
Expert2Vec: Distributed Expert Representation
Learning in Question Answering Community

Xiaocong Chen1, Chaoran Huang1, Xiang Zhang1, Xianzhi Wang2, Wei Liu1,
and Lina Yao1

1 University of New South Wales, Sydney, NSW, 2052, Australia
{xiaocong.chen,chaoran.huang,wei.liu,lina.yao}@unsw.edu.au

xiang.zhang3@student.unsw.edu.au
2 University of Technology Sydney, Sydney, NSW, 2007, Australia

xianzhi.wang@uts.edu.au

Abstract. Community question answering (CQA) has attracted increas-
ing attention recently due to its potential as a de facto knowledge base.
Expert finding in CQA websites also has considerably board applica-
tions. Stack Overflow is one of the most popular question answering
platforms, which is often utilized by recent studies on the recommenda-
tion of the domain expert. Despite the substantial progress seen recently,
it still lacks relevant research on the direct representation of expert users.
Hence hereby we propose Expert2Vec, a distributed Expert Representa-
tion learning in question answering community to boost the recommen-
dation of the domain expert. Word2Vec is used to preprocess the Stack
Overflow dataset, which helps to generate representations of domain top-
ics. Weight rankings are then extracted based on domains and variational
autoencoder(VAE) is unitized to generate representations of user-topic
information. This finally adopts the reinforcement learning framework
with the user-topic matrix to improve it internally. Experiments show
the adequate performance of our proposed approaches in the recommen-
dation system.

Keywords: Stack Overflow · Expertise finding · Question answering ·
Embedding · Recommendation System · Reinforcement Learning

1 Introduction

Recommender Systems are software applications that support users in finding
items of interest within a larger number of objects in a personalized way. Com-
munity question answering(CQA), such as Quora, Stack Overflow and so on, is a
type of web application which contains a large number of open-end questions and
answers. The major challenge existing on CQA is that the question can not be
answered on time and as such users can not get the expected answers very soon.
The expert recommendation problem, which recommends some expert users to
an unsolved question such that the question can be answered in an acceptable
time block after it was proposed, is a problem which fits this scenario.

2 X. Chen et al.

The challenge existing on the CQA is that there exist many questions which
can not be answered in a reasonable time, meaning that it lacks a sufficient al-
gorithm to make the match between users and questions. The common strategy
that is used to solve this problem is to find previous questions which may be
similar to the new question and make recommendations, or to make recommen-
dation by using user’s browsing history. However, there still exists the problem
that it may not have similar problems previously[14]. For example on Stack
Overflow website, assume there is a user who clicks a question named “Why is
it faster to process a sorted array than an unsorted array ?”. The system be-
hind will record this action and analyse the topic. It will extract the key word
“sorted array”,“unsorted array” and “fast”. Based on these keywords, it makes
a recommendation to a new question which is “Is ‘==’ in sorted array not faster
than unsorted array”. This strategy has the same problem which was mentioned
before; there may not be any other questions with the same keywords, and so
the recommendation system may not work properly.

In recent years, reinforcement learning has achieved many impressive pro-
cesses in learning representation[4], improving generative adversarial network[5]
and so on.Reinforcement learning can be applied in many areas such as recom-
mendation system[7], general game playing and many other areas. In this work,
we adopted the reinforcement learning into our model to improve the accuracy of
our embedding. The normal reinforcement learning based recommendation sys-
tems treat the recommendation system as sequential actions between the users
and the system(agent) and try to figure out a optimal strategy to maximise the
reward[27]. Different from the normal reinforcement learning based recommen-
dation system, we use the reinforcement learning to determine the best policy
to optimize our embedding instead of finding a optimal recommending strategy.
The major contributions we made in this paper present as follows:

– We acquire some idea about the distributed representation from word2vec
which is applied on the CQA problem as well as the expert recommendation.
Based that, we propose a new distributed representation for user expertise
which does not have many research before.

– Evolution on the big and complex data set - Stack Overflow where we got a
acceptable result on several measure metrics among a few state-of-art mod-
els.

– We apply the reinforcement learning to improve the embedding so that it
can get a better performance in recommendation.

The remainder of this paper has the following structure. It will follow the
related work which discusss the history and recent year’s progress on expert
recommendation. After discussing the related work, we explain the methodology
in detail. which includes how to pre-process the data, how to utilize the data
set to get the input and the learning step of the distributed representation. The
result analysis is presented, as well as the conclusion and the future work at the
end.

Expert2Vec 3

2 Related Work

2.1 CQA and Expert recommendation

As the expert recommendation acquire some good research works and the CQA
problem can gain the experience from the expert recommendation[24]. So that
apply expert recommendation on CQA problem comes more common in recent
years[20]. Query likelihood language (QLL) is most popular learning model which
used on this question which use the hidden markov model[16]. After the QLL
model which get a good result on CQA problem, Zheng et al.[30] proposed
a expertise-aware QLL model which based on QLL and combine the answers
quality to increase the recommend accuracy.The QLL model are focus on the
language side which is majority on natural language processing.

Another type of models were focus on the topic, those models try to mine
the information behind the topic such as Latent Dirichlet Allocation (LDA),
Probabilistic Latent Semantic Analysis (PLSA) and so on [22]. Segmented Topic
Model is a hierarchical topic model based on LDA which proposed by Du et al.[6].
Also, there is type of method is network-based which build a user-user network
and try to use the relation between users to make recommendation such as
PageRank[2].

As the expert recommendation is a type of recommendation problem, there
are some models which are based on collaborative filtering(CF) or matrix factor-
ization(MF). Yang et al. proposed a model which uses the probabilistic matrix
factorization(PMF)[23], an extension of the basic MF. As the neural network ac-
quires outstanding results on many areas including expert recommendation. Liu
et al. proposed a model which combine the QLL and the LDA to compute the rel-
evance and make recommendation by assuming that good respondents will give
better answers[13]. Zheng et al. find that the convolutional neural network(CNN)
can be used to combine the user features and question features together to make
recommendation[28] more accurate. There are some hybrid methods which can
combine topic model and apply the classification methods[10] or Network-based
method with clustering [3]. However, the accuracy is still lower than expectation,
the reason is that the NLP technique still needs be improved and the dataset
used in CQA is extremely sparse.

2.2 Auto-Encoder

Autoencoder is a type of neural network which is normally used in dimension re-
duction and feature learning[21, 26]. Autoencoder is a multi-layer neural network
which has an encoding layer, hidden layer and a decoding layer. It uses backprop-
agation to make the output as same as the input. There are many works that
show that the autoencoder can get a good result in sentence encoding, image
encoding and many other areas[12, 17]. Sarath et al. state that the autoencoder
can do the feature learning from the word representation[1].

4 X. Chen et al.

2.3 Reinforcement learning based recommendation system

Reinforcement learning(RL) in recommendation systems attracts many interests
in recent years. Yash et al. proposed a new way to represent the actions during
the learning process to improve RL’s training efficiency and robustness[4]. As the
generative adversarial network(GAN) obtains a promising result on computer
vision and recommendation system area, Chen et al. proposed a GAN model
for RL based recommendation system[5] which combines the GAN and the RL
by cascading. Zhao et al. proposed a model-based deep RL for a sequential
recommendation especially in whole-chain recommendation [27] which uses user’s
feedback as the reward and adopting the auto-encoder. Zheng et al. proposed
a deep reinforcement learning framework for the news recommendation which
based on the deep Q-learning[29]. Expert recommendation is similar with the
normal recommendation, but more specific. Traditional recommendation system
aims to recommend users some items based on users’ purchase history or browse
history. The common strategy is: assign an id to a user and label the items with
id as well, then the recommendation system will based on this two-dimension
user-item matrix to make recommendation. There are some works which attempt
to add more temporal information to boost the performance like review[25] and
had some improvement. However, expert recommendation requires a focus on
the answers which will be a higher dimension vector than the normal items. If
we follow the common strategy to construct a user-item matrix, it will have an
extremely high dimension matrix and the traditional recommendation system
will get stuck on it.

3 Background

Recommendation system can recommend k items to users in a single page, the
user can provide some feedback by clicking one of those choices or switch the
pages. After the feedback is provided, the system will record it and recommend
another k items based on user’s feedback. RL have two different branches which
are model-based RL and model-free RL. The model-free RL based recommenda-
tion systems require a big dataset which contain a large number of user actions
so that it can figure out a good policy. A larger sized dataset may lead to prob-
lems such as the model being hard to converge, recommendation system needing
to be complex enough to handle those information and so on. RL initially comes
from the Markov decision process(MDP), which defined as:

M = (S,A, P,R) Where P ∈ [0, 1]

Where S represents the set of states, A represents the set of actions, P is
the probability of transition which is normally written as P (st+1|st, at) where
st+1, st ∈ S, at ∈ A which represents the probability of action at transfer from
state st to state st+1 from a certain timestamp t to timestamp t+1, the R is the
reward function. If we consider the discount factor γ, the MDP can be written
as M = (S,A, P,R, γ).

Expert2Vec 5

However, the model-based RL methods will suffer from the computation dif-
ficulty when the S,A becomes large. So we prefer to use the model-free RL
methods. The model-free RL methods have two different approach which are
value-based methods and policy-based methods. The traditional value-based RL
methods is the Temporal difference(TD) which are trying to find the optimal
value V ∗ by iteration:

V (s) = (1− η)V (s) + η(R(s) + γV (st+1)

In some cases, the value will depend on both states and actions, so we have the
Q-learning. In Q-learning, we use the Q-value Q(s, a) to determine the optimal
policy π∗, different from the MDP, the Q-value baed on the pair of action a and
state s instead of using state s only. The definition of π∗ can be written as:

π∗(s) = arg max
a∈A

Q∗(s, a)

the Q∗ is the optimal Q-value where can be defined as:

Q∗(s, a) = R(s) + γ
∑

st+1∈S
P (st+1|st, at) max

at+1∈A
Q∗(st+1, at+1)

This formula was used when known the certain state-action pair (s, a), and the γ
is the discount factor which used in a long-term RL. During the training process
the Q-value will be updated iteratively based on:

Q(s, a)← (1− η)Qo(s, a) + η(R(s) + γmax
a∈A

Q(st+1, a))

The Q-learning is an off-policy learning which means it will learn from differ-
ent policy and try to learn the value. However, the TD method is the on-policy
learning which means it can only learn different values in the same policy. Ben-
efiting from the neural network, the Q-learning was extended to the deep Q-
learning(DQN). The DQN will pass the state s into a neural network and find
out many q-values at once. The DQN have a similar target with the normal
Q-learning, the DQN try to do:

min[R(s) + γmax
a′

Qw(st+1, a
′)−Qw(st, at)]

2

where the Qw(s, a) is parametrized by the neural network weight w. During the
optimizing the neural network, we only need to apply the gradient descent into
the term Qw(st, at) which is the current q value for current state st and action at.
In addition, to help the converge, the DQN uses the technique called experience
replay that can store recent j experience pairs (st, at, R(s), st+1) with a replay
batch with size j. The DQN will choose action based on the greedy algorithm
from the reply batch and the current value.

We will use the Q-learning in our proposed model, here are some key aspects
used in our model:

6 X. Chen et al.

– Environment: Is the system which user can select on the top k items which
provided by the recommendation system.

– State s ∈ S: will defined as the match from the recommended items and
user’s exactly choose, in simple it represent the value changed in the embed-
ding matrix which will detailed discussed in section 4.3.

– Action a ∈ A:is defined as a subset A ⊂ k which those k items is the

possible experts/topics show to the user. Also, the A ∈ (
It
k

) where the It

is the whole possible topics/experts which may be recommended,the (
It
k

)

means that we select top k items from the item-set It at timestamp t.

– State Transition Probability P (st+1|st, at) : S ×A×S 7→ [0, 1] :it corre-
sponds to a user behavior at which will give a probability from current state
s to next state st+1 at the timestamp t.

– Reward Function R(S) :∈ [0, 1]: Unlike the normal RL method, we do
not have a mapping function used for reward. The reward value used in our
model is the accuracy between the decoded embedding and the original data
as we are aiming to use the RL to improve our embedding.

– Policy π(s):is defined as the strategy on how to optimize our embedding
which generated by the auto-encoder.

– Discount Factor γ and Learning Rate η : η, γ ∈ [0, 1]: is the hype-
parameter in this model, and need to be adjusted manually depends on the
measure metric. Where when the γ = 0 which means the long-term reward
will not be considered, only the current reward will be take into account. In
opposite, γ = 1 means all the reward from previous can be fully considered
in current state s.

The overview of a simple RL based recommendation system is (where the rec-
ommend agent represent the whole recommendation system):

User

State

��

Reward

��

Recommend
Agent

Action

��

Fig. 1: Flaw chart for RL

Expert2Vec 7

4 Methodology

In this section, we will briefly illuminate our approach and the model structure.
We will discuss the pre-processing step, how to obtain the original representa-
tion, how to get the embedding we are looking for, how to measure the accu-
racy between the embedding and the original representation, how reinforcement
learning works in our model and how to used in a recommendation system.

4.1 Pre-process of the data

The original dataset provided by Stack Overflow contain all questions and the
corresponding answers which are plain text. We use the SEWordSim [19] which
is a word similarity database for the Stack Overflow dataset which can make it
more reliable and reduce some edge effects. In addition, we delete the questions
which have zero response to overcome the cold-start problem for recommenda-
tion system. After deleting the unnecessary words, we extract all the users and
users’ answered questions and its corresponding vote received. Furthermore, the
sentences are in higher dimension space, in order to reduce the dimension, we
would convert all the topics and answers into vectors by using word2vec[15].
As the word2vec is a distributed representation of words which can retain the
relation in the sentence, so we can use the vector form directly in the following
steps.

4.2 Generate the User-Topic Matrix

After the pre-processing of the data, we get the formatted data which is needed
for the matrix generation and the vector for each word. To keep all the informa-
tion which is needed for ranking, we store all the voting and its corresponding
user and topic together. As the topic is vector based and has high dimension
which is hard to put it together with the topic information into the matrix.
We build a hashing function f : R 7→ R which can simply map the topicID to
its corresponding original vector, and we initialise a hash table to store all the
mapping relations based on our hash function f . Thus our user-topic matrix can
contain all the voting information by ordering. If user don’t have action with
specific topic, the value of this cell with be null. In some cases the userId may
not be continuous, and we convert all the userId with a list of continuous id so
that it can easily determine the size. Also, it’s easy to roll back to the original
id. In addition, the userId is not important in the user-topic matrix as we only
need to know the relationship between user and the topic.

The most important thing is how to rank the topic for each user. We cannot
use the original voting information because less-popular questions may have
very small view counts which can lead to a good answer receiving only one or
zero vote. Also, the number of answers is varied for different questions which
means we are unable to compare those answers through the same measurement
metric due to the different number of competing answers. Therefore, we require
a consistent measurement metric to help us determine the order, which means

8 X. Chen et al.

we need to make sure the votes in popular questions and less-popular questions
are equivalent. To overcome this problem, we use the percentage vote(PVote) to
compare answers, where we transfer all the votes receive for a certain answer j
in a question q into a percentage mark:

PVotejq =
Vj∑n
i=0 Vi

Where Vj means the vote that jth answer get on question q, n means number of
answers we have on the question q. The denominator is the sum of all answers’
vote. In addition, PVote can restrict the value in range [0, 1] which means we
do not need further processing or normalization. We do not need to consider
about the case which denominator is zero as we delete all the topics which have
zero response. Then, we convert all the topicId back to it’s vector form as we
need the topic information. After those operations we get a User-Topic Matrix

M : U ×
−→
T ∈ RT×U , where U, T is the number of users and topics,

−→
T is the

ranked topics.

4.3 AutoEncoder

As the user-topic matrix R has already been generated, the dimension of R is
acceptable but the size U × T is relatively large. So we use the matrix R as
the input of the variational autoencoder(VAE)[11]. Then, the VAE can learn
a lower-dimension representation during the training which is the embedding
E. The reason why we use the VAE is that the autoencoder is used widely on
dimension reduction and features learning. Our user-topic matrix R have a high
dimension topic embedding, we need to figure out a way to reduce the dimension
and retain the necessary information to conduct analysis. The representation E
we get from the autoencoder is the rough version of the embedding we are looking
for. Then we need to calculate the similarity of the representation E. We pass the
E into the decoder so that we can get a decoded matrix De which is supposedly
the as same as the original matrix R. We use the “accuracy” to measure the
similarity between De and R:

accuracy =

∑n
i D

i
e �Ri

n

where n is the number of elements inside matrix R and De. The � is the XNOR
which used to calculate how many elements are exactly samethe Di

e, R
i is the

i-th element in matrix De and R. The XNOR operator has following property:

a� b =

{
0 if a 6= b

1 if a == b

4.4 Reinforcement Learning and Recommendation

As the accuracy was defined in previous section, we will use this accuracy as the
reward in our reinforcement learning framework. We use the Q-learning here, the

Expert2Vec 9

training algorithm was described in the Algorithm 1. We will use the Q-learning
to allow our model to improve the embedding E by itself. The n in algorithm
refers to the number of episode. The strategy is to find a best direction of the
value change in the embedding E which can acquire the highest Q-value. Once
the optimal Q-value reached, it means we have figured out an optimal policy
π∗ which can improve our embedding representation E. Finally, we obtain an
optimal embedding E∗ which we can use in the recommendation system. In the

Algorithm 1: Q-learning

Initialize Q-table,Q(s,a) randomly;
Initialize embedding E comes from the VAE;
Initialize η ← ηinit, γ ← γinit ;
for i = 0 to n do

Initialize s;
r = accuracy(E,R);
for each step in episode i do

choose a from s using policy derived from Q ;
Q(st, a)← Q(st, a) + η(r + γmaxaQ(st+1, a)) ;
use the q-value find the policy: π ← Q(s, a);
st ← st+1

end
use the policy update the embedding: E ← E′;

end

real recommendation system, what we will use is the optimal embedding E∗. The
embedding cannot be used for recommendation directly as the embedding does
not have any valuable information for recommendation system. So, we need to
recover the embedding E∗, through the decoder, into a matrix R′ that contains
the user-topic information and the ranking information. The recommendation
method we used is the collaborative filtering(CF). So, the overall structure for
our proposed model in figure 2.

5 Experiment

5.1 Experiment Setup

The data set used for experiment is the Stack Overflow which was flattened by
removing all the XML markups and converted into the json format. The original
data set contained 14,768,990 records including answers and questions. After
filtering, the dataset was changed as ‘userID:Topic’ format that was described
in section 4.1. After that, we had 99,220 users and 118,320 questions in total.
As we conduce some data cleaning technique with the dataset, it leads to the
userID not being consecutive as some users are considered inactive users. If
we use the original userId as the axis it will make our matrix extremely big

10 X. Chen et al.

User

word2vec Topic
Vector

�

Sort by
PVote Ranked

Topic
Vector

�
→

�

1 1

1

0 0
0
1

1
1 0

01
1

0 0

0
User-Topic Matrix R:

� × ∈�
→

�
�×�

VAE

Encoder Decoder

1 1

1

0 0
1
0

0
1 1

10
1

0 0

0

Embedding

�

Decoded
Matrix R’

State

�

Reward

� ⊙ �
′

Action

�

1 1 0
1

01 1
0 0

New State

New Reward

Recommendation

Reinforcement
Learning
Framework

User-Topic
Matrix

generation

Fig. 2: Model Structure,where the red line represent the work flow of RL. The
new state is st+1, new reward is Rt+1 �R′, t is the timestamp

as the userID comes from 0 to 6,454,151, but we only need the 99,220 active
users. Using the original userId as the index of matrix will get a matrix with
shape [6454151,118320] which will take a huge amount of memory of computer.
To overcome this problem, we replace the normal userId with our customised
userId by using a hash table can map from [1,99220] to the [1,6454151]. By using
the customised userId we can save 6454151−99220

6454151 = 98.5% run-time memory. So
we have a user-topic matrix R which has shape [99,220,118,320] with the values
1, meaning have action, and 0, meaning no action. Also, topic we used in R is the
topic id which is mapped as well(See section 4.2 for detail). The methodology
we used for getting the vector is the word2vec, we use the pre-trained word2vec
to transfer the topic into vector. What we do is that we firstly generate all single
word’s vector by using word2vec, so we get two lists which have word name and
its vector. After that, the topic will be convert into vector with the dimension
of 300. As the data is pretty big for training, to vertify the correctness of our
approach, we just select top 20% of the samples from the dataset based on the
reputation which still have over 2,000,000 records.

After finished the pre-process step, we just put the user-topic matrix R into
the VAE to get a reconstructed representation E. To verify this representation is
valid and have the necessary information we need, we recover it back to user-topic
matrix R′ by using the decoder. Then we calculate the accuracy between R and
R′ by using the formula mentioned in section 4.3. Then we put the embedding E
and the accuracy R into the Q-learning framework to improve it. For each episode

Expert2Vec 11

i, we take the improved embedding Ei and compare with the original matrix R
to get the new accuracy and transfer back to the Q-learning. After this optimize
process, we passing the optimal embedding E′ into a normal recommendation
system. Then, using the Accuracy and the nDCG as the measure metric in our
model where the accuracy is defined previously, and the nDCG is defined as:

nDCGp =

∑p
i=1 x∑|REL|

i=1 x
where x =

2reli + 1

log2(i+ 1)

the reli is the real result which i supposed to be. We will use the nDCG@k,
accuracy@k and the recall@k as the major measurement metric.

5.2 Experiment Results

As the expert recommendation is not a popular area, the state-of-art model is
hard to figure out[20]. So, the baseline we used here is the probabilistic matrix
factorization(PMF)[23],Bayesian probabilistic matrix factorization(BPMF), the
segmented topic model(STM)[6], GRE4Rec[9], Convolutional Sequence Embed-
ding Recommendation Model(Caser)[18] and Adversarial Personalized Ranking
for recommendation (APR)[8]. The result can be found in figure 3.

5.3 Evaluation

It is obvious that when the accuracy increases the nDCG increases as well,
which means the reinforcement learning is improving the embedding E by itself.
However the nDCG@k is still not good enough which the highest value can reach
0.4767834. The reason is due to data sparsity. Even if the number of records are
reduced and all the active users in the dataset are selected, it is still too sparse
for the recommendation system to recommend a topic for a user. But we can see
that our model is better than the others. The accuracy which is passed into the
reinforcement learning is stable after a few episodes and it is stable at around
0.3, which means much information is lost during the encoding and decoding
process. However, we still obtain a competitive result on the recommendation
which means that our model meets the expectation. The caser is a state-of-art
model which used in recommendation system area, it’s sensitive with the sparsity
data which we can find that the result is not good enough.

5.4 Possible improvement and future work

As discussed in section 4.1, we mentioned that in some questions they only have
one answer which means user can only vote this answer or answer one. It may
lead to some edge effects which will make the recommendation less efficient. Fur-
thermore, due to the limitation of NLP technique, we may still lose information
during the word2vec, and the answers are normally a paragraph which contains
many sentences. We need a more efficient way to capture the relation between
the word in word level and sentence level. That is the possible improvement

12 X. Chen et al.

a) (a) b) (b)

c) (c) d) (d)

Fig. 3: Graph (a) is the accuracy during the RL process.(b) is the model com-
parison result in nDCG ,(c) is the comparison result in accuracy, (d) is the
comparison result in recall.

can be done in the dataset side. From the model perspective, we can make some
improvements in the recommendation system and the reinforcement learning sys-
tem. For example, we can change the CF to the matrix factorization(MF) based
recommendation system or a more complex model. But the challenge is that all
the state-of-art recommendation systems are not working properly in CQA, in
the future we may can adopt the state-of-art recommendation systems to the
CQA problem so that it can make recommendation through our embedding.

As the neural network get some surprising result on reinforcement learning,
we may change our reinforcement learning framework to deep reinforcement
learning. One typical example is that change the Q-learning to DQN which
discussed in section 3. But consider about the dataset’s complexity, it will be
tough to employ the complex recommendation system and the DQN framwork.

Expert2Vec 13

6 Conclusion

In this study we proposed a new distributed representation (expert2vec) for ex-
pert which is used on solving the CQA problem and the expert recommendation
problem. Expert2vec is the distributed representation which contain the infor-
mation about user and topic and its corresponding rank. We innovatively adopt
the reinforcement learning framework into the expert recommendation problem
to let the model to improve the embedding by itself. Our model(Expert2Vec)
got a promising result among the current expert recommendation state-of-art
model.

References

1. AP, S.C., Lauly, S., Larochelle, H., Khapra, M., Ravindran, B., Raykar, V.C.,
Saha, A.: An autoencoder approach to learning bilingual word representations. In:
Advances in Neural Information Processing Systems. pp. 1853–1861 (2014)

2. Borodin, A., Roberts, G.O., Rosenthal, J.S., Tsaparas, P.: Link analysis ranking:
algorithms, theory, and experiments. ACM Transactions on Internet Technology
(TOIT) 5(1), 231–297 (2005)

3. Bouguessa, M., Dumoulin, B., Wang, S.: Identifying authoritative actors in
question-answering forums: the case of yahoo! answers. In: Proceedings of the 14th
ACM SIGKDD international conference on Knowledge discovery and data mining.
pp. 866–874. ACM (2008)

4. Chandak, Y., Theocharous, G., Kostas, J., Jordan, S., Thomas, P.S.: Learning
action representations for reinforcement learning. In: International Conference on
Machine Learning (2019)

5. Chen, X., Li, S., Li, H., Jiang, S., Qi, Y., Song, L.: Generative adversarial user
model for reinforcement learning based recommendation system. In: International
Conference on Machine Learning. pp. 1052–1061 (2019)

6. Du, L., Buntine, W., Jin, H.: A segmented topic model based on the two-parameter
poisson-dirichlet process. Machine learning 81(1), 5–19 (2010)

7. Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag, P., Lillicrap, T., Hunt, J.,
Mann, T., Weber, T., Degris, T., Coppin, B.: Deep reinforcement learning in large
discrete action spaces. arXiv preprint arXiv:1512.07679 (2015)

8. He, X., He, Z., Du, X., Chua, T.S.: Adversarial personalized ranking for recom-
mendation. In: The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval. pp. 355–364. ACM (2018)

9. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-
tions with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015)

10. Ji, Z., Wang, B.: Learning to rank for question routing in community question an-
swering. In: Proceedings of the 22nd ACM international conference on Information
& Knowledge Management. pp. 2363–2368. ACM (2013)

11. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

12. Li, J., Luong, M.T., Jurafsky, D.: A hierarchical neural autoencoder for paragraphs
and documents. arXiv preprint arXiv:1506.01057 (2015)

13. Liu, M., Liu, Y., Yang, Q.: Predicting best answerers for new questions in com-
munity question answering. In: International Conference on Web-Age Information
Management. pp. 127–138. Springer (2010)

14 X. Chen et al.

14. Liu, Q., Agichtein, E., Dror, G., Maarek, Y., Szpektor, I.: When web search fails,
searchers become askers: understanding the transition. In: Proceedings of the 35th
international ACM SIGIR conference on Research and development in information
retrieval. pp. 801–810. ACM (2012)

15. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems. pp. 3111–3119 (2013)

16. Miller, D.R., Leek, T., Schwartz, R.M.: A hidden markov model information re-
trieval system. In: SIGIR. vol. 99, pp. 214–221 (1999)

17. Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A., Carin, L.: Variational
autoencoder for deep learning of images, labels and captions. In: Advances in neural
information processing systems. pp. 2352–2360 (2016)

18. Tang, J., Wang, K.: Personalized top-n sequential recommendation via convolu-
tional sequence embedding. In: Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining. pp. 565–573. ACM (2018)

19. Tian, Y., Lo, D., Lawall, J.: Sewordsim: Software-specific word similarity database.
In: Companion Proceedings of the 36th International Conference on Software En-
gineering. pp. 568–571. ACM (2014)

20. Wang, X., Huang, C., Yao, L., Benatallah, B., Dong, M.: A survey on expert
recommendation in community question answering. Journal of Computer Science
and Technology 33(4), 625–653 (2018)

21. Wang, Y., Yao, H., Zhao, S.: Auto-encoder based dimensionality reduction. Neu-
rocomputing 184, 232–242 (2016)

22. Xu, F., Ji, Z., Wang, B.: Dual role model for question recommendation in com-
munity question answering. In: Proceedings of the 35th international ACM SIGIR
conference on Research and development in information retrieval. pp. 771–780.
ACM (2012)

23. Yang, B., Manandhar, S.: Tag-based expert recommendation in community ques-
tion answering. In: 2014 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM 2014). pp. 960–963. IEEE (2014)

24. Yao, L., Wang, X., Sheng, Q.Z., Benatallah, B., Huang, C.: Mashup recommenda-
tion by regularizing matrix factorization with api co-invocations. IEEE Transac-
tions on Services Computing (2018)

25. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: A
survey and new perspectives. ACM Computing Surveys (CSUR) 52(1), 5 (2019)

26. Zhang, X., Yao, L., Yuan, F.: Adversarial variational embedding for robust semi-
supervised learning. In: Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. pp. 139–147. KDD ’19, ACM,
New York, NY, USA (2019)

27. Zhao, X., Xia, L., Zhao, Y., Yin, D., Tang, J.: Model-based reinforcement learning
for whole-chain recommendations. arXiv preprint arXiv:1902.03987 (2019)

28. Zheng, C., Zhai, S., Zhang, Z.: A deep learning approach for expert identification
in question answering communities. arXiv preprint arXiv:1711.05350 (2017)

29. Zheng, G., Zhang, F., Zheng, Z., Xiang, Y., Yuan, N.J., Xie, X., Li, Z.: Drn: A
deep reinforcement learning framework for news recommendation. In: Proceedings
of the 2018 World Wide Web Conference on World Wide Web. pp. 167–176. W3C
(2018)

30. Zheng, X., Hu, Z., Xu, A., Chen, D., Liu, K., Li, B.: Algorithm for recommending
answer providers in community-based question answering. Journal of Information
Science 38(1), 3–14 (2012)

