Skip to main content

Deep Interpretable Mortality Model for Intensive Care Unit Risk Prediction

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11888))

Abstract

Estimating the mortality of patients plays a fundamental role in an intensive care unit (ICU). Currently, most learning approaches are based on deep learning models. However, these approaches in mortality prediction suffer from two problems: (i) the specificity of causes of death are not considered in the learning process due to the different diseases, and symptoms are mixed-used without diversification and localization; (ii) the learning outcome for the mortality prediction is not self-explainable for the clinicians. In this paper, we propose a Deep Interpretable Mortality Model (DIMM), which employs Multi-Source Embedding, Gated Recurrent Units (GRU), Attention mechanism and Focal Loss techniques to prognosticate mortality prediction. We intensified the mortality prediction by considering the different clinical measures, medical treatments and the heterogeneity of the disease. More importantly, for the first time, in this framework, we use a separate evidence-based interpreter named Highlighter to interpret the prediction model, which makes the prediction understandable and trustworthy to clinicians. We demonstrate that our approach achieves state-of-the-art performance in mortality prediction and can get an interpretable prediction on four different diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahmad, M.A., Eckert, C., McKelvey, G., Zolfaghar, K., Zahid, A., Teredesai, A.: Death vs. data science: predicting end of life. In: AAAI (2018)

    Google Scholar 

  2. Bai, S., Kolter, J.Z., Koltun, V.: Convolutional sequence modeling revisited (2018)

    Google Scholar 

  3. Bhattacharya, S., Rajan, V., Shrivastava, H.: ICU mortality prediction: a classification algorithm for imbalanced datasets. In: AAAI, pp. 1288–1294 (2017)

    Google Scholar 

  4. Breslow, M.J., Badawi, O.: Severity scoring in the critically ill: part 1–interpretation and accuracy of outcome prediction scoring systems. Chest 141(1), 245–252 (2012)

    Article  Google Scholar 

  5. Gil, V., et al.: Emergency heart failure mortality risk grade score performance for 7-day mortality prediction in patients with heart failure attended at the emergency department: validation in a spanish cohort. Eur. J. Emerg. Med. 25(3), 169–177 (2018)

    Article  Google Scholar 

  6. Harutyunyan, H., Khachatrian, H., Kale, D.C., Galstyan, A.: Multitask learning and benchmarking with clinical time series data. arXiv preprint arXiv:1703.07771 (2017)

  7. Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recommendations. In: Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, pp. 241–250. ACM (2000)

    Google Scholar 

  8. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)

    Article  Google Scholar 

  9. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (2018)

    Google Scholar 

  10. Lipton, Z.C.: The mythos of model interpretability. arXiv preprint arXiv:1606.03490 (2016)

  11. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for healthcare: review, opportunities and challenges. Brief. Bioinform. 19, 1236–1246 (2017)

    Article  Google Scholar 

  12. Nori, N., Kashima, H., Yamashita, K., Ikai, H., Imanaka, Y.: Simultaneous modeling of multiple diseases for mortality prediction in acute hospital care. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2015)

    Google Scholar 

  13. Nori, N., Kashima, H., Yamashita, K., Kunisawa, S., Imanaka, Y.: Learning implicit tasks for patient-specific risk modeling in ICU. In: AAAI, pp. 1481–1487 (2017)

    Google Scholar 

  14. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016)

    Google Scholar 

  15. Saito, T., Rehmsmeier, M.: The precision-recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 10(3), e0118432 (2015)

    Article  Google Scholar 

  16. Seo, M., Kembhavi, A., Farhadi, A., Hajishirzi, H.: Bidirectional attention flow for machine comprehension. arXiv preprint arXiv:1611.01603 (2016)

  17. Shi, Y., Meng, J., Wang, J., Lin, H., Li, Y.: A Normalized Encoder-Decoder Model for Abstractive Summarization Using Focal Loss. In: Zhang, M., Ng, V., Zhao, D., Li, S., Zan, H. (eds.) NLPCC 2018. LNCS (LNAI), vol. 11109, pp. 383–392. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99501-4_34

    Chapter  Google Scholar 

  18. Shi, Z., Zuo, W., Chen, W., Yue, L., Hao, Y., Liang, S.: DMMAM: deep multi-source multi-task attention model for intensive care unit diagnosis. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11447, pp. 53–69. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18579-4_4

    Chapter  Google Scholar 

  19. Siontis, G.C., Tzoulaki, I., Ioannidis, J.P.: Predicting death: an empirical evaluation of predictive tools for mortality. Arch. Intern. Med. 171(19), 1721–1726 (2011)

    Article  Google Scholar 

  20. Song, H., Rajan, D., Thiagarajan, J.J., Spanias, A.: Attend and diagnose: clinical time series analysis using attention models. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  21. Trask, A., Gilmore, D., Russell, M.: Modeling order in neural word embeddings at scale. arXiv preprint arXiv:1506.02338 (2015)

  22. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  23. Wang, Y., Kung, L., Byrd, T.A.: Big data analytics: understanding its capabilities and potential benefits for healthcare organizations. Technol. Forecast. Soc. Change 126, 3–13 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanli Zuo or Lin Yue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, Z., Chen, W., Liang, S., Zuo, W., Yue, L., Wang, S. (2019). Deep Interpretable Mortality Model for Intensive Care Unit Risk Prediction. In: Li, J., Wang, S., Qin, S., Li, X., Wang, S. (eds) Advanced Data Mining and Applications. ADMA 2019. Lecture Notes in Computer Science(), vol 11888. Springer, Cham. https://doi.org/10.1007/978-3-030-35231-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35231-8_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35230-1

  • Online ISBN: 978-3-030-35231-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics