Skip to main content

A Graphical Analysis of Integer Infeasibility in UTVPI Constraints

  • Conference paper
  • First Online:
AI*IA 2019 – Advances in Artificial Intelligence (AI*IA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11946))

  • 1170 Accesses

Abstract

In this paper, we discuss a theorem of the alternative for integer feasibility in a class of constraints called Unit Two Variable Per Inequality (UTVPI) constraints. In general, a theorem of the alternative gives two systems of constraints such that exactly one system is feasible. Theorems of the alternative for linear feasibility have been discussed extensively in the literature. If a theorem of the alternative provides a “succinct” certificate of infeasibility, it is said to be compact. In general, theorems of the alternative for linear feasibility are compact (see Farkas’ lemma for instance). However, compact theorems of the alternative cannot exist for integer feasibility in linear programs unless NP\(\,=\,\)coNP. A second feature of a theorem of the alternative is its form. Typically, theorems of the alternative connect pairs of linear systems. A graphical theorem of the alternative, on the other hand, connects infeasibility in a linear system to the existence of particular paths in an appropriately constructed constraint network. Graphical theorems of the alternative are known to exist for selected classes of linear programs. In this paper, we detail a compact, graphical theorem of the alternative for integer feasibility in UTVPI constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagnara, R., Hill, P.M., Zaffanella, E.: Weakly-relational shapes for numeric abstractions: improved algorithms and proofs of correctness. Form. Methods Syst. Des. 35(3), 279–323 (2009)

    Article  Google Scholar 

  2. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)

    Google Scholar 

  3. Dax, A.: Classroom note: an elementary proof of Farkas’ lemma. SIAM Rev. 39(3), 503–507 (1997)

    Article  MathSciNet  Google Scholar 

  4. Farkas, G.: Über die Theorie der Einfachen Ungleichungen. J. für die Reine und Angewandte Mathematik 124(124), 1–27 (1902)

    MathSciNet  MATH  Google Scholar 

  5. Gale, D.: The Theory of Linear Economic Models. McGraw-Hill, New York (1960)

    MATH  Google Scholar 

  6. Gerber, R., Pugh, W., Saksena, M.: Parametric dispatching of hard real-time tasks. IEEE Trans. Comput. 44(3), 471–479 (1995)

    Article  Google Scholar 

  7. Gordan, P.: Ueber die auflösung linearer gleichungen mit reellen coefficienten. Math. Ann. 6(1), 23–28 (1873)

    Article  MathSciNet  Google Scholar 

  8. Hurkens, C.A.J.: On the existence of an integral potential in a weighted bidirected graph. Linear Algebr. Appl. 114–115, 541–553 (1989). Special Issue Dedicated to Alan J. Hoffman

    Article  MathSciNet  Google Scholar 

  9. Lahiri, S.K., Musuvathi, M.: An efficient decision procedure for UTVPI constraints. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 168–183. Springer, Heidelberg (2005). https://doi.org/10.1007/11559306_9

    Chapter  Google Scholar 

  10. Lasserre, J.B.: Integer programming, Barvinok’s counting algorithm and Gomory relaxations. Oper. Res. Lett. 32(2), 133–137 (2004)

    Article  MathSciNet  Google Scholar 

  11. Marlow, W.H.: Mathematics for Operations Research. Wiley, Hoboken (1978)

    MATH  Google Scholar 

  12. Miné, A.: The octagon abstract domain. High.-Order Symb. Comput. 19(1), 31–100 (2006)

    Article  Google Scholar 

  13. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1999)

    MATH  Google Scholar 

  14. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1987)

    MATH  Google Scholar 

  15. Schrijver, A.: Disjoint circuits of prescribed homotopies in a graph on a compact surface. J. Comb. Theory, Ser. B 51(1), 127–159 (1991)

    Article  MathSciNet  Google Scholar 

  16. Schutt, A., Stuckey, P.J.: Incremental satisfiability and implication for UTVPI constraints. INFORMS J. Comput. 22(4), 514–527 (2010)

    Article  MathSciNet  Google Scholar 

  17. Sitzmann, I., Stuckey, P.J.: O-trees: a constraint-based index structure. In: Australasian Database Conference, pp. 127–134 (2000)

    Google Scholar 

  18. Stiemke, E.: Über positive lösungen homogener linearer gleichungen. Math. Ann. 76(2), 340–342 (1915)

    Article  MathSciNet  Google Scholar 

  19. Subramani, K.: On deciding the non-emptiness of 2SAT polytopes with respect to first order queries. Math. Log. Q. 50(3), 281–292 (2004)

    Article  MathSciNet  Google Scholar 

  20. Subramani, K., Wojciechowski, P.J.: A combinatorial certifying algorithm for linear feasibility in UTVPI constraints. Algorithmica 78(1), 166–208 (2017)

    Article  MathSciNet  Google Scholar 

  21. Vohra, R.V.: The ubiquitous Farkas’ lemma. In: Alt, F.B., Fu, M.C., Golden, B.L. (eds.) Perspectives in Operations Research. ORCS, vol. 36, pp. 199–210. Springer, New York (2006). https://doi.org/10.1007/978-0-387-39934-8_11

    Chapter  Google Scholar 

  22. Williams, H.P.: Model Building in Mathematical Programming, 4th edn. Wiley, Hoboken (1999)

    MATH  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Air-Force Office of Scientific Research through grant FA9550-19-1-017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Subramani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Subramani, K., Wojciechowski, P. (2019). A Graphical Analysis of Integer Infeasibility in UTVPI Constraints. In: Alviano, M., Greco, G., Scarcello, F. (eds) AI*IA 2019 – Advances in Artificial Intelligence. AI*IA 2019. Lecture Notes in Computer Science(), vol 11946. Springer, Cham. https://doi.org/10.1007/978-3-030-35166-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35166-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35165-6

  • Online ISBN: 978-3-030-35166-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics