Skip to main content

Number of Minimal Hypergraph Transversals and Complexity of IFM with Infrequency: High in Theory, but Often Not so Much in Practice!

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11946))

Abstract

Hypergraph Dualization (also called as hitting set enumeration) is the problem of enumerating all minimal transversals of a hypergraph \({\mathcal {H}}\), i.e., all minimal inclusion-wise hyperedges (i.e., sets of vertices) that intersect every hyperedge in \({\mathcal {H}}\). Dualization is at the core of many important Artificial Intelligence (AI) problems. As a contribution to a better understanding of Dualization complexity, this paper introduces a tight upper bound to the number of minimal transversals that can be computed in polynomial time. In addition, the paper presents an interesting exploitation of the upper bound to the number of minimal transversals. In particular, the problem dealt with is characterizing the complexity of the data mining problem called \(\mathtt {IFM}_{\mathtt {I}}\) (Inverse Frequent itemset Mining with Infrequency constraints), that is the problem of finding a transaction database whose frequent and infrequent itemsets satisfy a number of frequency/infrequency patterns given in input.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A preliminary version of this paper is a companion manuscript for [16].

  2. 2.

    Other hypergraph definitions require a hyperedge not to be empty.

  3. 3.

    We assume that \(\log _{\bar{n}} \widetilde{m}^d_{3^+}\) is equal to \(-\infty \) if \(\widetilde{m}^d_{3^+}=0\) or it is rounded up to a fixed number of decimal places otherwise.

References

  1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, SIGMOD 1993, pp. 207–216. ACM, New York (1993). https://doi.org/10.1145/170035.170072

  2. Berge, C.: Graphs and Hypergraphs. North-Holland Pub. Co., Amsterdam (1973)

    MATH  Google Scholar 

  3. Boros, E., Gurvich, V., Khachiyan, L., Makino, K.: On maximal frequent and minimal infrequent sets in binary matrices. Ann. Math. Artif. Intell. 39, 211–221 (2003). https://doi.org/10.1023/A:1024605820527

    Article  MathSciNet  MATH  Google Scholar 

  4. Calders, T.: Itemset frequency satisfiability: complexity and axiomatization. Theoret. Comput. Sci. 394(1–2), 84–111 (2008). https://doi.org/10.1016/j.tcs.2007.11.003

    Article  MathSciNet  MATH  Google Scholar 

  5. Damaschke, P.: Parameterized algorithms for double hypergraph dualization with rank limitation and maximum minimal vertex cover. Discret. Optim. 8(1), 18–24 (2011). https://doi.org/10.1016/j.disopt.2010.02.006

    Article  MathSciNet  MATH  Google Scholar 

  6. Desaulniers, G., Desrosiers, J., Solomon, M.M.: Column Generation. Springer, New York (2005). https://doi.org/10.1007/b135457

    Book  MATH  Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0515-9

    Book  MATH  Google Scholar 

  8. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. SIAM J. Comput. 24(6), 1278–1304 (1995). https://doi.org/10.1137/S0097539793250299

    Article  MathSciNet  MATH  Google Scholar 

  9. Eiter, T., Makino, K.: Generating all abductive explanations for queries on propositional horn theories. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 197–211. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45220-1_18

    Chapter  Google Scholar 

  10. Elbassioni, K.M., Rauf, I., Ray, S.: Enumerating minimal transversals of geometric hypergraphs. In: Proceedings of the 23rd Annual Canadian Conference on Computational Geometry, Toronto, Ontario, Canada, 10–12 August (2011)

    Google Scholar 

  11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29953-X

    Book  MATH  Google Scholar 

  12. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996). https://doi.org/10.1006/jagm.1996.0062

    Article  MathSciNet  MATH  Google Scholar 

  13. Gottlob, G., Malizia, E.: Achieving new upper bounds for the hypergraph duality problem through logic. SIAM J. Comput. 47(2), 456–492 (2018). https://doi.org/10.1137/15M1027267

    Article  MathSciNet  MATH  Google Scholar 

  14. Gottlob, G.: Deciding monotone duality and identifying frequent itemsets in quadratic logspace. In: Hull, R., Fan, W. (eds.) PODS, pp. 25–36. ACM (2013). https://doi.org/10.1145/2463664.2463673

  15. Gunopulos, D., Khardon, R., Mannila, H., Toivonen, H.: Data mining, hypergraph transversals, and machine learning. In: Mendelzon, A.O., Özsoyoglu, Z.M. (eds.) PODS 1997, pp. 209–216. ACM Press (1997). https://doi.org/10.1145/263661.263684

  16. Guzzo, A., Moccia, L., Saccà, D., Serra, E.: Solving inverse frequent itemset mining with infrequency constraints via large-scale linear programs. ACM Trans. Knowl. Discov. Data 7(4), 18:1–18:39 (2013). https://doi.org/10.1145/2541268.2541271

    Article  Google Scholar 

  17. Kavvadias, D., Papadimitriou, C.H., Sideri, M.: On horn envelopes and hypergraph transversals. In: Ng, K.W., Raghavan, P., Balasubramanian, N.V., Chin, F.Y.L. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 399–405. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57568-5_271

    Chapter  Google Scholar 

  18. Khachiyan, L., Boros, E., Elbassioni, K.M., Gurvich, V.: On the dualization of hypergraphs with bounded edge-intersections and other related classes of hypergraphs. Theor. Comput. Sci. 382(2), 139–150 (2007). https://doi.org/10.1016/j.tcs.2007.03.005

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, G., Li, J., Wong, L.: A new concise representation of frequent itemsets using generators and a positive border. Knowl. Inf. Syst. 17(1), 35–56 (2008). https://doi.org/10.1007/s10115-007-0111-5

    Article  Google Scholar 

  20. Mielikainen, T.: On inverse frequent set mining. In: Proceedings of 2nd Workshop on Privacy Preserving Data Mining, PPDM 2003, pp. 18–23. IEEE Computer Society, Washington, DC (2003)

    Google Scholar 

  21. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)

    MATH  Google Scholar 

  22. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987). https://doi.org/10.1016/0004-3702(87)90062-2

    Article  MathSciNet  MATH  Google Scholar 

  23. Saccà, D., Serra, E.: On line appendix to: number of minimal hypergraph transversals and complexity of IFM with infrequency: high in theory, but often not so much in practice! Version of 12 September 2019. http://sacca.deis.unical.it/#view=object&format=object&id=1490/gid=160

  24. Saccà, D., Serra, E., Guzzo, A.: Count constraints and the inverse OLAP problem: definition, complexity and a step toward aggregate data exchange. In: Lukasiewicz, T., Sali, A. (eds.) FoIKS 2012. LNCS, vol. 7153, pp. 352–369. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28472-4_20

    Chapter  Google Scholar 

  25. Saccá, D., Serra, E., Rullo, A.: Extending inverse frequent itemsets miningto generate realistic datasets: complexity, accuracy and emerging applications. Data Min. Knowl. Discov. 33, 1736–1774 (2019). https://doi.org/10.1007/s10618-019-00643-1

    Article  MathSciNet  Google Scholar 

  26. Vardi, M.Y.: Lost in math? Commun. ACM 62(3), 7 (2019). https://doi.org/10.1145/3306448

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Saccà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saccà, D., Serra, E. (2019). Number of Minimal Hypergraph Transversals and Complexity of IFM with Infrequency: High in Theory, but Often Not so Much in Practice!. In: Alviano, M., Greco, G., Scarcello, F. (eds) AI*IA 2019 – Advances in Artificial Intelligence. AI*IA 2019. Lecture Notes in Computer Science(), vol 11946. Springer, Cham. https://doi.org/10.1007/978-3-030-35166-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35166-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35165-6

  • Online ISBN: 978-3-030-35166-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics