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We consider a scheduling game on parallel related machines, in which jobs try to minimize 
their completion time by choosing a machine to be processed on. Each machine uses an 
individual priority list to decide on the order according to which the jobs on the machine 
are processed. We prove that it is NP-hard to decide if a pure Nash equilibrium exists and 
characterize four classes of instances in which a pure Nash equilibrium is guaranteed to 
exist. For each of these classes, we give an algorithm that computes a Nash equilibrium, 
we prove that best-response dynamics converge to a Nash equilibrium, and we bound 
the inefficiency of Nash equilibria with respect to the makespan of the schedule and the 
sum of completion times. In addition, we show that although a pure Nash equilibrium is 
guaranteed to exist in instances with identical machines, it is NP-hard to approximate the 
best Nash equilibrium with respect to both objectives.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Scheduling problems have traditionally been studied from a centralized point of view in which the goal is to find an 
assignment of jobs to machines so as to minimize some global objective function. Two of the classical results are that 
Smith’s rule, i.e., schedule jobs in decreasing order according to their ratio of weight over processing time, is optimal for 
single machine scheduling with the sum of weighted completion times objective [26], and list scheduling, i.e., greedily assign 
the job with the highest priority to a free machine, yields a 2-approximation for identical machines with the minimum 
makespan objective [16]. Many modern systems provide service to multiple strategic users, whose individual payoff is 
affected by the decisions made by others. As a result, non-cooperative game theory has become an essential tool in the 
analysis of job-scheduling applications. The jobs are controlled by selfish users who independently choose which resources 
to use. The resulting job-scheduling games have by now been widely studied and many results regarding the efficiency of 
equilibria in different settings are known.

A particular focus has been placed on finding coordination mechanisms [8], i.e., local scheduling policies, that induce a 
good system performance. In these works it is common to assume that ties are broken in a consistent manner (see, e.g., 
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Immorlica et al. [19]), or that there are no ties at all (see, e.g., Cole et al. [9]). In practice, there is no real justification for 
this assumption, except that it avoids subtle difficulties in the analysis. In this paper we relax this restrictive assumption and 
consider the more general setting in which machines have arbitrary individual priority lists. That is, each machine schedules 
those jobs that have chosen it according to its priority list. The priority lists are publicly known to the jobs.

In this paper we analyze the effect of having machine-dependent priority lists on the corresponding job-scheduling 
game. We study the existence of pure Nash equilibria (NE), the complexity of identifying whether an NE profile exists, the 
complexity of calculating an NE, in particular a good one, and the equilibrium inefficiency.

1.1. The model

An instance of a scheduling game with machine-dependent priority lists is given by a tuple G = 〈N, M, (pi)i∈N , (s j) j∈M ,

(π j) j∈M〉, where N is a finite set of n ≥ 1 jobs, M is a finite set of m ≥ 1 machines, pi ∈ R+ is the processing time of job 
i ∈ N , s j ∈R+ denotes the speed of the machine j ∈ M , and π j : N → {1, . . . , n} is the priority list of machine j ∈ M .

A strategy profile σ = (σi)i∈N ∈ MN assigns a machine σi ∈ M to every job i ∈ N . Given a strategy profile σ , the jobs 
are processed according to their order in the machines’ priority lists. The set of jobs that delay i ∈ N in σ is denoted by 
Bi(σ ) = {i′ ∈ N|σi′ = σi ∧πσi (i′) ≤ πσi (i)}. Note that job i itself also belongs to Bi(σ ). Let pi(σ ) = ∑

i′∈Bi(σ )

pi′ . The cost of job 

i ∈ N is equal to its completion time in σ , given by Ci(σ ) = pi(σ )/sσi .
Each job chooses a strategy so as to minimize its costs. A strategy profile σ ∈ � is a pure Nash equilibrium (NE) if for all 

i ∈ N and all σ ′
i ∈ �i , we have that Ci(σ ) ≤ Ci(σ

′
i , σ−i). Let E(G) denote the set of Nash equilibria for a given instance G . 

We would like to remark that E(G) may be empty.
For a strategy profile σ , let C(σ ) denote the cost of σ . The cost is defined with respect to some objective, e.g., the 

makespan, i.e., Cmax(σ ) := maxi∈N Ci(σ ), or the sum of completion times, i.e., 
∑

i∈N Ci(σ ). It is well known that de-
centralized decision-making may lead to sub-optimal solutions from the point of view of the society as a whole. For a 
game G , let P (G) be the set of feasible profiles of G . We denote by O P T (G) the cost of a social optimal solution, i.e., 
O P T (G) = minσ∈P (G) C(σ ). We quantify the inefficiency incurred due to self-interested behavior according to the price of 
anarchy (PoA) [22], and price of stability (PoS) [2]. The PoA is the worst-case inefficiency of a pure Nash equilibrium, while 
the PoS measures the best-case inefficiency of a pure Nash equilibrium.

Definition 1.1. Let G be a family of games, and let G be a game in G . Let E(G) be the set of pure Nash equilibria of the 
game G . Assume that E(G) �= ∅.

• The price of anarchy of G is the ratio between the maximum cost of an NE and the social optimum of G , i.e., PoA(G) =
max

σ∈E(G)
C(σ )/O P T (G). The price of anarchy of G is PoA(G) = supG∈GPoA(G).

• The price of stability of G is the ratio between the minimum cost of an NE and the social optimum of G , i.e., PoS(G) =
min

σ∈E(G)
C(σ )/O P T (G). The price of stability of G is PoS(G) = supG∈GPoS(G).

1.2. Our contribution

We first show that a pure Nash equilibrium in general need not exist, and use this to show that it is NP-complete to 
decide whether a particular game has a pure Nash equilibrium. We then provide a characterization of instances in which a 
pure Nash equilibrium is guaranteed to exist. Specifically, existence is guaranteed if the game belongs to at least one of the 
following four classes: G1: all jobs have unit processing time, G2: there are two machines, G3: all machines have the same 
speed, and G4: all machines have the same priority list. For all four of these classes, there is a polynomial time algorithm 
that computes a Nash equilibrium. In fact, for all four classes we prove that better-response dynamics converge to a Nash 
equilibrium. This characterization is tight in a sense that our inexistence example disobeys it in a minimal way: it describes 
a game on three machines, two of them having the same speed and the same priority list. We also show that the result for 
G2 cannot be extended for games with two unrelated machines. Another characterization we consider is the number of jobs 
in the instance. We present a game of 4 jobs that has no pure NE, and show that every game of 3 jobs admits an NE.

We analyze the efficiency of Nash equilibria by means of two different measures of efficiency: the makespan, i.e., the 
maximum completion time of a job, and the sum of completion times. For all four classes of games with a guaranteed pure 
Nash equilibrium, we provide tight bounds for the price of anarchy and the price of stability with respect to both measures. 
Our results are summarized in Table 1.

(i) If jobs have unit processing times, we show that the price of anarchy is equal to 1, which means that selfish behavior 
is optimal. (ii) For two machines with speed 1 and s ≤ 1 respectively, we prove that the PoA and the PoS are at most s + 1

if s ≤
√

5−1
2 , and s+2

s+1 if s ≥
√

5−1
2 . Moreover, our analysis is tight for all s ≤ 1. The maximal inefficiency, listed in Table 1, 

is achieved for s =
√

5−1
2 . In case the sum of completion times is considered as an objective, the price of anarchy can grow 

linearly in the number of jobs. (iii) If machines have identical speeds, but potentially different priority lists, the price of 
anarchy with respect to the makespan is equal to 2 − 1/m. The upper bound follows because every Nash equilibrium can 
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Table 1
Our results for the equilibrium inefficiency.

Instance class \ Objective Makespan Sum of Comp. Times
PoA/PoS PoA/PoS

G1: Unit jobs 1 1
G2: Two machines (

√
5 + 1)/2 �(n)

G3: Identical machines 2 − 1/m �(n/m)

G4: Global priority list �(m) �(n)

be seen as an outcome of Graham’s List-Scheduling algorithm. This generalizes a similar result by Immorlica et al. [19] for 
priorities based on shortest processing times first. The lower bound example shows the bound is tight, even with respect 
to the price of stability. For the sum of completion times objective, we show that the price of anarchy is at most O (n/m), 
and provide a lower bound example for which the price of stability grows in the order of O (n/m). (iv) If there is a global 
priority list, and machines have arbitrary speeds, we show that the �(m)-approximation of List-Scheduling carry over for 
the makespan inefficiency, and the results for two machines carry over for the sum of completion times.

We conclude with results regarding the complexity of calculating a good NE. While a simple greedy algorithm can be 
used to compute an NE for an instance with identical machines (the class G3), we show that it is NP-hard to compute an 
NE schedule that approximates the best NE of a game in this class. Specifically, it is NP-hard to approximate the best NE 
with respect to the minimum makespan within a factor of 2 − 1/m − ε for all ε > 0, and it is NP-hard to approximate the 
best NE with respect to the sum of completion times within a factor of r for any constant r > 1.

1.3. Related work

Scheduling games were initially studied in the setting in which each machine processes its jobs in parallel so that the 
completion time of each job is equal to the makespan of the machine. The goal of these papers was to characterize the 
inefficiency of selfish behavior as measured by the price of anarchy [22]. Most attention has been given to the makespan as 
a measure of efficiency. Czumaj and Vöcking [11] gave tight bounds on the price of anarchy for related machines, whereas 
Awerbuch et al. [3] and Gairing et al. [14] provided tight bounds for restricted machine settings. We refer to Vöcking [27]
for an overview. These tight bounds grow with the number of machines and that is why Christodoulou et al. [8] introduced 
the idea of using coordination mechanisms, i.e., local scheduling policies, to improve the price of anarchy. They studied the 
price of anarchy with priority lists based on longest processing times first. Immorlica et al. [19] generalized their results and 
studied several different scheduling policies, among which longest and shortest processing times first, in multiple scheduling 
settings. Both these two policies guarantee the existence of a pure Nash equilibrium in the related machine setting. These 
results are a special case of our result, as we prove the existence of a pure Nash equilibrium if there is a global priority 
list. For shortest processing times first, a pure Nash equilibrium is also guaranteed in the unrelated machines setting. Here, 
the set of Nash equilibria corresponds to the set of solutions of the Ibarra-Kim algorithm. A result that is also proven in 
Heydenreich et al. [17]. Other (in)existence results are Dürr and Nguyen [12], who proved that a Nash equilibrium exists 
for two machines with a random order and balanced jobs, Azar et al. [4], who showed that for unrelated machines with 
priorities based on the ratio of a job’s processing time to its faster processing time a Nash equilibrium need not exist, Lu 
and Yu [23], who proved that group-makespan mechanisms guarantees the existence of a Nash equilibrium, and Kollias [21], 
who showed that non-preemptive coordination mechanisms need not induce a pure Nash equilibrium.

For the sum of weighted completion times, Correa and Queyranne [10] proved a tight upper bound of 4 for restricted 
related machines with priority lists derived from Smith’s rule. Cole et al. [9] generalized the bound of 4 to unrelated 
machines with Smith’s rule and proposed better scheduling policies. Hoeksma and Uetz [18] gave a tighter bound for 
the more restricted setting in which jobs have unit weights and machines are related. Caragiannis et al. [6] proposed 
a framework that uses price of anarchy results of Nash equilibria in scheduling games to come up with combinatorial 
approximation algorithms for the centralized problem.

Ackermann et al. [1] were the first to study a congestion game with priorities. They proposed a model in which users 
with higher priority on a resource displace users with lower priorities such that the latter incur infinite cost. Closer to ours 
is Farzad et al. [13], who studied priority based selfish routing for non-atomic and atomic users and analyzed the inefficiency 
of equilibria. Recently, Biló and Vinci [5] studied a congestion game with a global priority classes that can contain multiple 
jobs and characterize the price of anarchy as a function of the number of classes. Gourvès et al. [15] studied capacitated 
congestion games to characterize the existence of pure Nash equilibria and computation of an equilibrium when they exist. 
Piliouras et al. [24] assumed that the priority lists are unknown to the players a priori and consider different risk attitudes 
towards having a uniform at random ordering.

2. Equilibrium existence and computation

In this section we give a precise characterization of scheduling game instances that are guaranteed to have an NE. The 
conditions that we provide are sufficient but not necessary. A natural question is to decide whether a given game instance 
that does not fulfill any of the conditions has an NE. We show that answering this question is an NP-complete problem.
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We first show that an NE may not exist, even with only three machines, two of which have the same speed and the 
same priority list.

Example 2.1. Consider the game G∗ with 5 jobs, N = {a, b, c, d, e}, and three machines, M = {M1, M2, M3}, with π1 =
(a, b, c, d, e), and π2 = π3 = (e, d, b, c, a). The first machine has speed s1 = 1 while the two other machines have speed 
s2 = s3 = 1/2. The job processing times are pa = 5, pb = 4, pc = 4.5, pd = 9.25, and pe = 2.

Job a is clearly on M1 in every NE. Therefore job e is not on M1 in an NE, as job e is first on M2 or M3. Since these two 
machines have the same priority list and the same speed, we can assume w.l.o.g., that if an NE exists, then there exists an 
NE in which job e is on M3. We distinguish two different cases for job d, as given that e is on M3, d prefers M2 over M3.

1. Job d is on M1. Then as job b has the highest remaining priority among b and c on all machines, job b picks the 
machine with the lowest completion time, which is M2, and job c lastly is then on M1. As a result, d prefers M2 (since 
18.5 < 18.75) over M1.

2. Job d is on M2. Then as job b has the highest remaining priority among b and c on all machines, job b picks the 
machine with the lowest completion time, which is M1, and job c lastly is then on M3. As a result, d prefers M1 (since 
18.25 < 18.5) over M2.

Thus, the game G∗ has no pure Nash equilibrium.

We can use the above example to show that deciding whether a game instance has an NE is NP-complete by using a 
reduction from 3-bounded 3-dimensional matching.

Theorem 2.1. Given an instance of a scheduling game, it is NP-complete to decide whether the game has an NE.

Proof. Given a game and a profile σ , verifying whether σ is an NE can be done by checking for every job whether its 
current assignment is also its best-response, therefore the problem is in NP.

The hardness proof is by a reduction from 3-bounded 3-dimensional matching (3DM-3). The input to the 3DM-3 problem 
is a set of triplets T ⊆ X × Y × Z , where |T | ≥ n and |X | = |Y | = |Z | = n. The number of occurrences of every element of 
X ∪ Y ∪ Z in T is at most 3. The goal is to decide whether T has a 3-dimensional matching of size n, i.e., there exists a 
subset T ′ ⊆ T , such that |T ′| = n, and every element in X ∪ Y ∪ Z appears exactly once in T ′ . 3DM-3 is known to be NP-hard 
[20].

Given an instance T of 3DM-3 matching and ε > 0, we construct the following scheduling game, G T . The set of jobs 
consists of:

1. The 5 jobs {a, b, c, d, e} from the game G∗ in Example 2.1.
2. A single dummy job, f , with processing time 2.
3. A set D of |T | − n dummy jobs with processing time 3.
4. A set U of |T | + 1 dummy jobs with processing time 20.
5. 3n jobs with processing time 1 - one for each element in X ∪ Y ∪ Z .

There are m = |T | + 4 machines, M1, M2, . . . , M|T |+4. All the machines except for M2 and M3 have speed s j = 1. For M2 and 
M3, s2 = s3 = 1/2.

The heart of the reduction lies in determining the priority lists. The first three machines will mimic the no-NE game G∗
from Example 2.1. Note that if job e is missing from G∗ then there exists an NE of {a, b, c, d} on M1, M2, M3. The idea is that 
if a 3DM-3 matching exists, then job e would prefer M4 and leave the first three machines for {a, b, c, d}. However, if there 
is no 3DM-3, then some job originated from the elements in X ∪ Y ∪ Z will precede job e on M4, and e’s best-response 
would be on M2 or M3 - where it is guaranteed to have completion time 4, and the no-NE game G∗ would come to life. 
The dummy jobs in U are long enough to guarantee that each of the jobs {a, b, c, d} prefers the first three machines over 
the last |T | + 1 machines.

The priority lists are defined as follows. When the list includes a set, it means that the set elements appear in ar-
bitrary order. For the first machine, π1 = (a, b, c, d, e, f , U , X, Y , Z , D). For the second and third machines, π2 = π3 =
(e, d, b, c, a, f , U , X, Y , Z , D). For the fourth machine, we have priority list π4 = ( f , X, Y , Z , e, U , D, a, b, c, d). The remaining 
|T | machines are triplet-machines. For every triplet t = (xi, y j, zk) ∈ T , the priority list of the triplet-machine corresponding 
to t is (D, xi, y j, zk, U , f , X \ {x j}, Y \ {y j}, Z \ {z j}, a, b, c, d, e).

Observe that in any NE, the dummy job f with processing time 2 is assigned as the first jobs on M4. Also, the dummy 
jobs in D have the highest priority on the triplet-machines, thus, in every NE, there are |D| = |T | − n triplet-machines on 
which the first job is from D . Finally, it is easy to see that in every NE there is exactly one dummy job from U on each of 
the last |T | + 1 machines.

Fig. 1 provides an example for n = 2 and |T | = 3.
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Fig. 1. (a) Let T = {(x1, y1, z1), (x2, y2, z2), (x1, y2, z2)}. A matching of size 2 exists. Job e is assigned on M4, an NE exists. (b) Let T =
{(x1, y1, z1), (x2, y2, z1), (x1, y2, z2)}. A matching of size 2 does not exist. Job e is not assigned on M4 and the no-NE game G∗ is induced on the first 
three machines.

In order to complete the proof we prove the following two claims that relate the existence of a NE in the game G T to the 
existence of a perfect matching in the 3DM-3 instance T . We first show that if the 3DM-3 instance has a perfect matching, 
then the game induced due to our construction has a pure Nash equilibrium.

Claim 2.2. If a 3D-matching of size n exists in T , then the game G T has an NE.

Proof. Let T ′ ⊆ T be a matching of size n. Assign the jobs of X ∪ Y ∪ Z on the triplet-machines corresponding to T ′ and 
the jobs of D on the remaining triplet-machines. Assign f and e on M4. Also, assign a single job from U on all but the first 
3 machines. We are left with the jobs a, b, c, d that are assigned on the first three machines: a and d on M1, b on M2 and 
c on M3. It is easy to verify that the resulting assignment is an NE. The crucial observation is that all the jobs originated 
from X ∪ Y ∪ Z completes at time at most 3, and therefore have no incentive to select M4. Thus, job e completes at time 4
on M4 and therefore, has no incentive to join the no-NE game on the first three machines. �

The next claim shows that if the 3DM-3 instance does not have a perfect matching, then as a consequence of our 
construction, the no-NE subgame G∗ is triggered, and G T has no NE.

Claim 2.3. If a 3D-matching of size n does not exist, then the game G T has no NE.

Proof. Since a matching does not exist, at least one job from X ∪ Y ∪ Z , is not assigned on its triplet machine, and thus 
prefers M4, where its completion time is 3. Thus, job e prefers to be first on M2 or M3, where its completion time is 4. The 
long dummy jobs guarantee that machines M1, M2 and M3 attracts exactly the 5 jobs {a, b, c, d, e} and the no-NE game G∗
is played on the first three machines. �

The proof of Theorem 2.1 then immediately follows from Claims 2.2 and 2.3. �
Our next results are positive. We introduce four classes of games for which an NE is guaranteed to exist. This char-

acterization is tight in a sense that our inexistence example disobeys it in a minimal way. For classes G3 (s j = 1 for all 
j ∈ M) and G4 (π j = π for all j ∈ M), a simply greedy algorithm shows that an NE always exists. We refer to Correa and 
Queyranne [10], and Farzad et al. [13], respectively, for a formal proof.

The following algorithm computes an NE for instances in the class G1, that is, pi = 1 for all i ∈ N . It assigns the jobs 
greedily, where in each step, a job is added on a machine on which the cost of a next job is minimized.

Algorithm 1 Calculating an NE of unit jobs on related machines.
1: Let � j denote the number of jobs assigned on machine j. Initially, � j = 0 for all 1 ≤ j ≤ m.
2: repeat
3: Let j� = arg min j (� j + 1)/s j .
4: Assign on machine j� the first unassigned job on its priority list.
5: � j� = � j� + 1.
6: until all jobs are scheduled

Theorem 2.4. If pi = 1 for all jobs i ∈ N, then Algorithm 1 calculates an NE.
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Proof. Let σ � be the schedule produced by Algorithm 1. We show that σ � is an NE. Note that the jobs are assigned one 
after the other according to their completion time in σ � . That is, if j1 is assigned before j2 then C j1 (σ

�) ≤ C j2 (σ
�). Assume 

by contradiction that σ � is not an NE, and let i be a job that can migrate from its current machine to machine j and reduce 
its completion time. Assume that if it migrates, then i would be assigned as the k-th job on machine j. This contradicts the 
choice of the algorithm when the k-th job on machine i is assigned - since j should have been selected. If no job is k-th on 
machine i, then we get a contradiction to the assignment of i. �

The following algorithm produces an NE for instances in the class G2, that is, m = 2.

Algorithm 2 Calculating an NE schedule on two related machines.
1: Assign all the jobs on M1 (fast machine) according to their order in π1.
2: For 1 ≤ k ≤ n, let the job i for which π2(i) = k perform a best-response move (migrate to M2 if this reduces its completion time).

Theorem 2.5. If m = 2, then an NE exists and can be calculated efficiently.

Proof. Assume w.l.o.g. that s1 = 1 and s2 = s ≤ 1. Consider Algorithm 2, which initially assigns all the jobs on the fast 
machine. Then, the jobs are considered according to their order in π2, and every job gets an opportunity to migrate to 
M2.

Let us denote by σ̂ the schedule after the first step of the algorithm (where all the jobs are on M1), and let σ denote 
the schedule after the algorithm terminates. The following two claims show that after the termination of the algorithm, no 
job has a unilateral deviation that improves its cost, i.e., σ is an NE.

Claim 2.6. No job for which σi = M1 has a beneficial migration.

Proof. Assume by contradiction that job i is assigned on M1 and has a beneficial migration. Assume that π2(i) = k. Job 
i was offered to perform a migration in the k-th iteration of step 2 of the algorithm, but chose to remain on M1. The 
only migrations that took place after the k-th iteration are from M1 to M2. Thus, if migrating is beneficial for i after 
the algorithm completes, it should have been beneficial also during the algorithm, contradicting its choice to remain on 
M1. �
Claim 2.7. No job for which σi = M2 has a beneficial migration.

Proof. Assume by contradiction that the claim is false and let i be the first job on M2 (first with respect to π2) that may 
benefit from returning to M1. Recall that, σ̂ denotes the schedule before job i migrates to M2 - during the second step of 
the algorithm. Recall that Ci(σ ) is the completion time of job i on M2, and Ci(σ̂ ) is its completion time on M1 before its 
migration.

Since the jobs are activated according to π2 in the 2-nd step of the algorithm, no jobs are added before job i on M2. 
Job i may be interested in returning to M1 only if some jobs that were processed before it on M1, move to M2 after its 
migration. Denote by 	 the set of these jobs, and let δ be their total processing time. Let i′ be the last job from 	 to 
complete its processing in σ . Since job i′ performs its migration out of M1 after job i, and jobs do not join M1 during step 
2 of the algorithm, the completion time of i′ when it performs the migration is at most Ci′ (σ̂ ). The migration from M1 to 
M2 is beneficial for i′ , thus, Ci′ (σ ) < Ci′ (σ̂ ).

The jobs in 	 are all before job i in π1 and after job i in π2. Therefore, Ci′(σ̂ ) < Ci(σ̂ ), and Ci′ (σ ) ≥ Ci(σ ) + δ/s. 
Finally, we assume that σ is not stable and i would like to return to M1. By returning, its completion time would be 
Ci(σ̂ ) − δ. Given that the migration is beneficial for i, and that i is the first job who likes to return to M2, we have that 
Ci(σ̂ ) − δ < Ci(σ ).

Combining the above inequalities, we get

Ci(σ̂ ) < Ci(σ ) + δ ≤ Ci′(σ ) − (1/s − 1)δ < Ci′(σ̂ ) − (1/s − 1)δ < Ci(σ̂ ) − (1/s − 1)δ,

which contradicts the fact that s ≤ 1 and δ ≥ 0. �
By combining the Claims 2.6 and 2.7, we conclude that no player has a beneficial deviation and σ is an NE. �
The last class for which we show that an NE is guaranteed to exist is the class of games with at most 3 jobs. Consider an 

instance consisting of m machines with arbitrary priority lists, and 3 jobs a, b, and c. Let M1 be a machine with the highest 
speed. Assume π1 = (a, b, c). Clearly, job a is on M1 in every NE. An NE can be computed by adding jobs b and c greedily 
one after the other. If job b picks M1 then the resulting schedule is an NE. If job b picks M2 and job c is then added before 
it on M2, then job b may migrate, to get a final NE. The above characterization is tight, as there exists a game with only 4
jobs that has no NE:
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Example 2.2. Consider the game Ĝ with 4 jobs, N = {a, b, c, d}, and three machines, M = {M1, M2, M3}, with π1 = (a, b, c, d), 
and π2 = π3 = (d, b, c, a). The speed of machine j is s j = 1/ j. The job processing times are pa = 5, pb = 4, pc = 13

3 ≈ 4.33
and pd = 9.25.

Job a is clearly on M1 in every NE. Since s2 > s3, Job d is not on M3 in any NE. We distinguish two different cases for 
job d.

1. Job d is on M1. Then as job b has the highest remaining priority among b and c on all machines, job b picks the 
machine with the lowest completion time, which is M2, and job c lastly is then on M1. As a result, d prefers M2 over 
M1 (since 18.5 < 18.58).

2. Job d is on M2. Then as job b has the highest remaining priority among b and c on all machines, job b picks the 
machine with the lowest completion time, which is M1, and job c lastly is then on M3 (since 13 < 13.33). As a result, 
d prefers M1 (since 18.25 < 18.5) over M2.

Thus, the game Ĝ has no pure Nash equilibrium.

A possible generalization of our setting considers unrelated machines, that is, for every job i and machine j, pij is the 
processing time of job i if processed on machine j. We conclude this section with an example demonstrating that an NE 
need not exist in this environment already with only two unrelated machines.

Example 2.3. Consider a game G with 3 jobs, N = {a, b, c}, and two machines, M = {M1, M2} with π1 = (a, b, c) and π2 =
(c, a, b). The job processing times are pa1 = 5, pa2 = 4, pb1 = 7, pb2 = 4, pc1 = 1 and pc2 = 7. We show that G has no NE. 
Specifically, we show that no assignment of job c can be extended to a stable profile.

First, assume that job c is on M1. Then job a has the highest remaining priority on the two machines and picks M2. 
Given that job a is on M2, job b prefers M1 over M2. However, job c now prefers to pick M2 as its completion time there 
is 7, which is smaller than 8.

Second, assume that job c is on M2. Then job a has the highest remaining priority on the two machines and picks M1. 
Given that job a is on M1, job b prefers M2. However, job c now prefers to pick M1 as its completion time there is 6, which 
is smaller than 7.

2.1. Convergence of best-response dynamics

In this section we consider the question whether natural dynamics such as better-responses are guaranteed to converge 
to an NE. Given a strategy profile σ , a strategy σ ′

i for job i ∈ N is a better-response if Ci(σ
′
i , σ−i) < Ci(σ ).

We show that every sequence of best-response converge to an NE for every instance G ∈ G1 ∪ G2 ∪ G3 ∪ G4.

Theorem 2.8. Let G be a game instance in G1 ∪ G2 ∪ G3 ∪ G4 . Any best-response sequence in G converges to an NE.

Proof. The proof has the same structure for all four classes. Assume that best-response dynamics (BRD) does not converge. 
Since the number of different profiles is finite, this implies that the sequence of profiles contains a loop. That is, the 
sequence includes a profile σ0, starting from which jobs migrate and eventually return to their strategy in σ0. Let � denote 
the set of jobs that perform a migration during this loop. For each of the four classes we identify a job i ∈ � such that once 
job i migrates, it cannot have an additional beneficial move.

Consider first the case G ∈ G1, that is, a game with unit jobs. Let Cmin be the lowest cost of a job in � during the BR-
cycle. Let M1 be a machine on which Cmin is achieved. Let i be the job achieving cost Cmin on M1 with the highest priority 
on M1 among the jobs in �. Once i achieves cost Cmin , its cost does not increase, as no job is added to M1 before it. Job i
cannot have an additional beneficial move, as this will contradict the definition of Cmin .

We turn to consider games in G2, that is, G is played on two machines. W.l.o.g., assume s1 = 1 and s2 = s ≤ 1. Let i
be the job in � with highest priority in π2. Given that BRD loops and that i ∈ �, it holds that during the BR sequence i
migrates from M1 to M2 and then back from M2 to M1.

We show that once i moves from M1 to M2, moving back to M1 cannot be beneficial for it. Let σ ′ denote the schedule 
before job i migrates from M1 to M2. Assume by contradiction that i may benefit from returning to M1. Let L1 be the total 
processing time of jobs on M1 that precede i on π1 in σ ′ . We have that Ci(σ

′) = L1 + pi . Let L2 be the total processing time 
of jobs in N \ � that precede i on π2. Since i has the highest priority among � on M2, its cost while on M2 is (L2 + pi)/s, 
independent of other jobs leaving and joining M2. The migration of i from M1 to M2 is beneficial, thus, L1 + pi > (L2 + pi)/s. 
Migrating back to M1 may become beneficial only if the total processing time of job that would precede it on M1 is less 
than L1, thus, at least one job that precedes i on π1 migrates out of M1 when i is on M2. Let k be the last job, for 
which π1(k) < π1(i) that have left M1 when i is on M2. Following k’s migration the processing time of jobs on M1 that 
precede i in π1 is L′

1. Migrating back is beneficial for i, thus, L′
i + pi < (L2 + pi)/s (additional jobs may join M1 after k

leaves it, but this only makes M1 less attractive for i). Since π2(k) > π2(i), the cost of k after its migrating to M2 is at 
least (L2 + pi + pk)/s. k’s migration from M1 to M2 is beneficial, thus, L′ + pk > (L2 + pi + pk)/s. By combining the above 
1
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inequalities we reach a contradiction. Specifically, L′
i + pi < (L2 + pi)/s = (L2 + pi + pk)/s − pk/s < L′

i + pk − pk/s ≤ L′
i . We 

conclude that job i cannot benefit from returning to M1 and thus, cannot be involved in the BRD-cycle.
Assume next that G ∈ G3, that is, machines have identical speeds. Let t be the lowest start time of a job in � during the 

BR-cycle. Let M1 be a machine on which t is achieved. Let i be the job in � with highest priority on M1. Clearly, once i
achieves start time, t , it cannot have an additional beneficial move, as this will contradict its choice.

Finally, if G ∈ G4, that is, when machines share a global priority list, then once the job in � with the highest priority 
migrates, it selects the machine with the lowest total processing time of jobs in N \ � that precedes it, and cannot have an 
additional beneficial move later. �
3. Equilibrium inefficiency

Two common measures for evaluating the quality of a schedule are the makespan, given by Cmax(σ ) = maxi∈N Ci(σ ), and 
the sum of completion times, given by 

∑
i∈N Ci(σ ). In this section we analyze the equilibrium inefficiency with respect to 

each of the two objectives, for each of the four classes for which an NE is guaranteed to exist.
We begin with G1, the class of instances with unit jobs. For this class we show that allowing arbitrary priority lists does 

not hurt the social cost, even on machines with different speeds.

Theorem 3.1. PoA(G1) = PoS(G1) = 1 for both the min-makespan and the sum of completion times objective.

Proof. Let σ be a schedule of unit jobs. The quality of σ is characterized by the vector (n1(σ ), n2(σ ), . . . , nm(σ )) specifying 
the number of jobs on each machine. The makespan of σ is given by max j n j(σ )/s j , and the sum of completion times in σ
is 

∑
j

n j(σ )(n j(σ )+1)

2s j
.

Theorem 2.4 shows that assigning the jobs greedily, where on each step a job is added on a machine on which the cost 
of the next job is minimized, yields an NE. Let σ � denote the resulting schedule, and let C1(σ �) ≤ C2(σ

�) ≤ . . . ≤ Cn(σ �) be 
the sorted vector of jobs’ completion times in σ � . The proof proceeds by showing that this vector corresponds to schedules 
that minimize the makespan, as well as the sum of completion times. Also, we show that every NE schedule induces the 
same cost vector as σ � .

First, we show that σ � achieves the minimum makespan. Assume that there exists a schedule σ ′ such that 
max j n j(σ

′)/s j < max j n j(σ
�)/s j . Let M1 = argmax jn j(σ

�)/s j . It must be that nM1 (σ
′) < nM1 (σ

�). Since 
∑

j n j(σ
′) =∑

j n j(σ
�) = n, there must be a machine M2 such that nM2 (σ

�) < nM2 (σ
′). Thus, the last job on machine M1 in σ � can 

benefit from migrating to machine M2, as its cost will be at most (nM2 (σ
�) + 1)/sM2 ≤ nM2 (σ

′)/sM2 ≤ max j n j(σ
′)/s j <

max j n j(σ
�)/s j . This contradicts the assumption that σ � is an NE.

Second, we analyze the sum of completion times objective. For a schedule σ , the sum of completion times is ∑
j(1 + . . . + n j)/s j . Using similar arguments, if σ � is not optimal with respect to the sum of completion times, there 

exists a beneficial migration from a machine whose contribution to the sum is maximal, to a machine with a lower contri-
bution.

Now, let σ be an NE schedule with sorted cost vector and let C1(σ ) ≤ C2(σ ) ≤ . . . ≤ Cn(σ ), and assume by contradiction 
that it has a different cost vector than σ ∗ . Let i be the minimal index such that Ci(σ

�) �= Ci(σ ). Since σ and σ � agree on 
the costs of the first i − 1 jobs, and since σ � assigns the i-th job on a minimal-cost machine, it holds that Ci(σ

�) < Ci(σ ). 
We get a contradiction to the stability of σ - since some job can reduce its cost to Ci(σ

�). The first and the second step 
concludes the proof of theorem. �

In Theorem 2.5 it is shown that an NE exists for any instance on two related machines. We now analyze the equilibrium 
inefficiency of this class. Let Gs

2 denote the class of games played on two machines with speeds s1 = 1 and s2 = s ≤ 1.

Theorem 3.2. For the min-makespan objective, PoA(Gs
2) =PoS(Gs

2) = s + 1 if s ≤
√

5−1
2 , and PoA(Gs

2) =PoS(Gs
2) = s+2

s+1 if s >√
5−1
2 .

Proof. Let G ∈ Gs
2. Let W = ∑

i pi be the total processing time of all jobs. Assume first that s ≤
√

5−1
2 . For the minimum 

makespan objective, O P T (G) ≥ W /(1 + s). Also, for any NE σ , we have that Cmax(σ ) ≤ W , since every job can migrate to 
be last on the fast machine and have completion time at most W . Thus, PoA ≤ s + 1.

Assume next that s >
√

5−1
2 . Let job a be a last job to complete in a worst Nash equilibrium σ , p1 be the total processing 

time of all jobs different from a on machine 1, and p2 be the total processing time of all jobs different from a on machine 
2 in σ . Then since σ is a Nash equilibrium, Cmax(σ ) ≤ p1 + pa and Cmax(σ ) ≤ (p2 + pa)/s. Combining these two inequalities 
yields

Cmax(σ ) ≤ W + pa ≤ s + 2 · O P T (G),

1 + s s + 1
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where for the inequality we use that O P T (G) ≥ W /(1 + s) and O P T (G) ≥ pa , and thus PoA≤ s+2
s+1 .

For the PoS lower bound, assume first that s < 2√
5+1

. Consider an instance consisting of two jobs, a and b, where 
pa = 1 and pb = 1/s. The priority lists are π1 = π2 = (a, b). The unique NE is that both jobs are on the fast machine. 
Ca(σ ) = 1, Cb(σ ) = 1 + 1/s. For every s <

√
5−1
2 , it holds that 1 + 1/s < 1/s2, therefore, job b does not have a beneficial 

migration. An optimal schedule assigns job a on the slow machine, and both jobs complete at time 1/s. The corresponding 
PoS is s + 1.3

Assume now that s >
√

5−1
2 . Consider an instance consisting of three jobs, x, y and z, where px = 1, p y = s2 + s − 1, and 

pz = s + 1. The priority lists are π1 = π2 = (x, y, z). Note that p y ≥ 0 for every s ≥
√

5−1
2 . In all NE, job x is on the fast 

machine, and job y is on the slow machine. Indeed, job y prefers being alone on the slow machine since s2 + s > s2+s−1
s . 

Job z is indifferent between joining x on the fast machine or y on the slow machine, since 1 + pz = (p y + pz)/s = s + 2. In 
an optimal schedule, job z is alone on the fast machine, and jobs x and y are on the slow machine. Both machines have the 
same completion time s + 1. The PoS is s+2

s+1 . �
Theorem 3.3. For the sum of completion times objective, PoA(Gs

2) = �(n) and PoS(Gs
2) = �(n) for all s ≤ 1.

Proof. For the upper bound, note that O P T (G) ≥ ∑
i pi and in every NE schedule σ , Ci(σ ) ≤ ∑

i pi . This implies PoA 
= �(n). For the PoS lower bound, consider an instance consisting of a set Z of n − 2 jobs with processing time ε , and 
two jobs, a and b, where pa = 1 and pb = s. The priority lists are π1 = π2 = (a, b, Z). Note that pa + pb > pb/s, therefore, 
in every NE, job a is first on M1 and job b is first on M2. Thus, every ε-job has completion time at least 1. The sum of 
completion times is at least n + O (n2)ε . An optimal schedule assigns a and b on M1 and all the ε-jobs on M2. The sum of 
completion times is at most 3 + O (n2)ε/s. For small enough ε , we get that the PoS is �(n). �

We turn to analyze the equilibrium inefficiency of the class G3, consisting of games played on identical-speed machines, 
having machine-based priority lists. The proof of the following theorem is based on the observation that every NE schedule 
is a possible outcome of Graham’s List-scheduling (LS) algorithm [16].

Theorem 3.4. For the min-makespan objective, PoA(G3) =PoS (G3) = 2 − 1
m .

Proof. Let σ be an NE schedule. We claim that σ is a possible outcome of Graham’s List-scheduling algorithm [16]. In-
deed, assume that List-scheduling is performed and the jobs are considered according to their start time in σ . Every job 
selects its machine in σ , as otherwise, we get a contradiction to the stability of σ . Since List-scheduling provides a 2 − 1

m
approximation to the makespan, we get the upper bound of the PoA.

For the lower bound, given m > 1, the following is an instance for which PoS= 2 − 1
m . The instance consists of a single 

job with processing time m and m(m − 1) unit jobs. In all priority lists, the heavy job is last and the unit jobs are prioritized 
arbitrarily. It is easy to verify that in every NE profile the unit jobs are partitioned in a balanced way among the machines, 
and the heavy job is assigned as last on one of the machines. Thus, the completion time of the heavy job is 2m − 1. On 
the other hand, an optimal assignment assigns the heavy job on a dedicated machine, and partitions the unit job in a 
balanced way among the remaining m − 1 machines. In this profile, all the machines have load m. The corresponding PoS is 
2m−1

m = 2 − 1
m . �

Theorem 3.5. For the sum of completion times objective, PoA(G3) ≤ n−1
m + 1, and for every ε > 0, PoS(G3) ≥ n

m − ε .

Proof. For the upper bound of the PoA, note that, independent of the number of machines, the sum of completion times 
is at least 

∑
i pi . Also, for every job a, if a is not assigned on any machine, then there exists a machine with load at most ∑

i �=a pi

m , therefore, in every NE profile, the completion time of job a is at most 
∑

i �=a pi

m + pa . Summing this equation for all 
the jobs, we get that the sum of completion times of any NE is at most

n
∑

i pi − ∑
i pi

m
+

∑
i

pi =
∑

i

pi
n − 1

m
+ 1.

We conclude that the PoA is at most n−1
m + 1.

For the PoS lower bound, given m, let ε → 0, and consider an instance with n = km jobs, out of which, m jobs j1, . . . , jm

have length 1 and the other (k − 1)m jobs have length ε . Assume that πi gives the highest priority to ji then to all the 
ε-jobs, and then to the other m − 1 unit jobs.

3 For s =
√

5−1
2 , by taking pb = 1/s + ε , the PoS approaches (s + 2)/(s + 1) as ε → 0.
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In every NE, machine i processes first the unit-job ji , followed by k − 1 ε-jobs. Thus, every job has completion time at 
least 1. The sum of completion times is n + O (mk2)ε . On the other hand, an optimal solution assigns on machine i a set of 
k − 1 ε-jobs followed by one unit-job jk for k �= i, resulting in a sum of completion times of m + O (mk2)ε . The PoS tends 
to n

m as ε decreases. �
The last class of instances for which an NE is guaranteed to exist includes games with a global priority list, and is 

denoted by G4. It is easy to verify that for this class, the only NE profiles are those produced by List-Scheduling algorithm, 
where the jobs are considered according to their order in the priority list. Different NE may be produced by different tie-
breaking rules. Thus, the equilibrium inefficiency is identical to the approximation ratio of LS [7]. Since the analysis of LS is 
tight, this is also the PoS.

Theorem 3.6. For the min-makespan objective, PoS(G4) =PoA(G4) = �(m).

For the sum of completion times objective, we note that the proof of Theorem 3.3 for two related machines uses a global 
priority list. The analysis of the PoA is independent of the number and speeds of machines.

Theorem 3.7. For the sum of completion times objective, PoA(G4) = �(n) and PoS(G4) = �(n).

4. Hardness of computing an NE with low social cost

Correa and Queyranne [10] showed that if all the machines have the same speeds, but arbitrary priority lists, then an NE 
is guaranteed to exist, and can be calculated by a simple greedy algorithm.

In this section we discuss the complexity of computing a good NE in this setting. We refer to both objectives of minimum 
makespan and minimum sum of completion times. For both objectives, our results are negative. Specifically, not only that it 
is NP-hard to compute the best NE, but it is also hard to approximate it, and to compute an NE whose social cost is better 
than the one guaranteed by the PoA bound.

Starting with the minimum makespan, in Theorem 3.4, we have shown that the PoA for this objective is at most 2 − 1
m . 

We show that we cannot hope for a better algorithm than the simple greedy algorithm. More formally, we prove that it is 
NP-hard to approximate the best NE within a factor of 2 − 1

m − ε for all ε > 0.

Theorem 4.1. If for all machines s j = 1, then it is NP-hard to approximate the best NE w.r.t. the makespan objective within a factor of 
2 − 1

m − ε for all ε > 0.

Proof. We show that for every ε > 0, there is an instance on m identical machines for which it is NP-hard to decide 
whether the game has an NE profile with makespan at most m + 3ε or at least 2m − 1.

The hardness proof is by a reduction from 3-bounded 3-dimensional matching (3DM-3). Recall that the input of the 
3DM-3 problem is a set of triplets T ⊆ X × Y × Z , where |T | ≥ n and |X | = |Y | = |Z | = n, and the number of occurrences 
of every element of X ∪ Y ∪ Z in T is at most 3. The goal is to decide whether T has a 3-dimensional matching of size 
n.

Given an instance of 3DM-3 and ε > 0, consider the following game on m = |T | + 2 machines, M1, M2, . . . , M|T |+2. The 
set of jobs includes job a with processing time m, job b with processing time m − 1, a set D of |T | − n dummy jobs with 
processing time 3ε , two dummy jobs d1, d2 with processing time 2ε , a set U of (m − 1)2 unit jobs, and 3n jobs with 
processing time ε - one for each element in X ∪ Y ∪ Z .

We turn to describe the priority lists. We remark that when the list includes a set, it means that the set elements 
appear in arbitrary order. The symbol φ means that the remaining jobs appear in arbitrary order. For the first machine, 
π1 = (d1, b, a, U , φ). For the second machine, π2 = (d2, X, Y , Z , b, U , a, d1). The m − 2 right machines are triplet-machines. 
For every t = (xi, y j, zk) ∈ T , the priority list of the triplet-machine corresponding to t is (D, xi, y j, zk, U , φ).

The heart of the reduction lies in determining the priority lists. The idea is that if a 3D-matching exists, then job b would 
not prefer M1 over M2. This will enable job a to be assigned early on M1. However, if a 3D-matching does not exist, then 
some job originated from the elements in X ∪ Y ∪ Z will precede job b on M2, and b’s best-response would be on M1. The 
jobs in U have higher priority than job a on all the machines except for M1, thus, unless job a is on M1, it is assigned after 
|U |/(m − 1) unit-jobs from U , inducing a schedule with high makespan.

Observe that in any NE, the two dummy jobs with processing time 2ε are assigned as the first jobs on M1 and M2. 
Also, the dummy jobs in D have the highest priority on the triplet-machines, thus, in every NE, there are |D| = |T | − n
triplet-machines on which the first job is from D .

Fig. 2 provides an example for m = 5.
In order to complete the gap reduction, we need the following two claims for the upper and lower threshold. First, 

we show that if a perfect matching exists, then this guarantees an NE in the associated scheduling problem instance with 
makespan at most m + 3ε .
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Fig. 2. Let n = 2 and T = {(x1, y1, z1), (x2, y2, z2), (x1, y2, z2)}. (a) an NE given the matching T ′ = {(x1, y1, z1), (x2, y2, z2)}. The makespan is 5 + 3ε . (b) an 
NE if a matching of size 2 is not found. Job z2 is stable on M2, thus, job b prefers M1 over M2. The makespan is 9 + 2ε .

Claim 4.2. If a 3D-matching of size n exists, then there is an NE with makespan m + 3ε .

Proof. Let T ′ be a matching of size n. Assign the jobs of X ∪ Y ∪ Z on the triplet-machines corresponding to T ′ and the jobs 
of D on the remaining triplet-machines. Also, assign d1 and d2 on M1 and M2 respectively. M1 and M2 now have load 2ε
while the triplet machines have load 3ε . Next, assign job a on M1 and job b on M2. Finally, add the unit-jobs as balanced as 
possible: m jobs on each triplet-machine and a single job after job b on M2. It is easy to verify that the resulting assignment 
is an NE. Its makespan is m + 3ε . �

The next claim proves the other direction of the reduction. That is, any NE with makespan less than 2m − 1 induces a 
perfect matching.

Claim 4.3. If there is an NE with makespan less than 2m − 1, then there exists a 3D-matching of size n.

Proof. Let σ be an NE whose makespan is less than 2m −1. Since pa = m and pb = m −1, this implies that a is not assigned 
after b on M1 or on M2. Also, since jobs of U have higher priority than a on all the machines except for M1, it holds that 
a is not assigned after m − 1 unit-jobs. Thus, it must be that job a is processed on M1 and job b is not on M1. Job b does 
not prefer M1 over M2 only if it starts its processing right after job d2 on M2. Since the jobs of X ∪ Y ∪ Z have higher 
priority than job b on M2, they are all assigned on triplet-machines and starts their processing after jobs of total processing 
time at most 2ε . Thus, every triplet machine processes at most three jobs of X ∪ Y ∪ Z - the jobs corresponding to the 
triplet, whose priority is higher than the priority of the unit-jobs of U . Moreover, since the jobs of D have higher priority 
on the triplet-machines, there are |T | − n triplet-machines on which the jobs of D are first, and exactly n machines each 
processing exactly the three jobs corresponding to the machine’s triplet. Thus, the assignment of the jobs from X ∪ Y ∪ Z
on the triplet-machines induces a matching of size n. �

Claims 4.2 and 4.3 conclude the proof of the theorem. �
We turn to analyze the complexity of computing the best NE with respect to the sum of completion times. Traditionally, 

this objective is simpler than minimizing the makespan, as the problem can be solved efficiently by SPT-rule if there are 
no priorities. We show that even in the simple case of identical machines, in which an NE is guaranteed to exists [10], it is 
NP-hard to approximate the solution’s value.

Theorem 4.4. If for all machines s j = 1, then, for any r > 1, it is NP-hard to approximate the best NE w.r.t. the sum of completion times 
within factor r.

Proof. Given m, r, let k be a large integer such that m+k
m+1 > r. We show that for every r > 1, there is an instance on m

identical machines for which it is NP-hard to decide whether the game has an NE profile with sum of completion times at 
most m + 1 or more than m + k.

The hardness proof is, again, by a reduction from 3-bounded 3-dimensional matching (3DM-3). Given an instance of 
3DM-3 and r > 1, consider the following game on m = |T | + 2 machines, M1, M2, . . . , M|T |+2. Recall that k satisfies m+k

m+1 > r. 
Let ε > 0 be a small constant, such that (k2 + 3k + 6m)ε < 1. The set of jobs includes job a with processing time ε , job b
with processing time 1, a set D of |T | − n dummy jobs with processing time 3ε , two dummy jobs d1, d2 with processing 
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Fig. 3. Let n = 2 and T = {(x1, y1, z1), (x2, y2, z2), (x1, y2, z2)}. (a) an NE given the matching T ′ = {(x1, y1, z1), (x2, y2, z2)}. The jobs of K start their 
processing at time 3ε . (b) an NE if a matching of size 2 does not exist. Job z2 selects M2, thus, job b prefers M1 over M2. The jobs of K start their 
processing at time at least 1 + 2ε .

time 2ε , a set U of m − 1 unit jobs, 3n jobs with processing time ε - one for each element in X ∪ Y ∪ Z , and a set K of k
jobs with processing time ε . Note that there are exactly m unit jobs (the job b and the jobs of U ), while all other jobs have 
O (ε) processing time.

We turn to describe the priority lists. Note that, when the list includes a set, it means that the set elements appear 
in arbitrary order. The symbol φ means that the remaining jobs appear in arbitrary order. For the first machine, π1 =
(d1, b, a, K , U , φ). For the second machine, π2 = (d2, X, Y , Z , b, U , a, K , φ). The m − 2 right machines are triplet-machines. 
For every t = (xi, y j, zk) ∈ T , the priority list of the triplet-machine corresponding to t is (D, xi, y j, zk, a, U , K , φ).

The heart of the reduction lies in determining the priority lists. The idea is that if a 3D-matching exists, then job b would 
not prefer M1 over M2. This will enable job a and all the tiny jobs of K to be assigned early on M1 each having completion 
time at most (k + 3)ε . However, if a 3D-matching does not exist, then some job originated from the elements in X ∪ Y ∪ Z
will precede job b on M2, and b’s best-response would be on M1. The jobs in U have higher priority than a and K on M2, 
thus, on every machine there would be at least one job of length 1 that precedes the jobs of K , implying that the sum of 
completion times will be more than m + k.

Observe that in any NE, the two dummy jobs with processing time 2ε are assigned as the first jobs on M1 and M2. 
Also, the dummy jobs in D have the highest priority on the triplet-machines, thus, in every NE, there are |D| = |T | − n
triplet-machines on which the first job is from D .

Fig. 3 provides an example for m = 5.
The following claims prove the lower and the upper threshold in the gap instance of the scheduling problem.

Claim 4.5. If a 3D-matching of size n exists, then there is an NE with sum of completion time at most m + 1.

Proof. Let T ′ be a matching of size n. Assign the jobs of X ∪ Y ∪ Z on the triplet-machines corresponding to T ′ and the 
jobs of D on the remaining triplet-machines. Also, assign d1 and d2 on M1 and M2 respectively. M1 and M2 now have load 
2ε while the triplet machines have load 3ε . Next, assign job a and the jobs of K on M1, and job b on M2. Finally, add one 
unit-job on each triplet-machine and on M1. It is easy to verify that the resulting assignment is an NE. The jobs of K are 
not delayed by unit jobs, so each of them completes at time at most (k + 3)ε . The other jobs with processing time O (ε)

contribute at most 6ε to the sum of completion times on every machine, and every unit job completes at time 1 + O (ε). 
Thus, the sum of completion times is m + f (ε), where ε was chosen such that f (ε) < 1. �
Claim 4.6. If there is an NE with sum of completion times less than m + k, then there exists a 3D-matching of size n.

Proof. Let σ be an NE whose sum of completion times is less than m + k. There are m unit jobs, and in any NE, each is 
processed on a different machine, as otherwise, some machine has load f (ε), and the second unit job on a machine has 
a beneficial migration. In order to have sum of completion times less than m + k, at least one job from K is not assigned 
after a unit job. The only machine on which jobs from K may precede a unit job is M1, where jobs of K may precede a 
job from U . This is possible only if job b is not processed on M1. Job b does not prefer M1 over M2 only if it starts its 
processing right after job d2 on M2. Since the jobs of X ∪ Y ∪ Z have higher priority than job b on M2, they are all assigned 
on triplet-machines and starts their processing after jobs of total processing time at most 2ε . Thus, every triplet machine 
processes at most three jobs of X ∪ Y ∪ Z - the jobs corresponding to the triplet, whose priority is higher than the priority 
of the unit-jobs of U . Moreover, since the jobs of D have higher priority on the triplet-machines, there are |T | − n triplet-
machines on which the jobs of D are first, and exactly n machines each processing exactly the three jobs corresponding 
to the machine’s triplet. Thus, the assignment of the jobs from X ∪ Y ∪ Z on the triplet-machines induces a matching of 
size n. �

Claims 4.5 and 4.6 conclude the proof of theorem. �
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Note that, given m, r, the game built in the reduction has n < (r + 3)m jobs. That is, r > n
m − 3. Also, as shown in 

Theorem 3.5, for the sum of completion times objective, PoA(G3) ≤ n−1
m + 1. Thus, the above analysis shows that up to a 

small additive constant, it is NP-hard the compute an NE that approximates the optimal sum of completion time better than 
the PoA.

5. Conclusion and open problems

Traditional analysis of coordination mechanisms assumes that jobs assigned to some machine are processed according to 
some policy, such as shortest or longest processing time. In this paper we explored the effect of having a different policy, 
given by an arbitrary priority list, for every machine. We showed that in general, an NE schedule may not exist, and it is 
NP-hard to identify whether a given game has an NE. On the other hand, for several important classes of instances, we 
showed that an NE exists and can be computed efficiently, and we bounded the equilibrium inefficiency with respect to the 
common measures of minimum makespan and sum of completion times. We also showed that natural dynamics converge 
to an NE for all these classes. In terms of computational complexity, we proved that even for the simple class of identical 
machines, for which an NE can be computed efficiently, it is NP-hard to compute an NE whose quality is better than the 
quality of the worst NE.

Our work leaves open several interesting directions for future work.

• To the best of our knowledge, the problem of computing the social optimum of an instance is a new variant of schedul-
ing with precedence constraints, that has not been studied before. The main difference from classical scheduling with 
precedence constraints is that a priority list determines the scheduling priority for jobs on a specific machine, rather 
than for the entire schedule. Therefore, it is not possible to adopt known ideas and techniques.

• Since our game may not have an NE, it is natural to consider weaker notions of stability. In particular, for a parameter 
α ≥ 1, a profile is an α-approximate NE if no job can change strategy such that the cost reduces by factor at least 
α [25]. The existence and calculation of approximate NE profiles is still open.

• A natural generalization is to consider games in which jobs have an arbitrary strategy space, and the cost of a job is 
the sum of the cost for the resources used, where each resource has its own priority list.
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