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Abstract. Feature selection techniques are enormously applied in a
variety of data analysis tasks in order to reduce the dimensionality.
According to the type of learning, feature selection algorithms are catego-
rized to: supervised or unsupervised. In unsupervised learning scenarios,
selecting features is a much harder problem, due to the lack of class
labels that would facilitate the search for relevant features. The select-
ing feature difficulty is amplified when the data is corrupted by different
noises. Almost all traditional unsupervised feature selection methods are
not robust against the noise in samples. These approaches do not have
any explicit mechanism for detaching and isolating the noise thus they
can not produce an optimal feature subset. In this article, we propose an
unsupervised approach for feature selection on noisy data, called Robust
Independent Feature Selection (RIFS). Specifically, we choose feature
subset that contains most of the underlying information, using the same
criteria as the Independent component analysis (ICA). Simultaneously,
the noise is separated as an independent component. The isolation of
representative noise samples is achieved using factor oblique rotation
whereas noise identification is performed using factor pattern loadings.
Extensive experimental results over divers real-life data sets have showed
the efficiency and advantage of the proposed algorithm.

Keywords: Feature selection · Independent Component Analysis ·
Oblique rotation · Noise separation

1 Introduction

Data is often represented by high dimensional feature vectors in many areas,
such as face recognition, image possessing and text mining. In practice, not all
features are relevant and important to the learning task, many of them are often
correlated, redundant, or even noisy sometimes, which may result in adverse
effects such as over-fitting, low efficiency and poor performance. Moreover, high
dimensionality significantly increases the time and space requirements for pro-
cessing the data. Feature selection is one effective means to identify relevant
features for dimension reduction [11]. Once a reduced feature subset is chosen,
conventional data analysis techniques can then be applied.
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From the perspective of label availability, feature selection algorithms can
also be classified into supervised feature selection and unsupervised feature selec-
tion. Supervised feature selection methods, such as Pearson correlation coeffi-
cients [16], Fisher score [3], and Information gain [4], are usually able to effec-
tively select good features since labels of training data, which contain the essen-
tial discriminative information for classification that can be used. However, in
practice, there is usually no shortage of unlabeled data but labels are expensive.
Hence, it is a great significance to develop unsupervised feature selection algo-
rithms which can make use of all the data points. In this paper, we consider the
problem of selecting features in unsupervised learning scenario which is more
challenging task because of the lack of label information that would guide the
search for relevant features.

Fig. 1. Gaussian noisy versions of the image sample from COIL20 data set with dif-
ferent σ2. From left to right σ2 is: 0, 0.1, 0.4 and 0.7.

Another important factor which affects the performance of feature selection
is the consideration of outliers and noise. Real data is not usually ideally dis-
tributed and outliers or noise often appear in the data, thus the traditional
feature selection approach may work well on clean data. However, it is very
likely to fail in noisy data sets. [15]. As an example, various types of noise are
arisen during the image transmission and acquisition that Gaussian noise is one
of them. It means noisy image pixel is the sum of the actual pixel value and a
random Gaussian distributed noise value [18]. Figure 1 shows noisy versions of
sample image from COIL201 data set with different σ2 values. It can be seen that
indeed, as the σ2 value increases, the picture gets more and more ambiguous. In
experimental part of this work we aim at applying our robust feature selection
on cropped data set by Gaussian noise with σ2 ≤ 0.7.

In this paper, we introduce a new unsupervised feature selection algorithm,
called Robust Independent Feature Selection (RIFS). We perform noise separa-
tion, isolation and robust feature selection simultaneously to select the most
important and discriminative features for both unsupervised and supervised
learning. Specifically, our purposed method exploits the structure of the latent
independent components of a feature set and separates the noise as a component.
By using independent component analysis, RIFS suggests a principled way to

1 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.



measure the similarity between different features and to rank each of them with-
out label information. Thus, it imposes an oblige rotation on the independent
factor indicator matrix to isolate the noise.

The rest of the paper is as follow: in Sect. 2, we present a brief review of
the related work. Our proposed method, which we name Robust Independent
Feature Selection (RIFS), is described in Sect. 3. The experimental results are
illustrated in Sect. 4, followed by a summary in Sect. 5.

2 Related Work

Feature selection algorithms can be grouped into two main families: filter and
wrapper. Filter methods [7,20] select a subset of features by evaluating statisti-
cal properties of data. For wrapper methods [6], feature selection is wrapped in a
learning algorithm and the performance on selected features is taken as the eval-
uation criterion. Wrapper methods couples feature selection with built-in mining
algorithm tightly, which lead to less generality and extensive computation. In
this paper, we are particularly interested in the filter methods which are much
more affordable.

The majority of the existing filter methods are supervised. Perhaps, Max vari-
ance [5] is the simplest yet effective unsupervised assessing criterion for selecting
features. This measure principally projects the data points along the dimensions
of maximum variances. Although the maximum variance metrics detect features
that are purposeful for descriptive analysis, there is no reason to assume that
these features must be useful for discriminating between data in distinct classes.

The Principal Component Analysis (PCA) algorithm shares the same princi-
ple of maximizing variance. Thus, some feature selection algorithms [12,14] are
available for selecting the features by means of Principal Component Analysis.
However, its orthogonal constraint on the feature selection projection matrix is
unreasonable since feature vectors are not necessarily orthogonal with each other
in nature.

Currently, the Laplacian Score algorithm [7] and its extensions [2,20] have
been proposed to select features by leverage of manifold learning. Laplacian
Score algorithm utilizes a spectral graph to extract the local geometric structure
of the data then it selects feature subset which is mapped perfectly to the graph.

Another important factor which affects the performance of feature selection
is the consideration of outliers and noise. In reality, outliers and noise are cor-
rupting the distribution of the data, thus it is important or even necessary to
consider noise robustness for unsupervised feature selection. Zhai [15] purposed
RUFS method which jointly performs robust label learning via local learning
regularized robust orthogonal non-negative matrix factorization and robust fea-
ture learning via joint l1,2-norms minimization. A remarkable drawback of the
algorithm is that its performance is relatively sensitive to the number of selected
features.

The intention of our work is to purpose an unsupervised feature selection
technique that can choose better features subset across a noisy data set; thereby,



we are proposing a hybrid algorithm to utilize feature selection along with the
noises separation and isolation.

3 Background

We consider the canonical problem of unsupervised feature selection is the fol-
lowing. We use X to indicate a data set of N data points X = (x1, x2, ..., xN ),
xi ∈ RM . The objective is to find a feature subset with size d which includes the
majority informative features. In preference to, the points [x�

1, x
�
2, ..., x

�
N ] mir-

rored in the reduced d−dimensional space x�
i ∈ Rd can perfectly maintain the

original geometric structure of data in M−dimensional space.
In the remaining part of this section, we discuss the main data mining tech-

niques that we utilize in our feature selection approach.

Independent Component Analysis (ICA). To detect the latent structure of
data, Independent Component Analysis (ICA) [9] tries to unmix some different
sources (includes noise) that have been collected together. ICA is a statistical
and computational technique for revealing the hidden sources/components that
underlie sets of random variables, measurements or signals. The main ICA prob-
lem assumes that the observation X is an unknown linear mixture A of the M �

unknown sources S:

X = AS, X ∈ �M , S ∈ �M �
, A ∈ �M×M �

We assume that each component si of S is zero-mean, mutually independent
p(si, sj) = p(si)p(sj) and drawn from different probability distribution which is
not Gaussian except for at most one. The goal of ICA is to find an approximation
W (demixing matrix) of A−1 such that:

Ŝ = WX ≈ S, W ∈ �M �×M

ICA is a generative model since the model describes how X could be gener-
ated from A and S. ICA tries to find A by estimating the matrices of its SVD
decomposition A = UΣV T [17]. Ideally, W should be:

W = A−1 = V Σ−1UT

FastICA [19] is an algorithm that searches the optimal value of W , which esti-
mates the sources S by approximating statistical independence. The algorithm
starts from an initial condition, for example, random demixing weights w0. Then,
on each iteration step, the weights w0 are first updated by:

w0
+ = E{x(w0

T x)3} − 3||w0||2w0

so that the corresponding sources become more independent, and then
w0

+/norm (normalized), so that w0 stays orthonormal. The iteration is con-
tinued until the weights converge |w0

T w0
+| ≈ 1. The w0 is an optimal approxi-

mation of W .
Ŝ = w0X ≈ S (1)



When one tries to perform feature analysis of the data, each row of S can reflect
the data distribution on the corresponding hidden source. Thus, if the data is
cropped by noise, the noise is remarked as an independent source.

Oblique Rotation. Preliminary result from a factor analysis is not easy to
post-process (i.e. clustering, classification). Simply, rotation has been developed
not long after factor analysis to help us to clarify and simplify the results of a
factor analysis. Two main types of rotation are used: orthogonal when the new
axes are also orthogonal to each other, and oblique when the new axes are not
required to be orthogonal to each other. The Promax [8] is an oblige rotation
technique which has the advantage of being fast and conceptually simple. Promax
rotation has three distinct steps.

First, it extracts the Varimax [10] orthogonal rotated matrix ΛR = {λij}.
Second, a target matrix is contrived to power matrix P = (pij)p×m by raising

the factor structure coefficients to the power of Promax rotation k > 1,

pij =

������
λij�

(
�m

j=1 λ2
ij)

������

k+1 ���m
j=1 λ2

ij

λij

�

Finally, it uses the matrix P to rotate the original matrix X by two levels
approximation. Level one, it calculates the matrix L = (Λ�

RΛR)−1Λ�
RP . Then,

it normalizes the L by column to a transformation matrix Q = LD, where
D = 1/

�
diag(L�L) is the diagonal matrix that normalizes the columns of L.

So, the preliminary rotated matrix is

fpromax−temp = Q−1fvarimax

by reason of, V ar(fpromax−temp) = (Q�Q)−1 and the diagonal elements do not
equal 1.

Level two, the rotated matrix is modified by matrix C =
�

diag((Q�Q)−1)
to fpromax = Cfpromax−temp the rotated factor pattern is

ΛPromax = ΛRQC−1 (2)

The coefficients in the rotated data is smaller, but the absolute distance
between them significantly increased. It improves the quality of posterior analysis
(i.e. clustering, classification).

4 RIFS Algorithm Description

In the this section, we will introduce our Robust Independent Feature Selection
(RIFS) algorithm.

First of all, the independent components are computed from the X. Let
S be a matrix whose rows are the independent decomposition vector of the
matrix X and V = [v1, v2, ..., vM ], vi ∈ RM �

is the columns of S. Each vector



vi represents the projection of the i�th feature (variable) of the vector X to
the new dimensional space, that is, the M � elements of vi correspond to the
weights of the i�th factor on each axis of the new subspace. The key observation
is that features that are highly correlated or have high mutual information will
have extremely similar weight (changing the sign has no statistical significance).
On the two extreme sides, two independent features have maximally separated
weight vectors; while two fully correlated features have identical similar absolute
weights vectors.

Technically, the ICA method decomposes a multivariate data into indepen-
dent latent sources and white noise is an underlying source that is also drawn
out as an independent component by ICA. Let S = [s1, s2, ..., sm� ], si ∈ RM be
the rows of S. The swn is representing white noise when the M elements of swn

have much the same absolute value with finite variance, because the white noise
is randomly having equal intensity at different features [13].

In order to isolate the noise, we use the Promax method to rotate the pro-
jected feature vectors vis to RV = [rv1, rv2, ..., rvm], rvi ∈ RM �

with power k. It
forces the structure of the factors loadings to become bipolar that subsequently
facilitates the noise isolation from the main hidden sources. It quite mitigates the
drawback of the noise during discriminative analysis by uniforming the factors
load of swn.

To find the best subset, we look for the profoundly cross-correlated features
subset by using the underlying factor structure of the RVi and k mean. The
features of random vector X are clustered to C = [c1, ..., cd] when cj represents
j�th cluster. We consider selecting d feature from M feature candidates.

In continue, the centroid of any cluster is computed:

Cj =
1

mj

�

rvi∈cj

rvi (3)

where mj is the size of j�th cluster.
Then, in any cluster the feature vectors rvi are ranked based on their simi-

larity with cluster centroid:

similarity(rvi, Cj) =
rvi.Cj

�rvi� × �Cj�
(4)

Where values range between −1 and 1, where −1 is perfectly dissimilar and 1 is
perfectly similar.

We select the highest ranked rvi for each cluster as a corresponding vector
and the corresponding feature xi is chosen as an independent representative
feature. The selected features depute each cluster properly in terms of escalated
spread, independence and restoration.

We summarize the complete RIFS algorithm for feature selection in Algo-
rithm 1.



Algorithm 1: RIFS for Feature Selection
Require: N data points with M features;

d < M : the number of selected features ;
k : the power of Promax rotation;

Ensure: d selected features

1: Compute the Independent Components as discussed in Section 3.1. Let V =
[v1, v2, ..., vM ], vi ∈ RM�

contain feature decomposition vectors and M � is the
number of hidden independent components.

2: Rotate the V to RV as discussed in Section 3.2, with power coefficient set to k.
We get RV = [rv1, rv2, ..., rvM ], vi ∈ RM�

.

3: Cluster the vectors rvi to d categories C = [c1, ..., cd] by K-Means algorithm. Let
Cj be the centroid of cluster cj according to Eq. (3).

4: Compute the similarity score for each feature vectors rvi according to Eq.(4)

5: Return the corresponding feature xi of the most similar feature vector rvi to the
cluster’s centroids for each d cluster.

4.1 Computational Complexity Analysis

The computational cost for the main steps of our algorithm can be computed as
follows:

– The ICA computational cost is O(NM(1 + M)d�) where M is the number
of features/dimensions, N is the number of samples, and d� is the number of
iterations in fastICA algorithm.

– The K-Means and Promax algorithms are utilized on just lower dimension
including M points with M � − dimensional vectors, so their computational
costs are negligible.

Therefor, where M � � N and d� is customarily fixed as a constant 200, the
total computational cost of RIFS is roughly corresponding to the performance
of fastICA. So the total cost of our RIFS algorithm is O(NM(1 + M)d�).

5 Empirical Study

In this section, we have carried out several experiments to show the robust-
ness, efficiency and effectiveness of our proposed RIFS method for unsuper-
vised feature selection. The experiments consider both unsupervised (clustering)
and supervised (classification) study. In the experiments, we have compared the
RIFS, Laplacian Score and Maximum Variance. Laplacian Score and Maximum
Variance are both state-of-the-art feature selection algorithms (filter methods),
so this comparison makes possible to examine the efficacy of our proposed RIFS
method.



5.1 Parameter Selection

Our RIFS has only one parameter, which is the k in performing the Promax
rotation. We carried out different experiments in order to estimate the optimum
value of k. RIFS achieves stable good performance with the k between 2 and 4 on
all the four data sets. When k is less than 2, the performance slightly decreases
as the k decreases. We assume k = 4 entire all experiments (both unsupervised
and supervised study), in order to bring into uniformity.

Table 1. Summary of four benchmark data sets

Data set Instance Feature Classes

YALE 165 1024 15

ISOLET 1560 617 26

USPS 9298 256 10

COIL20 1440 1024 20

5.2 Data Sets

We used four real world data sets in our experiments. The basic statistics of
these data sets are outlined below in Table 1:

– The first one is YALE2 face database which contains 165 grayscale images
in GIF format of 15 individuals. There are 11 images per subject, one per
different facial expression or configuration: center-light, w/glasses, happy, left-
light, w/no glasses, normal, right-light, sad, sleepy, surprised, and wink. The
original images are normalized (in scale and orientation) in order that the
two eyes have been aligned at the same level. Then, we have cropped the face
area into the final images for processing. The size of each cropped image is
32 × 32 pixels, with 256 gray levels per pixel. Thus, each face image can be
represented by a 1024-dimensional vector.

– The second one is ISOLET3 spoken letter recognition data. It contains 150
subjects who spoke the name of each letter of the alphabet twice. The speakers
are grouped into sets of 30 speakers each, and are referred to as isolet1 through
isolet5. In our experimentation, we use isolet1 which consists 1560 examples
with 617 features.

– The third one is the USPS (see Footnote 3) handwritten digit database. A
famous subset contains 9298 16 × 16 hand written digit images in total.

– The fourth one is COIL20 (see Footnote 3) image library from Columbia
which contains 20 objects. The images of each object were taken 5◦ apart as
the object is rotated on a turntable and each object has 72 images. The size
of each image is 32 × 32 pixels, with 256 gray levels per pixel.

2 http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.
3 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.



5.3 Study of Unsupervised Cases

In this subsection, we apply our feature selection algorithm to clustering. The k-
means clustering is performed by using the selected features subset and compare
the results of both different algorithms and noise varieties.

Evaluation Metric. We evaluate the clustering result by informative overlap-
ping between the obtained label of each data point using clustering algorithms
and the label provided by the data set. We use the normalized mutual informa-
tion metric (NMI) [7] as a performance measure. Let C indicate the set of clusters
collected from the ground truth and C � obtained from a clustering algorithm.
Their mutual information metric MI(C,C �) is defined as follows:

MI(C,C �) =
�

ci∈C,c�
j∈C�

p(ci, c
�
j).log2

p(ci, c
�
j)

p(ci).p(c�
j)

(5)

where p(ci) and p(c�
j) are the probabilities that a data point arbitrarily selected

from the data set belongs to the clusters ci and c�
j , respectively, and p(ci, c

�
j) is the

joint probability that the arbitrarily selected data point belongs to the clusters
ci as well as c�

j at the same time. In our experiments, we use the normalized
mutual information NMI as follows:

NMI(C,C �) =
MI(C,C �)

max(H(C),H(C �))
(6)

where H(C) and H(C �) are the entropies of C and C �, respectively. It is easy to
check that NMI(C,C �) ranges from 0 to 1. NMI = 1 if the two sets of clusters
are identical, and NMI = 0 if the two sets are independent.

Clustering Results. In order to randomize the experiments, we evaluate the
clustering performance with different number of clusters (K = 7, 11, 13, 15 on
YALE; K = 3, 5, 7, 10 on USPS; K = 5, 10, 15, 20 on COIL20 and K = 10,
15, 20, 26 on ISOLET). For each given cluster number K (except using the

(a) Original data
(No noise)

(b) Gaussian noisy
(σ2 = 0.1)

(c) Gaussian noisy
(σ2 = 0.4)

(d) Gaussian noisy
(σ2 = 0.7)

Fig. 2. Clustering performance vs. the number of selected features on YALE.



(a) Original data
(No noise)

(b) Gaussian noisy
(σ2 = 0.1)

(c) Gaussian noisy
(σ2 = 0.4)

(d) Gaussian noisy
(σ2 = 0.7)

Fig. 3. Clustering performance vs. the number of selected features on Isolet.

(a) Original data
(No noise)

(b) Gaussian noisy
(σ2 = 0.1)

(c) Gaussian noisy
(σ2 = 0.4)

(d) Gaussian noisy
(σ2 = 0.7)

Fig. 4. Clustering performance vs. the number of selected features on USPS.

entire data set), 10 tests were conducted on different randomly chosen clusters.
Then, for each data set, the overall average performance as well as the standard
deviation was computed over all tests with different cluster number K. In each
test, we applied different algorithms to select d features and applied k-means
for clustering. In order to initiate the k-mean starting point, we applied the
Hierarchical Clustering algorithm [1] then the obtained d clusters centroids are
used as k-mean starting points. In principal, we performed the above procedure
on clean data sets. Then, we added different Gaussian noise (σ2 = 0.1, 0.4, 0.7)

(a) Original data
(No noise)

(b) Gaussian noisy
(σ2 = 0.1)

(c) Gaussian noisy
(σ2 = 0.4)

(d) Gaussian noisy
(σ2 = 0.7)

Fig. 5. Clustering performance vs. the number of selected features on COIL20.



(a) YALE (b) ISOLET (c) USPS (d) COIL20

Fig. 6. The noise level vs. the number of selected feature that is needed to achieve the
95% of clustering performance with all features.

Table 2. The proportion of features (# selected features/# all features%) that is
needed to achieve the 95% of clustering performance with all features.

Method No noise σ2 = 0.1 σ2 = 0.4 σ2 = 0.7 Average

YALE RIFS 4.9±3.8 12.7±3.2 14.6±3.7 21.5±2.5 13.4

Laplacian Score 27.3 ± 2.3 30.3 ± 3.9 31.3 ± 5.1 61.5 ± 8.6 37.6

Max Variance 74.7 ± 1.1 76.2 ± 3.2 77.4 ± 3.1 79.1 ± 1.4 76.9

ISOLET RIFS 8.1±2.2 11.3±3.1 11.3±4.3 14.6±4.4 11.3

Laplacian Score 11.3 ± 3.6 27.6 ± 11.2 37.3 ± 7.8 47.0 ± 9.0 30.8

Max Variance 27.6 ± 8.1 21.1 ± 6.2 24.3 ± 4.3 32.4 ± 11.1 26.3

USPS RIFS 19.5±1.7 27.3±2.3 27.3±1.8 35.2±4.6 27.3

Laplacian Score 58.6 ± 8.1 66.4 ± 17.2 89.8 ± 9.8 100.0 ± 0.0 78.7

Max Variance 27.3 ± 5.2 43.0 ± 7.9 58.6 ± 15.1 82.0 ± 12.0 52.7

COIL20 RIFS 4.9±3.3 6.8±2.3 10.7±5.1 16.6±7.7 9.8

Laplacian Score 19.5 ± 8.8 19.5 ± 6.3 28.3 ± 9.1 50.0 ± 12.8 29.3

Max Variance 26.4 ± 5.4 23.4 ± 6.2 27.3 ± 8.7 40.0 ± 3.2 29.3

to the original data sets and repeated the above clustering producer. For each
σ2 value, 10 random noise generated and tests executed, and both the average
performance and standard deviation recorded over these 10 tests.

Figures 2, 3, 4 and 5 present the plots of clustering performance versus the
number of selected features d on ISOLET, USPS, COIL20 and YALE, succes-
sively, without and with different level of Gaussian noises. As shown in the plots,
our proposed RIFS algorithm persistently surpasses both competitors on all the
four data sets and noise levels. From the plot (a) of each Figs. 2, 3, 4 and 5
(noise less), we can see RIFS converges to the best result in double quick time,
with approximately 50 features. Meanwhile, both other methods mostly require
more than 100 features (in average) to achieve 95% of the best result. When
we add Gaussian noise with higher standard variance, we need to select more
features to achieve reasonable clustering performance, as it can be seen in the
plot (b ∼ c) of each Figs. 2, 3, 4 and 5. However, in RIFS case, this trend is



very slightly pronounced when the performance of the other methods is reduced
quickly by increasing the Gaussian noise standard variance, as it can be seen in
Fig. 6. It would be worth mentioning that, on the ISOLET data set, our pro-
posed RIFS algorithm performs strangely robust against the noise by selecting
few more features. For example, in σ2 = 0.4 case only 70 features are selected
by RIFS and the clustering normalized mutual information is 70.3%, which is
almost equal to the clustering result by using all the 617 features (71.7%). How-
ever, the Max Variance and Laplacian Score perform comparably to one another
on original ISOLET data set but the Laplacian Score shows higher sensitivity to
the noisy data. On COIL20 data set the Max Variance and Laplacian Score per-
form comparably to one another while Max Variance becomes obviously better
than Laplacian Score On USPS data set. On YALE data set, Laplacian Score
completely performs better than Max Variance, roughly, Max Variance does not
have any function on YALE data set, possibly, due to the fact that sample size
is small. The most surprising aspect of the result is that Max Variance slightly
performs worse on original than data with light noise (σ2 = 0.1) on COIL2 and
ISOLET data sets.

The main objective of our experiment is to reduce the dimensionality of the
data by taking to account the robustness against the noise, in Table 2, we report
the selected feature proportion for achieving to at least 95% of the best clus-
tering performance by using all features for each algorithm and Gaussian noise
standard variance. The last column of each table records the average selected
feature proportion over different standard variance of Gaussian noise. As it can
be seen, RIFS significantly outperforms both other methods on all the four data
sets. Laplacian Score performs the second best on YALE data set. Max Vari-
ance performs the second best on USPS and ISOLET data sets. Max Variance
and Laplacian Score perform comparably to one another on COIL20 data set.
Comparing with the second best method, RIFS selects 24.2%, 15.0%, 25.4% and
19.5% less proportion of features in average for reaching to the at least 95% of
clustering performance with all features, when measured by normalized mutual
information on the YALE, ISOLET, USPS and COIL20 data sets, respectively.

5.4 Study of Supervised Cases

In this experiment, we examine the discriminating capability of the different
feature selection methods. The 1-Nearest Neighbor (1NN) classifier is used and
we assume that well-selected feature subset should yield more accurate classifier
[2]. We perform leave-one-out cross validation as follows: For each data point xi,
we find its nearest neighbor x�

i. Let c(xi) be the class label of xi. The nearest
neighbor classification accuracy rate (AR) is thus defined as

AR =
1
N

N�

i=1

δ(c(xi), c(x�
i)) (7)



(a) Original data
(No noise)

(b) Gaussian noisy
(σ2 = 0.1)

(c) Gaussian noisy
(σ2 = 0.4)

(d) Gaussian noisy
(σ2 = 0.7)

Fig. 7. Classification accuracy vs. the number of selected features on YALE.

(a) Original data
(No noise)

(b) Gaussian noisy
(σ2 = 0.1)

(c) Gaussian noisy
(σ2 = 0.4)

(d) Gaussian noisy
(σ2 = 0.7)

Fig. 8. Classification accuracy vs. the number of selected features on Isolet.

(a) Original data
(No noise)

(b) Gaussian noisy
(σ2 = 0.1)

(c) Gaussian noisy
(σ2 = 0.4)

(d) Gaussian noisy
(σ2 = 0.7)

Fig. 9. Classification accuracy vs. the number of selected features on USPS.

where N is the number of data points and δ(a, b) = 1 if a = b and 0 otherwise.
All results reported in this paper are obtained by averaging the accuracy from
10 trials of experiments. Figures 7, 8, 9 and 10 represent the plots of 1-nearest
neighbor classification accuracy rate versus the number of selected features. As
it can be seen, roughly on all the four data sets, RIFS at every turn goes one
better than both other methods. Almost identical to clustering or even better,
RIFS converges to the best result quickly on original (No noise) data set, with
less than 90 features (in average) and it shows strange robustness against the
noises. For example in case of σ2 = 0.7, RIFS selects approximately 100 more



(a) Original data
(No noise)

(b) Gaussian noisy
(σ2 = 0.1)

(c) Gaussian noisy
(σ2 = 0.4)

(d) Gaussian noisy
(σ2 = 0.7)

Fig. 10. Classification accuracy vs. the number of selected features on COIL20.

(a) YALE (b) ISOLET (c) USPS (d) COIL20

Fig. 11. The noise level vs. the number of selected feature that is needed to achieve
the 95% of classification accuracy with all features.

features in average to converge to the best result on all data sets, as it can be seen
in Fig. 11. Remarkably, on the USPS data set with moderate additive Gaussian
noise (σ2 � 0.4), RIFS consistently can achieve 95% of the best classification
accuracy by using no more than 50 features. On this data set, the Max Variance
algorithm performs comparably to our algorithms and much better than Lapla-
cian Score, and Laplacian Score’s performance is defected more by additive noise.
On the COIL20 data set, the Laplacian Score and Max Variance algorithms per-
form comparably to each other. On the ISOLET data set, the Laplacian Score
and Max Variance algorithms perform comparably to each other, and Laplacian
Score performs the worst. Surprisingly, on the YALE data sets, Max Variance
algorithm performs quite bad in both with and without noise, unless selecting
approximately 80% of features and Laplacian Score performs better on noisy
data with Gaussian noise σ2 = 0.7 than σ2 = 0.4, possibly, due to the fact that
sample size is small. The same as unsupervised study, in Table 3, we report the
average (over all Gaussian noise σ2 ∈ {0, 0.1, 0.4, 0.7}) selected feature propor-
tion for achieving to at least 95% of the best classification performance by using
all features for each algorithm. As it can be seen, RIFS achieves to the 95% of
the best classification performance with approximately two times less numbers
of features than the second best competitor on all data sets.



Table 3. The average proportion of features (# selected features/# all features%) that
is needed to achieve the 95% of classification accuracy rate with all features.

YALE ISOLET USPS COIL20

RIFS 11.7 21.5 27.3 15.1

Laplacian Score 21.0 48.2 67.4 36.4

Max Variance 80.4 63.2 51.8 35.6

5.5 Conclusion

In this paper, we present a new robust unsupervised feature selection approach
called, Robust Independent Feature Selection (RIFS). We propose to make the
best use of the independent components structure of a set of features, which is
defined on the mixing matrix, both to select the feature subset and to decouple
the noise as an latent independent source, simultaneously. Thus, RIFS isolates
the noise by rotating the mixing matrix obliquely. When we have compared our
RIFS method with two state-of-the-art methods, namely, Laplacian Score and
Max Variance, the empirical results on different real world data sets validate
that the proposed method obtains considerably higher effectiveness for both
clustering and classification. Our proposed RIFS algorithm performs well on
original data and it is strongly resists noises.
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