it harder to
relate algorithms to each other and hence also
to define a potential. Second, for general re-
quest graphs R(c), an online algorithm needs
to be able to essentially “recognize” certain
patterns over time.

Regarding the latter, consider the set of
nodes V = {vy,...,v,} and let 7. be a cyclic
sequence: .for all 7, TiJrlbe T with 73 = v; and to construct a cyclic se-
Ti+1 = vk it holds that j4+1 = k(mod n—1). quence of requests oo _
From this we construct a similar sequence o, (c,01), (¢, v2),- .-, (€, vn-1), (¢, v1), - ..
for DISTRIBUTED LI1ST UPDATE on the set of

nodes V U{c}, with o; = (¢, 7;). This yields a

star graph R(o.) as denoted in Figure 2] An

offline algorithm can clearly serve the cyclic order in optimal O(1) per request
by moving the element ¢ one position further after every request. However, in
the list update model, any sequence cycling through all elements is a worst-case
sequence. This demonstrates that a “dynamic cursor” can mean a factor n dif-
ference in cost. What the sequence o. also demonstrates, is that aggregating
elements around a highly communicative node is suboptimal; in the particular
case of o, it is this central node that needs to be moved.

Fig.2. A star graph used

Self-Adjusting Linear Networks 7

Another pattern is a request sequence o that forms a connected path in the
request graph R(c). When restricted to only these pattersn, DISTRIBUTED LIST
UPDATE corresponds to the Itinerant List Update Problem (ILU) studied in [16].
In this work it is shown that deriving non-trivial upper bounds on the compet-
itive ratio already seems notoriously hard (even offline approximation factors
are relatively high). Note that the star example can be expressed as a path,
ie. o, = (c,v1), (v1,¢), (c,v2), (v2,¢), (¢, v3),..., demonstrating the significance
of understanding simple request patterns for DISTRIBUTED LiST UPDATE. This
is part of the reason why in this paper we focus on request graphs with a linear
demand.

3 A Lower Bound

This section derives a lower bound on the competitive ratio of any algorithm for
DiSTRIBUTED LIST UPDATE.

Theorem 2. The competitive ratio p = max, % for DISTRIBUTED

LisT UPDATE, with |o| = 2(n?), is at least 2(logn). This bounds holds for
arbitrarily long sequences, but if |o| = O(n?), it even holds if the request graph
s a line.

To prove this, we consider an arbitrary online algorithm ON for DISTRIBUTED
LisT UPDATE. The main idea is to have an adaptive online adversary construct a
sequence ooy that depends on the algorithm ON. The adversary constructs ooy
so that the resulting request graph R(ooy) is a line graph. Because an offline
algorithm knows R(oon) in advance, it can immediately configure it and serve
all requests at optimal cost of 1. We show that the online algorithm is forced to
essentially reconfigure its layout logn times, resulting in the desired ratio. To
facilitate our analysis, we use the same notion of the distortion of an embedding
as is used in the Minimum Linear Arrangement (MLA) [I3] problem.

Definition 2. Given a communication graph G = (V,E) with E CV x V, let
Et ={(u,v) | dg(u,v) < 0o} denote the transitive closure of E.
For h € Cy,n, let dp(E) denote the distortion of E, which is defined as:

du(B) = > dp(u,0)

(u,v)EET

The value dy,(E;) reflects how badly the edges in FE; are configured on N by
h. To build oop, the adversary gradually commits to the edges of R(oon).
Having already requested o7q,...,0;, then depending on the distortion the ad-
versary:

Option 1: picks 0,41 = argmax, ,)eg, dn(u,v).

8 Avin et al.

Option 2: reveals a new batch of edges M C V x V.

From these two options, the adversary’s strategy becomes clear; Option [1] forces
the highest possible cost to ON based on E; and h, and Option [2]introduces new
communication edges to force an increase in distortion. What is left to show is
how the value of dj(F;) comes into play, and which edges the adversary commits
to.

Note that only n— 1 edges can be revealed in total (since the final request graph
is a line), and that an offline algorithm incurs a cost of at most n to lower the
distortion of an edge to 1. Thus, in order to prove Theorem [2| the adversary
must — on average — be able to force a cost of 2(nlogn) per edge revealed. As
will be apparent from our construction, the factor logn comes from the way the
adversary reveals edges: it first reveals n/2 edges, then n/4, n/8, etc. , resulting
in logn batches. After each batch, for ON to remain optimal it must permute
its layout at cost £2(n?), totalling a cost of 2(n?logn) for all batches combined.
To ensure that R(ooy) is a line graph, the partial request graph E; (i.e. the
set of revealed edges) always comprises a set of disjoint sublists. Therefore, the
adversary only reveals edges that concatenate two sublists in F;. Initially F; is
empty and the corresponding sublists are all singleton sets of u € V.

M
-
[1]2]3]4]5]6]7]s] N
N S N A N B N
h(B;uM)Y) N Se---7 7

Fig. 3. A visualization of dj(E; U M): the line graph N, E; (solid) and M (dashed)
are sets of edges, configured on N by h (dotted). The sum of length of the configured
edges h((E; U M)") is the distortion dy(F; U M).

To help decide which edges to reveal, we use the distortion to associate a cost to
batches of edges that the adversary can commit to. Let M CV x V' \ E; be any
set of edges such that the graph (V, F; U M) comprises a set of disjoint sublists.
For a configuration h of ON, the set M induces a distortion of dy(E; U M),
as shown in Figure [3] We show that for any embedding that ON chooses, the
adversary can find a set M so that the distortion is large. To formalize this, we
prove the following.

Lemma 1. Let N be a line graph, and E C V XV a set of edges so that the
graph G = (V, E) induces k disjoint sublists. For every h € Cy <y, there exists

Self-Adjusting Linear Networks 9
a set M CV xV of at most k/2 edges such that dp(h(EU M)) = Q(%) and
(V,EUM) comprises a set of disjoint lists.

Proof. Let Lq,...,Ly C E be the sublists in G. For all pairs (4, j), let (L;, L;)
denote any edge so that L; U L; U {(L;,L;)} = L; & L; is connected. For any
involutiorﬁ f on the sublists we have:

E

2dy(EU{(Li, Lys)) | 1 # f(0)}) =D dn(Li ® Ly). (1)

=1

<.

The factor 2 is necessary because for i such that i # f(i), the term dp,(L; ® L (;))
appears twice to the sum.

Now partition N into three sublists: a left part X = {1,...,[n/3]}, a right part
Y = {[2n/3],...,n}, and the centre part C = N\ (X UY). Let hx(L;) (resp.
hy (L;)) denote the number of elements of L; that h maps onto X (resp. Y).
Every two vertices u,v so that h(u) € X and h(u) € Y are by construction at
least |C| = ©(n) apart on N, and therefore we can lower bound dy,(L; @ L;) by:

dn(Li ® Lj) > |C| - hx (Li)hy (L;) (2)

For an involution f drawn uniformly at random, Theorem [4] gives us a bound
on the expected value of the following:

(zﬁx hy@@0_9<mf]> (3)

Therefore, there exists an involution f for which we have:

2dh(EU{(Lz7Lf()) |Z # f(7) Zdh L; +Lf())
i=1

>|C|- th Dhy (Lgey)
@@mmeWm:Q<f)

Since this holds for any choice of (L;, L;), we can pick them so that (V,E U
{(Li, Lgy) | i # f(i)}) comprises a set of disjoint lists. O

This lemma (and the proof) reveals how the adversary commits to a new batch
of edges in Option [2| (essentially a random matching will do). Observe that the
number of edges is at most half the number of sublists in F;. In the worst case we

4 A function that is its own inverse, i.e. f(f(i)) = i.

10 Avin et al.

have to assume it is exactly half, and thus that the number of sublists is halved
after every new batch of edges is selected. Next we show the precondition for
the adversary to opt for Option [I] including a lower bound on the corresponding
cost imposed on ON.

Lemma 2. Let N be a line graph, h € Cy—, N a configuration, and E CV xV
a set of edges so that the graph G = (V, E) has n/{ disjoint sublists of size L.
If i, (E) = 2(6n?), then there exists an edge (u,v) € E such that dj(u,v) =

Proof. There are at most n/¢- (g) = O(¢n) distinct simple paths in G, meaning

that the average distortion of these paths is %((EZLZ)) = 2(n). The highest distor-

tion is at least the average, and every path in G has length at most ¢. On this
path, there must exist an edge with distortion {2(n/¢), since if all edges have a
distortion of o(n/f), the total would be o(n). O

Combined, Lemma [l| and Lemma [2] imply that the adversary can either request
an edge at cost £2(n/f), or increase the distortion to £2(¢n?) by revealing a new
batch of edges. The final ingredient is a lower bound on how much cost the
adversary can impose on ON in between these batches.

Lemma 3. Let N be a line graph, E CV XV a set of communication edges. If
h,h' € Cyn are two embeddings that differ only in the order of two adjacent
elements v and v, then dp(E) < dp/(E) + 2¢, where £ is the size of the largest
sublist in E.

Proof. Consider all simple paths in E that end in u. At most ¢ paths ending
in u are reduced by 1, and similarly at most ¢ paths ending in v. Therefore
dn(E)) — dp (E) < 2¢.

Combining the previous lemmata, we can prove the main technical result.

Lemma 4. For every online algorithm A, there is a sequence oon of length
O(en'*¢logn) such that cost(ON(oon)) = 2(en?logn), for 0 < e < 1. Further-
more, the resulting request graph R(oon) is a line graph.

Proof. W.l.o.g. assume that n = 2P for some integer p. This implies that the
number of edges in every new batch is a power of 2; consequently, the sublists
in any set E; of revealed edges have size 2¥ = ¢ for some integer k.

Consider the situation right after a batch of edges is revealed, where all sublists
have size £. By Lemma [1| this implies that the distortion is 2(¢n?). Let o =
Oi,0i+1,---, Oiten De the requests obtained by repeatedly requesting the edge in
FE; with largest distortion. There are two situations:

Self-Adjusting Linear Networks 11

— Throughout serving o, the distortion is always at least £2(¢n?). Then by
Lemma [2] each 0;, i < j < i+ ¢n incurred a cost of 2(n/f), at total cost
2(n?).

— By serving o, ON halves the distortion, thus reducing it by at least £2(¢n?).
Then, since by Lemma [3| every swap reduces the distortion by at most 2/,
ON must have used at least £2(n?) swaps.

This argument holds for each batch of edges revealed. The adversary stops when
the sublists have size 218" yielding a sequence ooy of length O(en'*clogn)
with a cost of £2(en?logn) for ON. By Lemma [2} the adversary only requests
edges that are introduced using the matching from Lemma [I} Any edge intro-
duced by the latter Lemma concatenates two already existing sublists, hence
R(oon) is a line graph. O

To wrap up the proof for Theorem 2 we conclude by showing that for any online
algorithm ON, the sequence ooy can be solved in O(n?) by an optimal offline
algorithm.

Proof (Proof of Theorem @) Let ON be any online algorithm solving Dis-
TRIBUTED L1ST UPDATE. Apply Lemma[d]with e = 1/2, yielding cost(ON(con)) =
2(n%logn). Since ooy is a line graph, an offline algorithm can embed this graph
at (worst case optimal) cost ©(n?), and serve every request at optimal cost O(1).
This yields cost(OF F(oon)) = ©(n?), and thus

cost(ON(o))
= ————"= = (I
cost(OFF()) ~ *losm)
In order to make this bound hold for arbitrary long sequences, we slightly modify
the adversary. After every O(n?) requests it serves, it can reconfigure to a new
list at cost O(n?), and repeat the argument to force cost of 2(n*logn) to ON
for the subsequent O(n?) requests.

Remark. We can extend the model for DISTRIBUTED LiST UPDATE to in-
clude cases where both the communication graph and the host graph G are a
d-dimensional grid, for constant d; we dub this problem DISTRIBUTED GRID
UPDATE. On a request (u,v), the cursor is placed at u and the request is served
when it touches v. The same operations are allowed: moving the cursor, or
swapping with on of its 2¢ neighbors (also moving the cursor).

We can extend our lower bound to DISTRIBUTED GRID UPDATE. That is, we
can construct a sequence ooy such that R(ocoy) is a d-dimensional grid. We
show that an offline algorithm can perfectly embed this graph at cost at most
n't1/4 whereas we can force the online algorithm to permute its layout logn
times.

What follows here is a summary of the necessary changes to the argument pre-
sented in the previous section. In particular, how to prove the following gener-
alized version of Lemma [l

12 Avin et al.

Lemma 5. For every online algorithm ON for DISTRIBUTED GRID UPDATE,
there is a sequence oon of length O(en'™<logn) such that cost(ON(oon)) =
Q2(en*t/4logn), for 0 < e < 1. The resulting request graph R(c,) is a d-
dimenstonal grid graph.

First some semantic changes to the notation. In all lemmata, we interpret N to
be a d-dimensional grid, where the number of vertices is n. The distance dj(u, v)
for u,v € V can then be interpreted as the ¢; norm.

Second, two minor technical changes to the proofs. The difference with Lemmal4]
is that the diameter of a d-dimensional grid with n nodes is at least n'/?, which
is exactly the value |C| in the proof of Lemma [1| The rest of the arguments
almost directly generalize to yield Lemmal5 The final detail to be careful about
is that the length of the sequence ooy does not exceed the cost of the offline
algorithm. That is, we have to pick ¢ such that n'*t¢logn = O(n'*1/4). For

constant dimension d, we can achieve this by picking € = 2—1d.

4 An Upper Bound

This section presents a O(logn)-competitive online algorithm for DISTRIBUTED
LisT UPDATE. Our main technical lemma shows that the total cost spent on
learning the optimal embedding never exceeds O(n?logn). We propose a simple
greedy algorithm that identifies a locally optimal embedding, and always moves
towards this embedding. Let N be a line graph, and h € Cy .,y a configuration.
An h-optimal embedding of E C V' x V, denoted h[E], is an embedding that op-
timally embeds every connected component of F¥ while minimizing the quantity
> vev [h(v) — B/ (v)]. That is, it is the optimal embedding of E that is ‘closest’
to h. With such a configuration we associate the cost:

Ou[E] =) |h(v) = BE](v)|

veV

Let GREAD be the algorithm (it GREedily ADjoins sublists), that upon seeing
a new edge oy, immediately moves to the embedding h[E; U {o;1+1}].

For each E;, let V(E;) be the connected components of (V, E;), so that V, =
Ui<i<mV(E;) is the set of all sublists induced by o. This naturally defines a
binary tree T, = (V,, E,): for every first occurence o; of (u,w) € E,, connecting
two sublists U, W in R(E;), there are two corresponding edges (U, U U W) and
(W, UUW) in E, (see Figure {4). For every o; € E,,, GREAD incurs some cost
for reconfiguring, and the following lemma bounds this cost.

Lemma 6. Let E; be as before and let 0; € E,, be an edge connecting two
sublists U and W of E;_1. It holds that

Pp[E; U{oit1}] = PulE] < n-min(|U], [W])

Self-Adjusting Linear Networks 13

@17”27”371}43“53”67”771}9
/

(U17027U33U47U57U6vv7)
U1, V2,03, V4, Vs Ve, U7

Fig. 4. The tree Vo, E;) for o = (v1,v2), (v3,v4), (vs,v3), (vs, v7), (V1,V5), (vV4,v7), (vs, V2).
The smallest and largest subtrees have light and dark backgrounds respectively.

Proof. With @,[E;] moves, we can optimally embed F,. With an additional
n - min(|U|, [W]|) moves, we can relocate the smaller of |U| and |W| to achieve
an optimal embedding of E; U {o;41}. Therefore ®4[E; U {oi11}] < Pr[Ei] +
nmin(|U|, |W]), and the claim follows.

For a node U € V,, let left(U) and right(U) denote U’s left and right child
respectively. Further, let w(U) denote the number of nodes in the subtree rooted
at U. Observe that for any binary tree with nodes IV, it holds that

Z min(w(left(v)), w(right(v))) < |N|log|N|
veN

Theorem 3. For any o, with |o| = m, such that |E,,| = k and R(0) is a line
graph,
cost(GREAD(0)) = O(m + nklogk)

Proof. The total cost of GREAD is the sum of reconfiguring after every o; € E,,
plus accessing every request at cost 1:

cost(GREAD(0)) — m = Z Du[E; U{0i}] — PulE]]

o, €E,

As a corollary, it is not hard to show that GREAD achieves optimal logn com-
petitiveness for the worst case sequence constructed in Section [3] Additionally,
in Appendix [B| we show a distributed implementation of this algorithm using
message passing.

14 Avin et al.

5 Related Work

As discussed above, the motivation for our work stems from the increasing flex-
ibilities available in networked systems, supporting resource migrations and re-
configurable topologies. In the following, we will review works related to the
technical and algorithmic contributions in this paper.

One important area of related work arises in the context of the dynamic list up-
date problem. Since the groundbreaking work by Sleator and Tarjan on amor-
tized analysis and self-adjusting datastructures [21]], researchers have also ex-
plored many interesting variants of self-adjusting datastructures, also using ran-
domized algorithms [19] or lookaheads [I3], or offline algorithms [G/18]. The
deterministic Move-To-Front (MTF) algorithm is known to optimally solve the
standard formulation of the list update problem: it is 2-competitive [2I], which
matches the lower bound [4]. To the best of our knowledge, the competitive ratio
in the randomized setting (against an oblivious adversary) is still an open prob-
lem: the best upper bound so far is 1.6 [3], and the best lower bound 1.5 [22]. The
randomized algorithm [3] makes an initial random choice between two known al-
gorithms that have different worst-case request sequences, relying on the BIT [19]
and TIMESTAMP [2] algorithms.

We also note that the self-adjusting linear network design problem can be consid-
ered a special case of general online problems such as the online Metrical Task
System (MTS) problems. However, given the exponential number of possible
configurations, the competitive ratio of generic MTS algorithms will be high if
applied to our more specific problems (at least according to the existing bounds).
Furthermore, we note that in case of line request graphs, the problem can also
be seen as a learning problem and hence related to bandits theory [12].

In terms of reconfigurable networks, there exist several static [7JI0] and dy-
namic [20/17] algorithms for constant-degree networks, as well as hybrid vari-
ants [I4] which combine static and reconfigurable links. However, these solu-
tions do not apply to the line and do not provide performance guarantees over
time; the latter also applies to recent work on node migration models on the
grid [6].

The paper closest to ours is by Olver et al. [I6] who introduced the Itinerant List
Update (ILU) problem: a relaxation of the classic dynamic list update problem in
which the pointer no longer has to return to a home location after each request.
The authors show an 2(logn) lower bound on the randomized competitive ratio
and also present an offline polynomial-time algorithm and prove that it achieves
an approximation ratio of O(log? n). In contrast, we in our paper focus on online
algorithms and request graphs forming a line (or grid). In fact, we show that
the lower bound 2(logn) even holds in this case, at least for deterministic al-
gorithms. We also present an online algorithm which matches this bound in our
model.

6

Self-Adjusting Linear Networks 15

Conclusion

We presented a first and asymptotically tight, i.e., ©(logn)-competitive online
algorithm for self-adjusting reconfigurable line networks with linear demand.
Both our lower and upper bounds are non-trivial, and we believe that our work
opens several interesting directions for future research. In particular, it would be
very interesting to shed light on the competitive ratio achievable in more general
network topologies, and to study randomized algorithms.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Albers, S.: A competitive analysis of the list update problem with lookahead. The-
oretical Computer Science 197(1-2), 95-109 (1998)

Albers, S.: Improved randomized on-line algorithms for the list update problem.
SIAM Journal on Computing 27(3), 682-693 (1998)

Albers, S., Von Stengel, B., Werchner, R.: A combined bit and timestamp algorithm
for the list update problem. Information Processing Letters 56(3), 135-139 (1995)
Albers, S., Westbrook, J.: Self-organizing data structures. In: Online algorithms,
pp. 13-51. Springer (1998)

Ambiihl, C.: Offline list update is np-hard. In: European Symposium on Algo-
rithms. pp. 42-51. Springer (2000)

Avin, C., Haeupler, B., Lotker, Z., Scheideler, C., Schmid, S.: Locally self-adjusting
tree networks. In: 2013 IEEE 27th International Symposium on Parallel and Dis-
tributed Processing. pp. 395-406. IEEE (2013)

Avin, C., Hercules, A., Loukas, A., Schmid, S.: Towards communication-aware
robust topologies. ArXiv Technical Report (2017)

Avin, C., Loukas, A., Pacut, M., Schmid, S.: Online balanced repartitioning. In:
Proc. 30th International Symposium on Distributed Computing (DISC) (2016)

. Avin, C., Mondal, K., Schmid, S.: Demand-aware network designs of bounded de-

gree. In: Proc. International Symposium on Distributed Computing (DISC) (2017)
Avin, C.; Mondal, K., Schmid, S.: Demand-aware network design with minimal
congestion and route lengths. In: Proc. IEE INFOCOM (2019)

Avin, C., Schmid, S.: Toward demand-aware networking: A theory for self-adjusting
networks. In: ACM SIGCOMM Computer Communication Review (CCR) (2018)
Bubeck, S., Cesa-Bianchi, N., et al.: Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends® in Machine Learning
5(1), 1-122 (2012)

Diaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Computing
Surveys (CSUR) 34(3), 313-356 (2002)

Fenz, T., Foerster, K.T., Schmid, S., Villedieu, A.: Efficient non-segregated routing
for reconfigurable demand-aware networks. In: Proc. IFIP Networking (2019)

M. Ghobadi et al.: Projector: Agile reconfigurable data center interconnect. In:
Proc. ACM SIGCOMM. pp. 216-229 (2016)

Olver, N., Pruhs, K., Schewior, K., Sitters, R., Stougie, L.: The itinerant list up-
date problem. In: 13th Workshop on Models and Algorithms for Planning and
Scheduling Problems. p. 163 (2017)

Peres, B., Souza, O., Goussevskaia, O., Schmid, S., Avin, C.: Distributed self-
adjusting tree networks. In: Proc. IEE INFOCOM (2019)

16 Avin et al.

18. Reingold, N., Westbrook, J.: Off-line algorithms for the list update problem. In-
formation Processing Letters 60(2), 75-80 (1996)

19. Reingold, N., Westbrook, J., Sleator, D.D.: Randomized competitive algorithms
for the list update problem. Algorithmica 11(1), 15-32 (1994)

20. Schmid, S., Avin, C., Scheideler, C., Borokhovich, M., Haeupler, B., Lotker, Z.:
Splaynet: Towards locally self-adjusting networks. IEEE/ACM Transactions on
Networking (ToN) (2016)

21. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202-208 (1985)

22. Teia, B.: A lower bound for randomized list update algorithms. Information Pro-
cessing Letters 47(1), 59 (1993)

A Geometric Proof

Theorem 4. Let xq,...,x, and yy,...,yr be sequences of k nonnegative_num-
bers, and let x (resp. y) denote Zle x;. Let the weight of an involution®| over
the indices 1,...,k be defined as:

k
w(f) =Yz
i=1
The average weight over all involutions is 2(%Y).

Proof. Let Zj;, denote the set of all involutions on a set of k elements, where
|Zx| = T(k) is given by the recurrence T'(k) = T(k — 1) + (k — 1)T'(k — 2)
with T'(0) = T'(1) = 1. For every pair of distinct indices ¢, j, there are T'(k — 2)
involutions f € Zj such that f(i) = j (namely for all involutions on the remaining
k — 2 indices). Similarly for every index 4, there are T'(k — 1) involutions such
that f(i) = i. Thus, for every ordered pair of (not necessarily distinct) indices
i, j there are at least T'(k — 2) involutions with f(i) = j.

For convenience we define a staircase of points p; = (37_; i, Y1, yi). Observe
that we can subdivide the rectangle defined by p; and the origin into k? axis-
aligned rectangles, so that the area of every such rectangle corresponds to the
weight of one ordered pair of indices (see Figure . Since every ordered pair
of indices appears in at least T'(k — 2) involutions, their weight (and thus the
corresponding rectangle), contributes at least T'(k—2) times in the sum of weights
over all involutions. This means that the area xy of the complete rectangle
contributes T'(k — 2) times to that sum:

2 rer, W(f) > T(k-2) Y0, 25:1 w(i,j) T(k—2) .
] - (k) O

5 A function f such that f(f(x)) = = for all x.

Self-Adjusting Linear Networks 17

Ps
N D R R e LR R L ®
Yl o S S Lo _.]77
Y
Am B R SEITRE o RN
Yo 1 | . S .p5 _______
Us -
: P4’
B SR R
Ys
i ORISR SRR S
3 : - P2 :
- "'f --------------- ‘ ----------- [IR L ICIEEY IR L ICIEEY IR []
Y2 : :
- ---.— -------------- Mememees e TR I TR I n
riL'l Hi) XT3 Ty X5 Tg Ty X8

Fig. 5. A staircase of 8 points based on the sequences x1,...,zs and yi,...,ys. The
values w(2,5), w(8,4), and w(7,7) are visualised as the area of rectangles highlighted
in red, green, and blue respectively.

To lower bound ZE=2) " we first define R(n) = T() and observe that this

T(k) T(n—1)
definition is equivalent to the one in Lemma
T(n)
R(n) = m/———=
") = Ty
_Tn—=1)+(n—-1)T(n—2)
T(n—-1)
T(n—2)
=1 — 1)
i -Dre)
n—1
= 1 —_—
+ R(n—1)

Since % = R(n)R(n — 1), we can use Lemma |7|to lower bound T(Tk(;f) by:

T(k—2) 1 1 (1
T(k) — R(k)R(k—2) - 1+vVE+1)(1+VE-1) - <k>

18 Avin et al.

thus yielding an average weight of ©(%%) over all involutions.

Lemma 7. Let R(n) =1+ R?n;fl) with R(1) = 1; for all n > 1 it holds that:

Vn<R(n)<l++vn+1

Proof. The proof is by induction on n, with base case v/1 < R(1)<1++/1+1.
From R(n) <1+ v/n+ 1 we conclude:

n (n+1)—-1 .
+1+m<1+ R(n) =R(n+1)

And from /n < R(n) we conclude:

vn+1l=1

R(n+1)=1+%§1+\;%:1+\/ﬁ<1+\/(n+1)+1

B Distributed Implementation of Gread

To make GREAD distributed we have several problems to overcome: i) routing,
ii) knowing to which (temporary) sublist every node belongs together with the
size of the sublist, and iii) how to perform the reconfiguration and merging of
two sublists. We address these issues one by one.

Routing: The basic problem with routing is that the source nodes do not know
the location of the destination, since initially there is no sense of direction. To
overcome this problem each source initiates an exponential search on both sides
of the line network when it first needs to communicate with a destination. This
will guarantee that the cost of the first route request will be O(%) for a destination
that is ¢ hops away on the line network. Note that this is proportional the cost of
any algorithm. According to GREAD the cost of all future requests will be 1 since
after the first communication request the source and destination are reconfigured
to be neighbors.

Sublist: During the execution each node maintains the following information:
A bit that indicates if it is at the end of a sublist (a node is at the end of a
sublist if it has less than two neighbors from that sublist). If it is at the end of
the list then the node maintains the size of the list (up to logn bits).

Reconfiguration: Basically GREAD merges two sublists by swapping the shorter
list toward the longer sublist. Note that this happens only on the first routing
request from a source to destination. This can be done in a distributed manner
in the following way. On the first routing request, the source (which must be an
end node) attaches the size of its sublist to the message. The destination (which
also must be an end node), upon receiving the request, answers to the source
with the size of its own sublist (initially set to one). It is then clear to both the

Self-Adjusting Linear Networks 19

source and destination which sublist needs to move toward which sublist and
what will be the size of the merged sublist. Then, both source and destination
send messages within their sublist informing the other ends of the sublist of the
size of the merged list. Now, w.l.o.g assume the destination needs to move to-
ward the source. The destination then starts performing swaps (with its neighbor
that is not on its current list) toward the source. This process ends when both
the destination is a neighbor of the source and the source is a neighbor of its
previous neighbor on its list. Before starting the swaps the destination informs
its neighbor (which in turn informs its neighbor and so on) to follow up after it
with similar swaps. It can be observed that after this process the two list will be
merged into a larger list and both ends will know the sizes of the new sublist.
The cost of the reconfiguration is O(nmin(|U|, |W|)) where U and W are the
two sublists involved in the merging.

	Self-Adjusting Linear Networks

