
A Non-Negative Factorization approach to node
pooling in Graph Convolutional Neural

Networks

Davide Bacciu and Luigi Di Sotto

Università di Pisa
Dipartimento di Informatica

Largo B. Pontecorvo, 3 - Pisa (Italy)
bacciu@di.unipi.it

l.disotto@gmail.com

D. Bacciu and L. Di Sotto, A Non-Negative Factorization approach to node
pooling in Graph Convolutional Neural Networks To appear in the Proceedings
of the 18th International Conference of the Italian Association for Artificial
Intelligence (AIIA 2019), Springer, 2019

Abstract. The paper discusses a pooling mechanism to induce subsam-
pling in graph structured data and introduces it as a component of a
graph convolutional neural network. The pooling mechanism builds on
the Non-Negative Matrix Factorization (NMF) of a matrix representing
node adjacency and node similarity as adaptively obtained through the
vertices embedding learned by the model. Such mechanism is applied
to obtain an incrementally coarser graph where nodes are adaptively
pooled into communities based on the outcomes of the non-negative fac-
torization. The empirical analysis on graph classification benchmarks
shows how such coarsening process yields significant improvements in
the predictive performance of the model with respect to its non-pooled
counterpart.

Keywords: Graph Convolutional Neural Networks ·Differentiable Graph
Pooling · Non-Negative Matrix Factorization.

1 Introduction

Nowadays many real-world phenomena are modeled as interacting objects possi-
bly living into high-dimensional manifolds with added topological structure. Ex-
amples can be found in genomics with protein-protein interaction networks, fake
news discovery in social networks, functional networks in neuroscience. Graphs
are the natural mathematical model for such data with underlying non-Euclidean
nature. Current Euclidean Convolutional Neural Networks have built their suc-
cess leveraging on the statistical properties of stationarity, locality and compo-
sitionality of flat domains. Rendering convolutional neural networks able also
to learn over non-Euclidean domains is not that straightforward in that is re-
quired a re-designing of the computational model for adaptively learning graph
embeddings. Over flat domains, i.e. grid-like structures, convolutional filters are
compactly supported because of the grid regularity and the availability of con-
sistent node ordering across different samples. This makes it possible to learn

ar
X

iv
:1

90
9.

03
28

7v
1

 [
cs

.L
G

]
 7

 S
ep

 2
01

9

2 D. Bacciu and L. Di Sotto

filters of fixed size and independent of the input signal dimension leveraging, to
this end, weight sharing techniques. Furthermore, a set of symmetric functions
is also applied for sub-sampling purposes to fully exploit the multi-scale nature
of the grids. The same does not apply to domains with highly varying topolo-
gies where learnt filters (non-Toeplitz operators) may be too representative of
the considered domain, since they highly depend on the eigen-basis of the filter
operator and they may thus fail to model sharp changes in the graph signal.
State-of-the-art Graph Convolutional Networks (GCNs) [11,17] try to overcome
the above difficulties with convolutions based on k-order Chebyshev polynomials,
introducing the interesting duality of implicitly learning the graph spectrum by
simply acting on the spatial representation. GCNs efficiently avoid the compu-
tational burden of performing a spectral decomposition of the graph, yielding to
learned filters that are independent of the number of nodes in the graph. When
considering graph classification tasks, we lack a principled multi-resolution oper-
ator providing coarser and more abstract representations of the input data as we
go deeper in the network. Standard approaches to graph pooling employ sym-
metric functions such as max, summation or average along features axes of the
graph embeddings. In [29], it is given an account of the discriminative power of
these different coarsening operators. In the present work, we introduce a simple
pooling operator for graphs that builds on the Non-Negative Matrix Factoriza-
tion (NMF) methods to leverage on the community structure underlying graph
structured data to induce subsampling, or equivalently, a multiscale view of the
input graph in order to capture long-range interactions as we go deeper in Graph
Convolutional Networks (GCNs). That would be of practical interest especially
in the context of graph classification or regression tasks where the whole graph
is fed into downstream learning systems as a single signature vector. Such mech-
anism is thus applied to incrementally obtain coarser graphs where nodes are
pooled into communities based on the soft assignments output of the NMF of the
graph adjacency matrix and Gram matrix of learned graph embeddings. Results
on graph classification tasks show how jointly using such a coarsening operator
with GCNs translate into improved predictive performances.

2 Background

In the following we introduce some basic notation used throughout the paper,
then we briefly introduce the necessary background to understand state-of-the-
art Graph Convolutional Neural Networks (GCNs). We mainly refer to spectral
graph theory as introduced in [4,7,9].

2.1 Basic notation

A graph G is a tuple G = (V, E), where V is the set of vertices of the graph and
E is the set of edges connecting vertices, i.e. E ⊆ V × V. Let N (i) be the set of
neighbours of a node i ∈ V. And let A ∈ IRn×n, with n = |V|, be the adjacency

A NMF approach to node pooling in GCNs 3

matrix such that

Ai,j =

{
ai,j > 0 if (i, j) ∈ E
0 otherwise.

Note that in the above formulation we consider undirected graphs, i.e. such
that (i, j) ∈ E and (j, i) ∈ E . Thus, matrix A is such that A = AT . In the present
work, without loss of generality, we generalize to undirected graphs

We also indicate with X ∈ IRn×d as the matrix of the n signals xi ∈ IRd

associated to each node i ∈ V.

2.2 Graph Convolution via polynomial filters

Spectral construction. A first approach to representation learning on graphs
is to explicitly learn the graph spectrum. In matrix notation, we can express the
generalized convolution over graphs as follows [7]

LX = UΛUTX (1)

where L is the combinatorial graph Laplacian, L = D − A, with D the degree
matrix such that Dii =

∑
j aij , where U ∈ IRn×k is an orthonormal basis gen-

eralizing the Fourier basis, and where Λ is a diagonal matrix being the spectral
representation of the filter [4,9]. Matrices U and Λ are the solution to the gen-
eralized eigenvalue problem LU = UΛ [4,9]. With such an approach there are
multiple problems: (a) the eigendecomposition in (1), and its application (fil-
tering), require non-trivial computational time; (b) the corresponding filters are
non-localized [11]; (c) filter size is O(n), hence introducing a direct link between
the parameters and the n nodes in the graph (no weight sharing).

Spatial construction. In [11], it is proposed an alternative approach to explicit
learning of the graph spectrum, by showing how it can be learned implicitly
through a polynomial expansion of the diagonal operator Λ. Formally,

gθ (Λ) =

K−1∑

k=0

θkΛ
k (2)

where θ ∈ IRK is the vector of polynomial coefficients. In [11] is pointed out that
spectral filters represented as K-order polynomials are exactly K-localized and
that weight sharing is thus made possible, since filters have size O(K). Graph
CNN (GCNN), also known as ChebNet [11], exploited the previous observation
by employing Chebyshev polynomials for approximating filtering operation (1).
Chebyshev polynomials are recursively defined using the recurrence relation

Tj(λ) = 2λTj−1(λ)− Tj−2(λ);

T0(λ) = 1;

T1(λ) = λ.

(3)

4 D. Bacciu and L. Di Sotto

Also, polynomials recursively generated by (3) form an orthonormal basis in
[−1, 1] [7,11]. A filter can thus be represented as a polynomial of the form

gθ(L̂) =

K−1∑

k=0

θkUTk(Λ̂)UT

=

K−1∑

k=0

θkTk(L̂),

(4)

where L̂ = 2Λ/λmax − In and Λ̂ = 2Λ/λmax − In indicate a rescaling of the
Laplacian eigenvalues to [−1, 1]. The filtering operation in (1) can be rewritten,
for one-dimensional input graph signals, as x̂ = gθ(L̂)x ∈ IRn, where the k-th
polynomial x̂k = Tk(L̂)x can be computed using the recurrence relation in (3)
now defined as x̂ = 2L̂xk−1 − x̂k−2 with x̂0 = x and x̂1 = L̂x. More generally,
taking into account multi-dimensionality of input data, we have a convolutional
layer as follows

X̂ = σ

(
K−1∑

k=0

Tk (∆)XΘk

)
(5)

with σ a non-linear activation, and Θ ∈ IRdin×dout the matrix of learnable pa-
rameters, with din number of input features and dout number of neurons. A
widely used convolutional layer over graphs are GCNs by [17] that are layers of
the form of (5) with K = 2, namely

X̂ = ReLU
(
ÂXΘ

)
. (6)

The Θ term, the matrix of polynomial coefficients to be learned, stems from
(5) by imposing Θ0 = −Θ1, and with Â = A + I, and non-linearity being the
ReLU function [17]. Thus, the main idea is to generate a representation for a
node i ∈ V by aggregating its own features xi ∈ IRd and its neighbors features
xj ∈ IRd, where j ∈ N (i). Note that, apart from the formulation meant to
highlight the symmetry with convolutions on image data, the GCN model is not
substantially different from the contextual approach to graph processing put
forward by [22] a decade before GCN, and recently extended to a probabilistic
formulation [3] by leveraging an hidden tree Markov model [1] with relaxed
causality assumptions and a fingerprinting approach to structure embedding [2].

2.3 Node Pooling in Graph CNNs

A first attempt to formalize graph pooling can be found in [9], a simple frame-
work for multiresolution clustering of a graph is given based on a naive agglom-
erative method. There are some recent works proposing pooling mechanisms
for graph coarsening in Deep GCNs, in [10] a subset of the nodes are dropped
based on a learnable projection vector where at each layer only the top-k in-
teresting nodes are retained. In [15], it is employed a rough node sampling and

A NMF approach to node pooling in GCNs 5

a differentiable approach through a LSTM model for learning aggregated node
embeddings, though it may render difficult satisfying invariance with respect to
node ordering. Interestingly, in [5] it is applied a simple and well known method
from Graph Theory for node decimation based on the largest eigenvector umax
of the graph Laplacian matrix. They further employ a more sophisticated pro-
cedure to reduce Laplacian matrix using the sparsified Kron reduction. Another
relevant differentiable approach is that put forward by DiffPool [31], where the
model learns soft assignments to pool similar activating patterns into the same
cluster, though the idea of learning hiearchical soft-clustering of graphs via ad-
jacency matrix decomposition using a symmetric variant of NMF can be dated
back to [32]. In DiffPool, the learned soft assignment matrix is applied as a linear
reduction operator on the adjacency matrix and the input signal matrix, and the
coarsened graph is thus further convolved with GCNs.

3 NMFPool: node pooling by Non-Negative Matrix
Factorization

In the following section we introduce our model, NMFPool, a principled Pool-
ing operator enabling deep graph CNNs develop multi-resolution representations
of input graphs. NMFPool leverages community structure underlying graphs to
pool similar nodes to progressively gain coarser views of a graph. To that end
we take inspiration from [32] in which latent community structure of graph data
is made explicit via adjacency matrix decomposition using Symmetric NMF
(SNMF). NMFPool is grounded on that idea, building, instead, on a general
non-symmetrical NMF of the adjacency matrix without constraining solutions
to be stochastic. Before going further into details of our approach, we first in-
troduce the formal definition of the NMF problem, then we give an intuitive
interpretation of its solutions to clarify why NMF would help solve the graph
pooling problem on graphs. At the end we will show how to use product factors
of NMF as linear operators to aggregate topology and content information as-
sociated to graphs. NMF is a popular technique for extracting salient features
in data by extracting a latent space representation of the original information.
Throughout the paper we refer to the original idea of NMF [19] though it has
been extensively studied in numerical linear algebra in the last years by many
authors and for a variety of applications. Formally, the NMF problem can be
stated as follows:

Definition 1. Given a non-negative matrix A ∈ IRn×m
+ , find non-negative ma-

trix factors W ∈ IRn×k
+ and H ∈ IRk×m

+ , with k < min(m,n), such that

A ≈WH (7)

If we see matrix A as having m multivariate objects column-stacked, the
straightforward interpretation of (7) is as follows

aj ≈Whj , (8)

6 D. Bacciu and L. Di Sotto

with aj and hj corresponding to j-th columns of A and H. The approxima-
tion (8) entails that each multi-variate object is a linear combination of columns
of W weighted by coefficients in hj . Thus W is referred to as the basis ma-
trix or equivalently the cluster centroids matrix if we intend to interpret NMF
as a clustering method. Matrix H can be seen, instead, as a low-dimensional
representation of the input data making thus NMF also useful for dimensional-
ity reduction. Latent representation, in the clustering perspective, may indicate
whether a sample object belongs to a cluster. For example, we could constrain
each data-point to belong to a single cluster at a time: namely, each data-point
is assigned to the closest cluster xj ≈ uj . We generally look for non-trivial en-
codings to explain community evolution in graphs. Thus, the problem could be
relaxed to a soft-clustering problem in that each data-point can belong to k
overlapping clusters [28]. Formulation (7) requires to define a metric to measure
the quality of the approximation, and Kullback-Leibler (KL-) divergence or the
more common Frobenius norm (F-norm) are common choices. Many techniques
from numerical linear algebra can be used to minimize problem (7) whatever the
cost function we use, although its inherently non-convex nature does not give
any guarantee on global minimum [13]. In [19] were first proposed multiplicative
and additive update rules that ensure monotone descrease under KL- or F-norm.

Thus, our proposed solution can be summarized into two main steps. First,
we encode the input adjacency matrix to learn soft-assignments of nodes, and
that could accomplished via exact NMF of the adjacency matrix. Second, we
apply soft-assignments as linear operators to coarse adjacency matrix and node
embeddings. To this end, we refer to algebraic operations seen in [32] for de-
composing adjacency matrices and we extend it using equations widely used for
graph coarsening [31], for they take into account embedding matrix reduction
and nodes connectivity strength. For a complete picture, consider ` NMFPool
layers interleaved with at least `+ 1 stacked Graph Convolutions (GCs) as illus-
trated in Figure 1, where the graph convolutions are computed according to (6).
Then, let Z(i) ∈ IRni×d be the output of i-th GC, namely the convolved node
embeddings at layer i-th, defined as

Z(i) = ReLU
(
A(i)Z(i−1)Θ(i)

)
(9)

with adjacency matrix A(i) ∈ IRni×ni , with ni number of nodes at previous layer,
and Θ(i) ∈ IRd×d matrix of weights. Observe that we are assuming, without loss
of generality, each GC layer (9) as having the same number of neurons. Observe
also that Z(0) = X ∈ IRn×d, namely the initial node labels, and the initial
adjacency matrix is set to A(0) = D̂−1/2ÂD̂−1/2, i.e. the normalized adjacency
matrix with Â = A+ I, A ∈ IRn×n, and D̂ is a diagonal matrix of node degrees
[17].

The i-th NMFPool layer solves the problem in (7), i.e. the decomposition of
the symmetric and positive A(i), by minimizing the following loss

||A(i) −W (i)H(i)||F (10)

A NMF approach to node pooling in GCNs 7

GC
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

fc
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>Pool

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

GC
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

GC
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>Pool

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fig. 1: High level architecture of a 3-layers GCN interleaved with 2 NMF
Pooling layers.

with W (i) ∈ IRni×ki
+ and H(i) ∈ IRki×ni

+ , and ki number of overlapping com-
munities to pool the ni nodes into, and ‖.‖F the Frobenius norm. Observe that
ki’s are hyper-parameters to control graph coarsening scale. The algorithm to
minimize (10) depends on the underlying NMF implementation. Then NMFPool
applies the encoding H(i) to coarsen graph topology and its content as follows

Z(i+1) = H(i)TZ(i) ∈ IRki×d (11)

A(i+1) = H(i)TA(i)H(i) ∈ IRki×ki . (12)

A graphical interpretation of the inner workings of the NMFPool layer is
provided in Figure 2, highlighting the interpretation of pooling as a matrix de-
composition operator. It is crucial to point out that NMFPool layers are inde-
pendent of the number of nodes in the graph, which is essential to deal with
graphs with varying topologies.

4 Experiments

We assess the effectiveness of using the exact NMF of the adjacency matrix A
as a pooling mechanism in graph convolutional neural networks. To this end, we
consider five popular graph classification benchmarks and we further compare
the performance of our approach, referred to as NMFPool in the following, with
that of DiffPool, with the goal of showing how a simple and general method may
easily compare to differentiable and parameterized pooling operators such as
DiffPool. Results were gathered on graph classification tasks for solving biological
problems on the ENZYMES ([6], [25]), NCI1 [27], PROTEINS ([6], [12]), and
D&D ([12], [26]) datasets and the scientific collaboration dataset COLLAB [30].
In Table 1 are summarized statistics on benchmark datasets.

In our experiments, the baseline graph convolution is the vanilla layer in
(6). For both models, we employed the interleaving of pooling and convolutional

8 D. Bacciu and L. Di Sotto

2
4

3
5

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

 �

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

H
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

n
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

k
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

k
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

n
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

NMFPool Layer
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

pooled graph:
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

input graph:
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fig. 2: The NMFPool layer. Orange circles represent nodes of input graph, and
solid lines the edges. Dashed lines are the predicted edges in between nodes
pooled together. Colored dashed circles represent discovered communities.

Table 1: Statistics on benchmark datasets.

Dataset Graphs Classes Nodes (avg) Edges (avg)

COLLAB 5000 3 74.49 2457.78
D&D 1178 2 284.32 715.66

ENZYMES 600 6 32.63 62.14
NCI1 4110 2 29.87 32.30

PROTEINS 1113 2 39.06 72.82

A NMF approach to node pooling in GCNs 9

layers depicted in the architecture in Figure 1, varying the number of pooling-
convolution layer pairs to assess the effect of network depth on task performance.
Note that the number of layers in the convolutional architecture influences the
context spreading across the nodes in the graph. Implementation of NMFPool
and Diffpool is based on the Pytorch Geometric library [14], complemented by
the NMF implementation available in the Scikit library. Models configurations
were run on a multi-core architecture equipped with 4 NUMA nodes each with 18
cores (Intel(R) Xeon(R) Gold 6140M @ 2.30GHz) capable of running 2 threads
each for a total of 144 processing units available. We had access also to 4 Tesla
V100 GPUs accelerators.

Model selection was performed for exploring a variety of configurations using
stratified 3-fold cross validation. Following standard practice in graph convolu-
tion neural networks, learning rate was set with an initial value of 0.1 and then
decreased by a factor of 0.1 whenever validation error did not show any improve-
ment after 10 epochs wait. The number of neurons is the same for each graph
convolutional layer and it has been selected in {16, 32, 64, 128} as part of the
cross-validation procedure. When applying the pooling operator both NMFPool
and Diffpool require to define the number of communities k, similarly to how the
pooling operator on images requires the definition of the pooling windows size
(and stride). Here, following the idea indicated in the original DiffPool paper
[31], we choose different k for each dataset as a fraction of the average number
of nodes in the samples. Thus during cross-validation we intended to study how
NMFPool and DiffPool behave as a function of the cluster sizes ki at each layer.
To this end, pooling size has been selected from the set {k1, k2}. In particular,
for models with a single pooling layer, we tested both sizes k1 and k2. Instead,
for deeper architectures, we restricted to use the largest ki for the first layer,
following up in decreasing order of ki. Table 2 summarizes the number of clusters
used for the first and second pooling layer in the architectures considered in this
empirical assessment.

Table 2: k1 is computed using formula k1 = bnavg · pc with p varying in
[21%− 25%], and navg average number of nodes (see Table 1). Then k2 = k1/2.

Fractions are chosen depending on the size of task at hand and to previous
empirical observation. Except for the D&D dataset where p = 5%, 1%, being

the bigger dataset we needed a good compromise between abstraction
capability and computational time.

Dataset k1 k2 p

COLLAB 16 8 22%
D&D 14 2 5% - 1%

ENZYMES 8 4 25%
NCI1 6 3 24%

PROTEINS 8 4 21%

10 D. Bacciu and L. Di Sotto

The outcome of the empirical assessment is summarized in Table 3, where
it is reported the mean classification accuracy of the different models averaged
on the dataset folds. Table 3 reports results for a vanilla GCN (no pooling)
and a varying number of graph convolution layers: results show how at most
two layers are sufficient to guarantee good performances, while three layers are
only required for the COLLAB dataset and a single layer network obtains the
best performance on the NCI1 dataset. In the experiments we thus decided to
employ at most three GCN layers, namely at most two NMF and DiffPool pool-
ing layers. It is still evident how adding more convolutional and pooling layers
does not always result into better performances. The analysis of the results for
NMFPool shows how the addition of the simple NMF pooling allows a consistent
increase of the classification accuracy with respect to the non-pooled model for
all the benchmark datasets. Note how a single pooling layer is sufficient, on most
datasets, to obtain the best results, confirming the fact that pooling allows to
effectively fasten the process of context spreading between the nodes. When com-
pared to DiffPool, our approach achieves accuracies which are only marginally
lower than DiffPool on few datasets. This despite the fact that DiffPool em-
ploys a solution performing an task-specific parameterized decomposition of the
graph, while our solution simply looks for quasi-symmetrical product matrices
by knowing nothing of the underlying task.

Table 3: Mean and standard deviation (in brackets) of graph classification
accuracies on the different benchmarks, for the vanilla GCN with `

convolutional layers (`-GC), for NMFPool and DiffPool with `p pooling layers
and `p + 1 convolutional layers (i.e. `p1-NMFPool and `p2-DiffPool,

respectively).

Model ENZYMES NCI1 PROTEINS D&D COLLAB

1-GC 0.222 (0.023) 0.625 (0.014) 0.713 (0.019) 0.681 (0.045) 0.671 (0.007)
2-GCs 0.228 (0.023) 0.620 (0.057) 0.720 (0.034) 0.704 (0.048) 0.678 (0.007)
3-GCs 0.182 (0.022) 0.628 (0.031) 0.688 (0.024) 0.692 (0.032) 0.681 (0.002)

1-NMFPool 0.241 (0.039) 0.662 (0.026) 0.721 (0.031) 0.760 (0.015) 0.650 (0.004)
2-NMFPool 0.175 (0.023) 0.655 (0.013) 0.724 (0.020) 0.753 (0.010) 0.658 (0.002)

1-DiffPool 0.259 (0.069) 0.661 (0.017) 0.743 (0.011) 0.770 (0.007) 0.659 (0.005)
2-DiffPool 0.239 (0.064) 0.632 (0.017) 0.744 (0.026) 0.761 (0.003) 0.667 (0.022)

5 Conclusions

We introduced a pooling mechanism based on the NMF of the adjacency matrix
of the graph, discussing how this approach can be used to yield a hierarchical
soft-clustering of the nodes and to induce a coarsening of the graph structure.

A NMF approach to node pooling in GCNs 11

We have empirically assessed our NMPool approach with the task-specific adap-
tive pooling mechanism put forward by the DiffPool model on a number of
state-of-the-art graph classification benchmarks. We argue that our approach
can yield to potentially more general and scalable pooling mechanisms than
DiffPool, allowing to choose weather the pooling mechanism has to consider the
node embeddings computed by the model and the task-related information when
performing the decomposition (as in DiffPool), but also allowing to directly de-
compose the graph structure a-priori with no knowledge of the node embeddings
adaptively computed by the convolutional layer. This latter aspect, in particular,
allows to pre-compute the graph decomposition and results in a multiresolution
representation of the graph structure which does not change with the particular
task at hand.

Future works will consider the use of symmetric and optimized NMF vari-
ants to increase prediction performances. It also would be of particular interest
to improve the quality and quantity of information NMFPool retains into the
encoding matrix. NMFPool could evolve out of its general purpose form, for
example, making it a generative end-to-end differentiable layer using probabilis-
tic approaches. See [8] for an attempt to solve NMF using probabilistic models.
We could refer to the popular probabilistic generative model of the Variational
Auto-Encoders (VAEs) [16], [24] possibly extended to graphs [18]. The under-
lying hierarchical structure of graph data may also be taken into account by
imposing latent encoding to match priors referring to hyperbolic spaces [20].
Interestingly, latent matrix encoding may not be forced to match overimposed
priors, for they could make the model too biased over particular graph geome-
tries. Instead, such priors could be directly learned from relational data using
adversarial approaches [21] extended also to graph auto-encoders [23]. Another
interesting feature would be to make NMFPool independent of hyper-parameter
k.

Acknowledgments

This work has been supported by the Italian Ministry of Education, University,
and Research (MIUR) under project SIR 2014 LIST-IT (grant n. RBSI14STDE).

References

1. Bacciu, D., Micheli, A., Sperduti, A.: Compositional generative mapping for tree-
structured data - part II: Topographic projection model. IEEE Trans. Neural Netw.
Learning Syst. 24(2), 231–247 (2013)

2. Bacciu, D., Micheli, A., Sperduti, A.: Generative kernels for tree-structured data.
IEEE Transactions on Neural Networks and Learning Systems 29(10), 4932–4946
(Oct 2018)

3. Bacciu, D., Errica, F., Micheli, A.: Contextual graph Markov model: A deep and
generative approach to graph processing. In: Dy, J., Krause, A. (eds.) Proceedings
of the 35th International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 80, pp. 294–303. PMLR, Stockholmsmssan, Stockholm
Sweden (2018)

12 D. Bacciu and L. Di Sotto

4. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding
and clustering. In: Proceedings of the 14th International Conference on Neural
Information Processing Systems: Natural and Synthetic. pp. 585–591. NIPS’01,
MIT Press, Cambridge, MA, USA (2001)

5. Bianchi, F.M., Grattarola, D., Livi, L., Alippi, C.: Graph neural networks with
convolutional ARMA filters. CoRR abs/1901.01343 (2019)

6. Borgwardt, K.M., Ong, C.S., Schonauer, S., Vishwanathan, S.V.N., Smola, A.J.,
Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics
21(Suppl 1), i47–i56 (2005)

7. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric
deep learning: going beyond euclidean data. CoRR abs/1611.08097 (2016)

8. Brouwer, T., Frellsen, J., Liò, P.: Fast bayesian non-negative matrix factorisation
and tri-factorisation (12 2016), nIPS 2016 : Advances in Approximate Bayesian
Inference Workshop ; Conference date: 09-12-2016 Through 09-12-2016

9. Bruna, J., Zaremba, W., Szlam, A., Lecun, Y.: Spectral networks and locally con-
nected networks on graphs. In: International Conference on Learning Representa-
tions (ICLR2014), CBLS, April 2014 (2014)

10. Cangea, C., Veličković, P., Jovanović, N., Kipf, T., Liò, P.: Towards Sparse Hier-
archical Graph Classifiers. arXiv e-prints arXiv:1811.01287 (Nov 2018)

11. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. CoRR abs/1606.09375 (2016)

12. Dobson, P.D., Doig, A.J.: Distinguishing enzyme structures from non-enzymes
without alignments. Journal of Molecular Biology 330(4), 771 – 783 (2003)

13. Favati, P., Lotti, G., Menchi, O., Romani, F.: Adaptive computation of the Sym-
metric Nonnegative Matrix Factorization (NMF). arXiv e-prints arXiv:1903.01321
(Mar 2019)

14. Fey, M., Lenssen, J.E.: Fast graph representation learning with pytorch geometric.
CoRR abs/1903.02428 (2019)

15. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. CoRR abs/1706.02216 (2017)

16. Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes. arXiv e-prints
arXiv:1312.6114 (Dec 2013)

17. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. CoRR abs/1609.02907 (2016)

18. Kipf, T.N., Welling, M.: Variational Graph Auto-Encoders. arXiv e-prints
arXiv:1611.07308 (Nov 2016)

19. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Leen,
T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing
Systems 13, pp. 556–562. MIT Press (2001)

20. Mathieu, E., Le Lan, C., Maddison, C.J., Tomioka, R., Whye Teh, Y.: Hierar-
chical Representations with Poincar\’e Variational Auto-Encoders. arXiv e-prints
arXiv:1901.06033 (Jan 2019)

21. Mescheder, L.M., Nowozin, S., Geiger, A.: Adversarial variational bayes: Uni-
fying variational autoencoders and generative adversarial networks. CoRR
abs/1701.04722 (2017)

22. Micheli, A.: Neural network for graphs: A contextual constructive approach. IEEE
Transactions on Neural Networks 20(3), 498–511 (March 2009)

23. Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., Zhang, C.: Adversarially regularized
graph autoencoder. CoRR abs/1802.04407 (2018)

http://arxiv.org/abs/1811.01287
http://arxiv.org/abs/1903.01321
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/1901.06033

A NMF approach to node pooling in GCNs 13

24. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and ap-
proximate inference in deep generative models. In: Xing, E.P., Jebara, T. (eds.)
Proceedings of the 31st International Conference on Machine Learning. Proceed-
ings of Machine Learning Research, vol. 32, pp. 1278–1286. PMLR, Bejing, China
(22–24 Jun 2014)

25. Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C., Huhn, G., Schom-
burg, D.: Brenda, the enzyme database: Updates and major new developments.
Nucleic acids research 32, D431–3 (01 2004). https://doi.org/10.1093/nar/gkh081

26. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (Nov
2011)

27. Wale, N., Watson, I.A., Karypis, G.: Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowl. Inf. Syst. 14(3), 347–375 (Mar 2008).
https://doi.org/10.1007/s10115-007-0103-5

28. Watt, J., Borhani, R., Katsaggelos, A.K.: Machine Learning Refined: Foundations,
Algorithms, and Applications. Cambridge University Press, New York, NY, USA,
1st edn. (2016)

29. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
CoRR abs/1810.00826 (2018)

30. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. pp. 1365–1374. KDD ’15, ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2783258.2783417

31. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical
graph representation learning with differentiable pooling. In: Bengio, S., Wallach,
H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances
in Neural Information Processing Systems 31, pp. 4804–4814. Curran Associates,
Inc. (2018)

32. Yu, K., Yu, S., Tresp, V.: Soft clustering on graphs. In: Weiss, Y.,
Schölkopf, B., Platt, J.C. (eds.) Advances in Neural Information Processing
Systems 18, pp. 1553–1560. MIT Press (2006), http://papers.nips.cc/paper/

2948-soft-clustering-on-graphs.pdf

https://doi.org/10.1093/nar/gkh081
https://doi.org/10.1007/s10115-007-0103-5
https://doi.org/10.1145/2783258.2783417
http://papers.nips.cc/paper/2948-soft-clustering-on-graphs.pdf
http://papers.nips.cc/paper/2948-soft-clustering-on-graphs.pdf

	A Non-Negative Factorization approach to node pooling in Graph Convolutional Neural Networks

