Skip to main content

Improved Algorithms for Zero Shot Image Super-Resolution with Parametric Rectifiers

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11888))

Abstract

Recently, a novel Zero-Shot Super-Resolution (ZSSR) method is proposed to generate high-resolution (HR) images from their low-resolution (LR) counterparts. ZSSR employs a convolutional neural network (CNN) to represent transformations from LR images to HR images and is trained on a single image. ZSSR achieves state-of-the-art performance on both real low-resolution images (i.e., historic images, and images taken with a mobile phone) and several benchmark datasets (e.g., Set 5 and Set 14 to name a few). However, the training of the CNN network of ZSSR is not stable since rectifier is used as the activation function and a custom learning rate adjustment policy is proposed in ZSSR. In this paper, we use parametric rectifier as the activation function and present an improved algorithm for the training of ZSSR. Experimental results demonstrate that the proposed method outperforms ZSSR in terms of both reconstruction accuracy and speed on two benchmark datasets: Set 5 and Set 14, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Supervised SISR methods outperform unsupervised SISR methods by a significant margin [29].

References

  1. Shocher, A., Cohen, N., Irani, M.: “Zero-shot” super-resolution using deep internal learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  2. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: Proceedings of the British Machine Vision Conference, pp. 135.1–135.10. BMVA Press (2012). https://doi.org/10.5244/C.26.135

  3. Chowdhuri, D., Sendhil Kumar, K.S., Babu, M.R., Reddy, C.P.: Very low resolution face recognition in parallel environment. Int. J. Comput. Sci. Inf. Technol. 3, 4408–4410 (2012)

    Google Scholar 

  4. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). CoRR abs/1511.07289 (2016)

    Google Scholar 

  5. Epstein, J.: Chapter 3 - elements of voice quality. In: Epstein, J. (ed.) Scalable VoIP Mobility, pp. 57 – 72. Newnes, Boston (2009). https://doi.org/10.1016/B978-1-85617-508-1.00003-7, http://www.sciencedirect.com/science/article/pii/B9781856175081000037

    Chapter  Google Scholar 

  6. Ferwerda, J.A.: Three varieties of realism in computer graphics. In: Proceedings of SPIE, Human Vision and Electronic Imaging VIII, vol. 5007 (2003). https://doi.org/10.1117/12.473899

  7. Freedman, G., Fattal, R.: Image and video upscaling from local self-examples. ACM Trans. Graph. 30(2), 12:1–12:11 (2011). https://doi.org/10.1145/1944846.1944852

    Article  Google Scholar 

  8. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 349–356, September 2009. https://doi.org/10.1109/ICCV.2009.5459271

  9. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680. Curran Associates, Inc. (2014). http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

  10. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. CoRR abs/1502.01852 (2015). http://arxiv.org/abs/1502.01852

  11. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015

    Google Scholar 

  12. Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP: Graph. Models Image Process. 53(3), 231–239 (1991). https://doi.org/10.1016/1049-9652(91)90045-L. http://www.sciencedirect.com/science/article/pii/104996529190045L

    Article  Google Scholar 

  13. Keys, R.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Sig. Process. 29(6), 1153–1160 (1981). https://doi.org/10.1109/TASSP.1981.1163711

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  15. Kim, J., Kwon Lee, J., Mu Lee, K.: Deeply-recursive convolutional network for image super-resolution. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  16. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. CoRR abs/1511.04587 (2015). http://arxiv.org/abs/1511.04587

  17. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations, December 2014

    Google Scholar 

  18. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989). https://doi.org/10.1162/neco.1989.1.4.541

    Article  Google Scholar 

  19. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  20. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. CoRR abs/1707.02921 (2017). http://arxiv.org/abs/1707.02921

  21. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML Workshop on Deep Learning for Audio, Speech and Language Processing (2013)

    Google Scholar 

  22. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 2, pp. 416–423 (2001)

    Google Scholar 

  23. Matsui, Y., et al.: Sketch-based manga retrieval using manga109 dataset. Multimed. Tools Appl. 76(20), 21811–21838 (2017). https://doi.org/10.1007/s11042-016-4020-z

    Article  Google Scholar 

  24. McCann, M.T., Jin, K.H., Unser, M.: Convolutional neural networks for inverse problems in imaging: a review. IEEE Sig. Process. Mag. 34(6), 85–95 (2017). https://doi.org/10.1109/MSP.2017.2739299

    Article  Google Scholar 

  25. Michaeli, T., Irani, M.: Nonparametric blind super-resolution. In: The IEEE International Conference on Computer Vision (ICCV), December 2013

    Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  27. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  28. Yang, Q., Yang, R., Davis, J., Nister, D.: Spatial-depth super resolution for range images. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, June 2007. https://doi.org/10.1109/CVPR.2007.383211

  29. Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J., Liao, Q.: Deep learning for single image super-resolution: a brief review. IEEE Trans. Multimed. 1 (2019). https://doi.org/10.1109/TMM.2019.2919431

  30. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  31. Zhang, S.: Application of super-resolution image reconstruction to digital holography. EURASIP J. Adv. Sig. Process. 2006(1), 090358 (2006). https://doi.org/10.1155/ASP/2006/90358

    Article  Google Scholar 

  32. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  33. Zontak, M., Mosseri, I., Irani, M.: Separating signal from noise using patch recurrence across scales. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2013

    Google Scholar 

Download references

Acknowledgment

This work is supported by a Faculty of Science and Engineering Research and Development Committee Small Grants Program of Curtin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayi Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, J., An, S., Liu, W., Li, L. (2019). Improved Algorithms for Zero Shot Image Super-Resolution with Parametric Rectifiers. In: Li, J., Wang, S., Qin, S., Li, X., Wang, S. (eds) Advanced Data Mining and Applications. ADMA 2019. Lecture Notes in Computer Science(), vol 11888. Springer, Cham. https://doi.org/10.1007/978-3-030-35231-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35231-8_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35230-1

  • Online ISBN: 978-3-030-35231-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics