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Abstract. In multi-agent path finding (MAPF) the task is to navigate agents from
their starting positions to given individual goals. The problem takes place in an
undirected graph whose vertices represent positions and edges define the topol-
ogy. Agents can move to neighbor vertices across edges. In the standard MAPF,
space occupation by agents is modeled by a capacity constraint that permits at
most one agent per vertex. We suggest an extension of MAPF in this paper that
permits more than one agent per vertex. Propositional satisfiability (SAT) mod-
els for these extensions of MAPF are studied. We focus on modeling capacity
constraints in SAT-based formulations of MAPF and evaluation of performance
of these models. We extend two existing SAT-based formulations with vertex ca-
pacity constraints: MDD-SAT and SMT-CBS where the former is an approach
that builds the model in an eager way while the latter relies on lazy construction
of the model.

Keywords: multi agent path finding, propositional satisfiability (SAT), capacity
constraints, cardinality constraints

1 Introduction

In multi-agent path finding (MAPF) [9,18,19,21,24,28,33] the task is to navigate agents
from given starting positions to given individual goals. The standard version of the
problem takes place in undirected graph G = (V,E) where agents from set A =
{a1, a2, ..., ak} are placed in vertices with at most one agent per vertex. The initial
configuration of agents in vertices of the graph can be written as α0 : A → V and
similarly the goal configuration as α+ : A → V . The task of navigating agents can be
expressed as a task of transforming the initial configuration of agents α0 : A→ V into
the goal configuration α+ : A→ V .

Movements of agents are instantaneous and are possible across edges into neighbor
vertices assuming no other agent is entering the same target vertex. This formulation
permits agents to enter vertices being simultaneously vacated by other agents. Trivial
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case when a pair of agents swaps their positions across an edge is forbidden in the
standard formulation. We note that different versions of MAPF exist where for example
agents always move into vacant vertices [29]. We usually denote the configuration of
agents at discrete time step t as αt : A → V . Non-conflicting movements transform
configuration αt instantaneously into next configuration αt+1. We do not consider what
happens between t and t+ 1 in this discrete abstraction. Multiple agents can move at a
time hence the MAPF problem is inherently parallel.

In order to reflect various aspects of real-life applications variants of MAPF have
been introduced such as those considering kinematic constraints [8], large agents [11],
or deadlines [14] - see [13] for more variants.

Particularly in this work we are dealing with an extension of MAPF that generalizes
the constraint of having at most one agent per vertex. There are many situations where
we need to model nodes that could hold more than agent at a time. Such situations
include various graph-based evacuation models where for example nodes correspond
to rooms in evacuated buildings [10] which naturally can hold more than one agent.
Various spatial projections could also lead to having multiple agents per vertex such as
upper projection of agents representing aerial drones where a single node corresponds to
x,y-coordinate that could hold multiple agents at different z-coordinates [12]. Generally
the need to consider nodes capable of containing multiple agents appears in modeling
of multi-agent motion planning task at higher levels of granularity.

1.1 Contributions

The contribution of this paper consists in showing how to generalize existing proposi-
tional satisfiability (SAT) [4] models of MAPF for finding optimal plans with general
capacity constraints that bound the number of agents in vertices. Two existing SAT-
based models are generalized: MDD-SAT [32] that builds the propositional model in
an eager way and SMT-CBS [30,31] that builds the model in a lazy way inspired by
satisfiability modulo theories (SMT) [16].

The eager style of building the propositional model means that all constraints are
posted into the model in advance. Such model is complete that is, it is solvable (sat-
isfiable) if and only if the instance being modeled is solvable. In contrast to this, the
lazy style does not add all constraints at once and works with incomplete models. The
incomplete model preserve only one-sided implication w.r.t. solvability: if the instance
being modeled is solvable then the incomplete model is solvable (satisfiable).

The SMT-CBS algorithm iteratively refines the incomplete model towards the com-
plete one by eliminating conflicts. That is, a candidate solution is extracted from the
satisfied incomplete model. The candidate is checked for conflicts - whether any of the
MAPF rules is violated - for example if a collision between agents occurred. If there
are no conflicts, we are finished as the candidate is a valid solution of the input MAPF
instance. If a conflict is detected, then a constraint that eliminates this particular conflict
is added to the incomplete model resulting in a new model and the process is repeated.
That is, a new candidate solution is extracted from the new model etc. Eventually the
process may end up with a complete model after eliminating all possible conflicts. How-
ever, we hope that the process finishes before constructing a complete model and we
solve the instance with less effort.
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In the presented generalization with capacity constraints we need to distinguish
between the eager and lazy variant. The capacity constraint concerning given vertex
v bounding the number of agents that can simultaneously occupy v by some integer
constant say 2 can be literally translated into the requirement that no 3 distinct agents
can occupy v at the same time. Such a constraint can be directly posted in the eager
variant: we either forbid all possible triples of agents in v or post the corresponding
cardinality constraint [3,23].

The situation is different in the lazy variant. To preserve the nature of the lazy ap-
proach we cannot post the capacity bound entirely as conceptually at the low level as
we are informed only about a particular MAPF rule violation, say for example agents
a1, a5 and a8 occurred simultaneously in v which is forbidden in given MAPF. The
information that there is a capacity constraint on v bounding the number of agents in
v by 2 may even not be accessible at the low level. Hence we can forbid simultaneous
occurrence of only the given triple of agents, a1, a5 and a8 in this case.

The paper is organized as follows. We first introduce the standard multi-agent path
finding problem formally including commonly used objectives. Then we introduce two
major existing SAT-based encodings. On top of this, we show how to extend these en-
codings with vertex capacities. Finally we evaluate extended models on standard bench-
marks including open grids and large game maps.

2 Formal Definition of MAPF and Vertex Capacities

The Multi-agent path finding (MAPF) problem [24,18] consists of an undirected graph
G = (V,E) and a set of agents A = {a1, a2, ..., ak} such that |A| ≤ |V |. Each agent
is placed in a vertex so that at most one agent resides in each vertex. The placement of
agents is denoted α : A→ V . Next we are given initial configuration of agents α0 and
goal configuration α+.

At each time step an agent can either move to an adjacent vertex or wait in its current
vertex. The task is to find a sequence of move/wait actions for each agent ai, moving
it from α0(ai) to α+(ai) such that agents do not conflict, i.e., do not occupy the same
location at the same time nor cross the same edge in opposite directions simultaneously.
The following definition formalizes the commonly used movement rule in MAPF.

Definition 1. Valid movement in MAPF. Configuration α′ results from α if and only
if the following conditions hold:

(i) α(a) = α′(a) or {α(a), α′(a)} ∈ E for all a ∈ A (agents wait or move along
edges);

(ii) for all a ∈ A it holds α(a) 6= α′(a)⇒ ¬(∃b ∈ A)(α(b) = α′(a) ∧ α′(b) = α(a))
(no two agents crosses an edge in opposite directions);

(iii) and for all a, a′ ∈ A it holds that a 6= a′ ⇒ α′(a) 6= α′(a′) (no two agents share a
vertex in the next configuration).

Solving the MAPF instance is to find a sequence of configurations [α0, α1, ..., αµ]
such that αi+1 results using valid movements from αi for i = 1, 2, ..., µ − 1, and
αµ = α+.
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A version of MAPF with vertex capacities generalizes the above definition by adding
capacity function c : V → Z+ that assigns each vertex a positive integer capacity. The
interpretation is that a vertex v can hold up to the specified number of agents c(v) at
any time-step.

The definition of the valid movement will change only in point (iii) where instead of
permitting at most one agent per vertex we allow any number of agents not exceeding
the capacity of the vertex:

Definition 2. Vertex capacities in MAPF.
(iii’) for all v ∈ V it holds that |a | α′(a) = v| ≤ c(v) (the number of agents in each

vertex does not exceed the capacity in the next configuration).
Using generalized vertex capacities relaxes the problem in fact as illustrated in Fig-

ure 1. Intuitively, capacities greater than one induce additional parking place in the
environment which we hypothetise to make the problem easier to solve.
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Fig. 1: Illustration of the standard MAPF (c = 1) and MAPF with generalized vertex capacity
(uniform capacity c = 2 us used). With c = 2 two agents a2 and a3 can both enter vertex D. In
contrast to this, a3 must wait in vertex F in the standard MAPF.

2.1 Common Objectives in MAPF
We address here optimal MAPF solving hence we need to introduce objective functions
more formally. In case of makespan [29] we just need to minimize µ in the aforemen-
tioned solution sequence. For introducing the sum-of-costs objective [7,26,21,19] we
need the following notation:

Definition 3. Sum-of-costs objective is the summation, over all agents, of the number
of time steps required to reach the goal vertex. Denoted ξ, where ξ =

∑k
i=1 ξ(path(ai)),

where ξ(path(ai)) is an individual path cost of agent ai connecting α0(ai) calculated
as the number of edge traversals and wait actions. 4

4 The notation path(ai) refers to path in the form of a sequence of vertices and edges connecting
α0(ai) and α+(ai) while ξ assigns the cost to a given path.
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Observe that in the sum-of-costs we accumulate the cost of wait actions for agents
not yet reaching their goal vertices. For the sake of brevity we focus here on the sum-
of-costs, but we note that all new concepts can be introduced for different cumulative
objectives like the makespan.5

We note that finding a solution that is optimal (minimal) with respect to the sum-of-
costs objective is NP-hard [17]. The same result holds for the variant with capacities as
it is a straight generalization of the standard MAPF version.

3 Related Work

Let us now recall existing SAT-based optimal MAPF solvers. We here focus on aspects
important for introducing capacities. We recall MDD-SAT the sum-of-costs optimal
solver based on eager SAT encoding [32] and SMT-CBS [31], the most recent SAT-
based, or more precisely SMT-based, algorithm using lazy encoding.

3.1 SAT-based Approach

The idea behind the SAT-based approach is to construct a propositional formula F(ξ)
such that it is satisfiable if and only if a solution of a given MAPF of sum-of-costs ξ
exists [29]. Moreover, the approach is constructive; that is, F(ξ) exactly reflects the
MAPF instance and if satisfiable, solution of MAPF can be reconstructed from satisfy-
ing assignment of the formula. We say F(ξ) to be a complete propositional model of
MAPF.

Definition 4. (complete propositional model). Propositional formula F(ξ) is a com-
plete propositional model of MAPF Σ if the following condition holds:

F(ξ) is satisfiable⇔ Σ has a solution of sum-of-costs ξ.

Being able to construct such formula F one can obtain optimal MAPF solution by
checking satisfiability of F(0), F(1), F(2),... until the first satisfiable F(ξ) is met.
This is possible due to monotonicity of MAPF solvability with respect to increasing
values of common cumulative objectives like the sum-of-costs. In practice it is however
impractical to start at 0; lower bound estimation is used instead - sum of lengths of
shortest paths can be used in the case of sum-of-costs. The framework of SAT-based
solving is shown in pseudo-code in Algorithm 1.

3.2 Details of the MDD-SAT Encoding

Construction of F(ξ) as used in the MDD-SAT solver relies on time expansion of un-
derlying graph G. Having ξ, the basic variant of time expansion determines the maxi-
mum number of time steps µ (makespan) such that every possible solution of the given
MAPF with the sum-of-costs less than or equal to ξ fits within µ timesteps. Given ξ we

5 Dealing with objectives is out of scope of this paper. We refer the reader to [32] for more
detailed discussion.
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can calculate µ as maxki=1{ξ0(ai)}+ ξ − ξ0 where ξ0(a1) is the length of the shortest
path connecting α0(ai) and α+(ai); ξ0 =

∑k
i=1 ξ0(ai). The detailed justification of

this equation is given in [32].
Time expansion itself makes copies of vertices V for each timestep t = 0, 1, 2, ..., µ.

That is, we have vertices vt for each v ∈ V and time step t. Edges from G are con-
verted to directed edges interconnecting timesteps in the time expansion. Directed edges
(ut, vt+1) are introduced for t = 1, 2, ..., µ− 1 whenever there is {u, v} ∈ E. Wait ac-
tions are modeled by introducing edges (ut, tt+1). A directed path in the time expansion
corresponds to trajectory of an agent in time. Hence the modeling task now consists in
construction of a formula in which satisfying assignments correspond to directed paths
from α0

0(ai) to αµ+(ai) in the time expansion.
Assume that we have time expansion TEGi = (Vi, Ei) for agent ai. Propositional

variable X tv(aj) is introduced for every vertex vt in Vi. The semantics of X tv(ai) is
that it is TRUE if and only if agent ai resides in v at time step t. Similarly we intro-
duce Eu, vt(ai) for every directed edge (ut, vt+1) in Ei. Analogously the meaning of
Etu,v(ai) is that is TRUE if and only if agent ai traverses edge {u, v} between time
steps t and t+ 1.

Constraints are added so that truth assignment are restricted to those that correspond
to valid solutions of a given MAPF. Added constraints together ensure that F(ξ) is a
complete propositional model for given MAPF.

We here illustrate the model by showing few representative constraints. We omit
here constraints that concern objective function. For the detailed list of constraints we
again refer the reader to [32].

Collisions among agents are eliminated by the following constraint for every v ∈ V
and timestep t expressed on top of X tv(ai) variables:∑

ai∈A | vt∈Vi

X tv(ai) ≤ 1 (1)

There are various ways how to translate the constraint using propositional clauses.
One efficient way is to introduce ¬X tv(ai)∨¬X tv(aj) for all possible pairs of ai and aj .

Next, there is a constraint stating that if agent ai appears in vertex u at time step
t then it has to leave through exactly one edge (ut, vt+1). This can be established by
following constraints:

X tu(ai)⇒
∨

(ut,vt+1)∈Ei

Etu,v(ai), (2)

∑
vt+1 | (ut,vt+1)∈Ei

Etu,v(ai) ≤ 1 (3)

Similarly, the target vertex of any movement except wait action must be empty. This
is ensured by the following constraint for every (ut, vt+1) ∈ Ei:

Etu,v(ai)⇒
∧

aj∈A | aj 6=ai∧vt∈Vj

¬X tv(aj) (4)
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Algorithm 1: Framework of SAT-based MAPF solving
1 SAT-Based (G = (V,E), A, α0, α+)
2 paths← {shortest path from α0(ai) to α+(ai)|i = 1, 2, ..., k}
3 ξ ←

∑k
i=1 ξ(N.paths(ai))

4 while TRUE do
5 F(ξ)← encode(ξ,G,A, α0, α+)
6 assignment← consult-SAT-Solver(F(ξ))
7 if assignment 6= UNSAT then
8 paths← extract-Solution(assignment)
9 return paths

10 ξ ← ξ + 1

Other constraints ensure that truth assignments to variables per individual agents
form paths. That is if agent ai enters an edge it must leave the edge at the next time
step.

Etu,v(ai)⇒ X tv(ai) ∧ X t+1
v (ai) (5)

A common measure how to reduce the number of decision variables derived from
the time expansion is the use of multi-value decision diagrams (MDDs) [21]. The basic
observation that holds for MAPF is that an agent can reach vertices in the distance d
(distance of a vertex is measured as the length of the shortest path) from the current
position of the agent no earlier than in the d-th time step. Analogical observation can
be made with respect to the distance from the goal position.

Above observations can be utilized when making the time expansion of G. For a
given agent, we do not need to consider all vertices at time step t but only those that
are reachable in t timesteps from the initial position and that ensure that the goal can be
reached in the remaining µ− t timesteps.

3.3 Resolving Conflicts Lazily in SMT-CBS

SMT-CBS is inspired by search-based algorithm CBS [22,20] that uses the idea of re-
solving conflicts lazily; that is, a solution of MAPF instance is not searched against the
complete set of movement constraints that forbids collisions between agents but with
respect to initially empty set of collision forbidding constraints that gradually grows as
new conflicts appear. SMT-CBS follows the high-level framework of CBS but rephrases
the process into propositional satisfiability in a similar way as done in formula satisfia-
bility testing in satisfiability modulo theory paradigm [16,15,5].

The high-level of CBS searches a constraint tree (CT) using a priority queue in
breadth first manner. CT is a binary tree where each node N contains a set of collision
avoidance constraints N.constraints - a set of triples (ai, v, t) forbidding occurrence
of agent ai in vertex v at time step t, a solution N.paths - a set of k paths for individual
agents, and the total cost N.ξ of the current solution.
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The low-level process in CBS associated with node N searches paths for individual
agents with respect to set of constraints N.constraints . For a given agent ai, this is
a standard single source shortest path search from α0(ai) to α+(ai) that avoids a set
of vertices {v ∈ V |(ai, v, t) ∈ N.constraints} whenever working at time step t. For
details see [19].

CBS stores nodes of CT into priority queue OPEN sorted according to the ascending
costs of solutions. At each step CBS takes node N with the lowest cost from OPEN and
checks if N.paths represent paths that are valid with respect to MAPF movements
rules - that is,N.paths are checked for collisions. If there is no collision, the algorithms
returns valid MAPF solution N.paths . Otherwise the search branches by creating a
new pair of nodes in CT - successors of N . Assume that a collision occurred between
agents ai and aj in vertex v at time step t. This collision can be avoided if either agent
ai or agent aj does not reside in v at timestep t. These two options correspond to
new successor nodes of N - N1 and N2 that inherit the set of conflicts from N as
follows: N1.conflicts = N.conflicts ∪ {(ai, v, t)} and N2.conflicts = N.conflicts ∪
{(aj , v, t)}.N1.paths andN1.paths inherit paths fromN.paths except those for agents
ai and aj respectively. Paths for ai and aj are recalculated with respect to extended sets
of conflicts N1.conflicts and N2.conflicts respectively and new costs for both agents
N1.ξ andN2.ξ are determined. After this,N1 andN2 are inserted into the priority queue
OPEN.

SMT-CBS compresses CT into a single branch in which the propositional model
taken from MDD-SAT is iteratively refined. The high-level branching from CBS is
deferred to the low level of SAT solving. In the MDD-SAT encoding collision avoidance
constraints are omitted initially, only constraints ensuring that assignments form valid
paths interconnecting starting positions with goals are be preserved. This will result in
an incomplete propositional model denoted H(ξ). The important component of SMT-
CBS is a paths validation procedure that reports back the set of conflicts found in the
current solution that are used for making model refinements. SMT-CBS is shown in
pseudo-code as Algorithm 2.

The algorithm is divided into two procedures: SMT-CBS representing the main loop
and SMT-CBS-Fixed solving the input MAPF for fixed cost ξ. The major difference
from the standard CBS is that there is no branching at the high-level. The high-level
SMT-CBS roughly correspond to the main loop of MDD-SAT. The set of conflicts is it-
eratively collected during the entire execution of the algorithm. Procedure encode from
MDD-SAT is replaced with encode-Basic that produces encoding that ignores specific
movement rules (collisions between agents) but in contrast to encode it encodes col-
lected conflicts intoH(ξ).

The conflict resolution in the standard CBS implemented as high-level branching
is here represented by refinement of H(ξ) with disjunction (line 20). The presented
SMT-CBS can eventually build the same formula as MDD-SAT but this is done lazily
in SMT-CBS.
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Algorithm 2: SMT-CBS algorithm for solving MAPF
1 SMT-CBS (Σ = (G = (V,E), A, α0, α+))
2 conflicts← ∅
3 paths← {path∗(ai) a shortest path from α0(ai) to α+(ai)|i = 1, 2, ..., k}
4 ξ ←

∑k
i=1 ξ(paths(ai))

5 while TRUE do
6 (paths, conflicts)← SMT-CBS-Fixed(conflicts, ξ,Σ)
7 if paths 6= UNSAT then
8 return paths

9 ξ ← ξ + 1

10 SMT-CBS-Fixed(conflicts, ξ,Σ)
11 H(ξ)← encode-Basic(conflicts, ξ,Σ)
12 while TRUE do
13 assignment← consult-SAT-Solver(H(ξ))
14 if assignment 6= UNSAT then
15 paths← extract-Solution(assignment)
16 collisions← validate(paths)
17 if collisions = ∅ then
18 return (paths, conflicts)

19 for each (ai, aj , v, t) ∈ collisions do
20 H(ξ)← H(ξ) ∪ {¬X t

v(ai) ∨ ¬X t
v(aj)}

21 conflicts← conflicts ∪ {[(ai, v, t), (aj , v, t)]}

22 return (UNSAT,conflicts)

4 Handling Capacity Constraints in MAPF

To adapt the SAT-based approach for MAPF with capacities we need minor modifica-
tions only in both MDD-SAT and SMT-CBS. However in each algorithm the integra-
tion of capacity constraints in profoundly different. While in MDD-SAT we integrate
capacity constraints eagerly in the line with the original design of the algorithm (that is,
the constraint in introduced as a whole), in SMT-CBS we integrate capacity constraint
lazily which means part by part as new conflicts appear.

4.1 Details of the Encoding with Capacities

We need only a small modification of the MDD-SAT encoding to handle vertex capac-
ities. We need to replace constraint 1 with the following constraint that is again posted
for every vertex v and time step t:∑

ai∈A | vt∈Vi

X tv(ai) ≤ c(v) (6)

Unlike in the standard MAPF we need here a more sophisticated translation of
the constraint to propositional clauses. Using the approach of forbidding individual
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c(v) + 1-tuples can be highly inefficient especially in cases when c(v) is large. There-
fore we use cardinality constraints encodings commonly used in SAT [3,25,23]. Gen-
erally the cardinality constraint over set of propositional variables {X1,X2, ...,Xn}
permits at most a specified number of variables from the set to be TRUE , denoted
≤k{X1,X2, ...,Xn} means that at most k variables from the set can be TRUE .

In our case of MAPF with capacities we need to introduce following cardinality
constraints for every vertex v and time step t. The practical implementation of cardinaliy
constraints is done through encoding adder circuits inside the formula [23].

≤c(v){X tv(ai) | ai ∈ A ∧ vt ∈ Vi} (7)

4.2 Capacities in SMT-CBS

Capacities in SMT-CBS are resolved lazily as well. That is, the capacity constraint is
not posted entirely as a cardinality constraint but instead individual sets of agents that
violate the capacity are forbidden one by one as they appear. That is for example if a
generalized conflict occurs with agents ai1 , ai2 , ..., aim in vertex v (in other words if
m > c(v)) we post a conflict elimination clause concerning the colliding set of agents:
¬X tv(ai1) ∨ ¬X tv(ai2) ∨ ... ∨ ¬X tv(aim).

Hence in the SMT-CBS algorithm we modify only lines 20 and 21 that handle gen-
eralized vertex conflicts. Also we need to modify the validate procedure called at line
15 to reflect generalized vertex capacities.

5 Experimental Evaluation

To evaluate the performance of capacity handling in context of SAT-based algorithms
we performed an extensive evaluation on both standard synthetic benchmarks [6,21]
and large maps from games [27].

5.1 Setup of Experiments and Benchmarks

We took the existing implementations of MDD-SAT and SMT-CBS written in C++.
Both implementations are built on top of the Glucose 4 SAT solver [1,2]. In the imple-
mentations we modified the capacity constraint from the original at-most-one to gener-
alized variants as mentioned above. All experiments were run on a Ryzen 7 CPU 3.0
Ghz under Kubuntu linux 16 with 16GB RAM. The timeout in all experiments was set
to 500 seconds. Presented are only results finished within this time limit.

The second part of experimental evaluation took place on large 4-connected maps
taken from Dragon Age [19,27]. We took three structurally different maps focusing on
various aspects such as narrow corridors, large almost isolated rooms, or topologically
complex open space. In contrast to small instances, these were only sparsely populated
with agents. Initial and goal configuration were generated at random again. Up to 80
agents were used in these instances and uniform capacities of 1, 2, and 3. On large maps
we measured the runtime.
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Fig. 2: Sorted runtimes and the number of clauses on the 8 × 8 grid. MDD-SAT and SMT-CBS
are compared.

5.2 Results on Small Grids

Results obtained for small open grids are presented in Figures 2 and 3. We can see
that in comparison with the standard MAPF capacities bring significant reduction of
difficulty of instances. This difference can be seen in both MDD-SAT and SMT-CBS.
The starkest performance difference is between c = 1 and c = 2. The least performance
difference is between c = 3 and c = 4. The similar picture can be seen in for the number
of clauses.

5.3 Results on Large Maps

Results for large game maps are shown in Figures 4 and 5. A different picture can be
seen here. Adding capacities does not cause any significant simplification except the
brc202d map which consists of narrow corridors. The interpretation is that adding
extra parking place through capacities may lead to simplification only when it is not
available normally. Otherwise generalized capacity constraints lead to harder instances.

6 Discussion and Conclusion

We introduced multi-agent path finding problem with vertex capacity constraints. We
modified two existing state-of-the-art SAT-based optimal MAPF solvers to reflect vertex



12 P. Surynek et al.

 

 

0,001

0,01

0,1

1

10

100

1000

0 320 640 960 1280 1600 1920 2240

R
u

n
ti

m
e 

(s
ec

o
n

d
s)

 

Instance 

Runtime Grid 16×16 | MDD-SAT 

c = 1 c = 2 c = 3 c = 4

1

16

256

4096

65536

1048576

16777216

0 320 640 960 1280 1600 1920 2240

N
u

m
b

er
 o

f 
cl

au
se

s 

Instance 

Clauses Grid 16×16 | MDD-SAT 

c = 1 c = 2 c = 3 c = 4

0,001

0,01

0,1

1

10

100

1000

0 320 640 960 1280 1600 1920 2240

R
u

n
ti

m
e 

(s
ec

o
n

d
s)

 

Instance 

Runtime Grid 16×16 | SMT-CBS 

c = 1 c = 2 c = 3 c = 4

1

16

256

4096

65536

1048576

16777216

0 320 640 960 1280 1600 1920 2240

N
u

m
b

er
 o

f 
cl

au
se

s 

Instance 

Clauses Grid 16×16 | SMT-CBS 

c = 1 c = 2 c = 3 c = 4

Fig. 3: Sorted runtimes and the number of clauses on the 16×16 grid. MDD-SAT and SMT-CBS
are compared.

capacities, the MDD-SAT solver using the eager encoding and the SMT-CBS solver
using the lazy encoding.

In both solvers we observed that adding an extra room by increasing the capacity
of vertices dramatically reduces the difficulty of instances. However adding further ca-
pacity does has less significant effect. In large maps using higher capacities even lead
to performance degradation which we attribute to more complex constraints.

In the future work we would like to apply the MAPF formulation with capacities in
the real-life multi-robot problem.
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