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Abstract. Companies like Google and Microsoft run billions of auctions
every day to sell advertising opportunities. Any change to the rules of
these auctions can have a tremendous effect on the revenue of the com-
pany and the welfare of the advertisers and the users. Therefore, any
change requires careful evaluation of its potential impacts. Currently,
such impacts are often evaluated by running simulations or small con-
trolled experiments. This, however, misses the important factor that the
advertisers respond to changes. Our goal is to build a theoretical frame-
work for predicting the actions of an agent (the advertiser) that is opti-
mizing her actions in an uncertain environment. We model this problem
using a variant of the multi-armed bandit setting where playing an arm
is costly. The cost of each arm changes over time and is publicly observ-
able. The value of playing an arm is drawn stochastically from a static
distribution and is observed by the agent and not by us. We, however,
observe the actions of the agent. Our main result is that assuming the
agent is playing a strategy with a regret of at most f(7") within the first
T rounds, we can learn to play the multi-armed bandits game (with-
out observing the rewards) in such a way that the regret of our selected
actions is at most O(k*(f(T)+1) log(T)), where k is the number of arms.

Keywords: ad auctions - advertiser response prediction - multi-armed
bandit - low regret

1 Introduction

Over the last two decades, the online advertising market has emerged as one of
the most important application areas of auctions. Companies like Google and Mi-
crosoft run billions of auctions every day to sell advertising opportunities worth
hundreds of millions of dollars. Rules of these auctions have undergone frequent
change, often prompted by the release of new features (such as ads with addi-
tional site links or ads taking advantage of re-targeting lists) or by optimizations
in the auction system (such as a new reserve price algorithm or a new algorithm
for estimating click probabilities). Any such change can have tremendous impact
on the revenue of the company and the welfare of the advertisers and the users.
Therefore, any proposed change to the auction system goes through a rigorous
vetting process to evaluate its potential impacts and decide, based on the results
of the evaluation and current business priorities, whether the proposal merits a
launch.
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Currently, the main tools used for evaluating a proposed launch is running
simulations [16] or small controlled experiments [19]. These approaches, however,
miss the important factor that the advertisers respond to changes. This is evident
in the case of simulations, where the bids advertisers have submitted for the
existing auction are used to simulate the new proposed auction. In the case
of controlled experiments, the trouble is that the treatment often has to be
applied to all or none of advertisers in an auction. This, together with the fact
that advertisers overlap imperfectly on the set of auctions they participate in,
makes it practically impossible to select random treatment and control groups of
advertisers, treat all of the auctions the treatment set of advertisers participate in
while leaving all auctions that the control group participate in untreated (See [3]
for a discussion of a very similar problem in the context of social networks)[E
In practice, experiments are run with a random set of auctions (typically 1% or
less of all auctions) as the treatment group. This means that for each advertiser
only a very small percentage of their auctions is treated, leading to a treatment
effect that is well smaller than the noise in the system, and is hence practically
unobservable by the advertiser

In this paper, our goal is to build a theoretical framework for predicting ad-
vertiser response based on observations about their past actions. Our model is
driven by a few important considerations. First, the advertisers face an uncer-
tain environment, and optimize their objective in presence of uncertainty. As
in [I7], we capture this by modeling the advertiser as an agent solving a regret
minimization problem in a multi-armed bandit setting. In our motivating appli-
cation, each arm can correspond to an ad slot the agent can purchase or to a
discretized value of the bid the agent submits. We make no assumption on the
type of algorithm the agent is using except that it has bounded regret. Second,
we are concerned with an environment that is changing, and therefore requires
the agent to respond to this change. We model this by assuming each arm has
a cost, and in each round, the agent is informed about the cost before he has to
choose which arm to play. This is the main point of difference between our model
and the model in [I7], and is an important element of our model, since without
this, to predict which arm an agent is going to play, it is enough to look at their
past history and select the arm that is played most often. The assumption that
the cost of each arm is observed before the agent picks which arm to play is
not entirely accurate in our motivating application, since advertisers only learn

! See [15] for an attempt to solve this problem by restricting the experiment to small

micro-markets. Note that this has the obvious disadvantage of biasing the experiment
toward a non-representative set of advertisers and auctions.
See [9] for an interesting theoretical treatment of this setting. It turns out that
assuming that the advertisers are fully rational and react even to a small change in
the auction, even treating a small percentage of each advertiser’s auctions is enough
to extrapolate their response to a full treatment. In practice, however, there is too
much noise and fluctuation in the system for advertisers to be able to observe and
respond to a change that, for example, increases their cost per click by 10% in 1%
of their auctions.



about the cost of their ad after it is placed. However, given that in practice costs
change continuously over time, the advertisers can use the cost of each arm in
the recent past as a proxy for its current cost. Therefore, we feel this assumption
is a justified approximation of the real scenario.

Finally, we model the objective of our prediction problem. In our model, once
the agent decides which arm to play, they receive a reward from that arm that
is drawn stochastically from a static distribution This reward is observed by
the agent but not by us. All we observe is the cost of the arms and the arm that
the agent plays. Over time, we would like to be able to “predict” which arm the
agent plays. We need to be careful about the way we capture this in our model.
For example, if two of the arms always have the same cost and the same reward,
the agent’s choice between them is arbitrary and can never be predicted. Also,
if an arm has never been played (e.g., since its cost has been infinity so far), we
cannot be expected to predict the first time it is played. For these reasons, we
evaluate our prediction algorithm by the regret of its actions. Our main result
is an algorithm that by observing the actions of the agent learns to play the
multi-armed bandit problem with a regret that is close to that of the agent.
Furthermore, we show if the optimal arm, i.e., the arm with highest reward and
lowest cost, is unique at every step, the number of predictions of our algorithm
that is not exactly the same as the agent actions is upper bounded. Our upper
bound depends on the distance between the optimal arm and the second optimal
arm at every step.

Since we evaluate our algorithm by the regret of its actions, it can be seen as
a regret minimization algorithm which is a very well studied subject. The dis-
tinguishing point of between our work and previous work in regret minimization
is that in our setting the algorithm does not observe the payoffs (not even the
payoff of the arm it selects) which is the essential input for regret minimization
algorithms in the literature [6].

2 Related Work

The closest previous work to this paper is [I7], where the authors study a model
for learning an agent’s valuations based on the agent’s responses. Similar to this
paper, [I7] does not assume that the agent always chooses a myopically optimal
action, but assumes that the agent chooses its actions using a no-regret learning
algorithm. There are two main differences between the model in [I7] and in our
paper. The first difference is that [I7] studies a single parameter setting where
each agent reports a single bid, whereas we study a multi-parameter setting

3 In our motivating application, the reward can be the profit the advertiser makes if
the user clicks on their ad and makes a purchase, or zero otherwise. In this case, the
assumption that the reward distribution is static means that the profit per conversion
and the conversion probability are fixed over time. This is not entirely accurate, but
is a reasonable approximation of the reality, since while these parameters change
over time, they tend to change at a slow pace.



where the agent can pick one of many actions and the utility of each action
might not be related to the others. Hence as a model one can reduce [I7] to our
model by disretization. Another key difference between the two papers is the
metric. The goal of [I7] is to study sample complexity of computing a set whose
Hausdoff distance from the “rationalizable set” of valuations is not large. In the
current paper the metric is regret of the algorithm with respect to the agent’s
valuation. Another related work is [I0], where the authors study the problem of
mimicking an opponent in a 2 player gaming setting when we cannot observe
the payoff and the only thing that is observable is the action of the opponent.

As we discussed in the introduction, our results can be used for bid prediction
if the arms correspond to discretized values for the bids the agents submits. There
are a number of papers [2TI8IT8J5] on this subject that model different objectives
and behaviors of the agents. However, most of them rely on an estimation of the
agent’s private values so they can be used for bid prediction. Also, most of these
papers ignore the fact that the agents often faces an uncertain environment that
they learn over time, and the optimizations happen in presence of uncertainty.

Another line of related work is on designing mechanisms for agents that follow
no-regret strategies. For example [4] studies an auction design problem in such
a model.

Outside of computer science there is also a rich literature in Economics study-
ing inference in auctions under equilibrium assumptions. A survey of this liter-
ature can be found in [2]. This approach has been used to study a wide variety
of settings such as arbitrary normal form games [14], static first-price auctions
[11], extension to risk-verse bidders [12/7], sequential auctions [I3] and sponsored
search auctions [20/1].

3 Model

In this section we describe our theoretical framework for predicting advertiser
response based on observations about their past actions. In our model, an agent
(representing an advertiser in our motivating application) plays a multi-armed
bandit game with k& arms. In each of the time steps t = 1,2, ..., each arm i has a
cost ct. These costs can be different in each time step, but they are observed by
the agent and by us at the beginning of each time step. The reward (also called
the value) of playing arm ¢ in any time step is drawn from a distribution D; with
expected value 0 < v; < 1. The agent does not know D; or v;, but after playing
an arm, privately observes its reward. In our motivating application, each arm
can correspond to a bid value the advertiser can submit. The reward of an arm
is the value the advertiser receives (e.g., by selling a product through the click-
through on their ad), and the cost corresponds to the amount they have to pay
for their ad. In this context, the assumptions that the costs are observed by the
advertiser as well as the auctioneer, that the distribution D; is unknown, and
that the reward is observed by the advertiser but not by the auctioneer all make
sense.



As the costs are different at each time step, the optimal action o, =
argmax;e{vi — ¢} for the agent can also be different. Since the agent does
not know wv;’s, she might play an arm that is not necessarily optimal. Let a;
be the arm that the agent picks at step ¢t. As a result of this choice, the agent
accrues a regret of ary = (vo, — ¢b,) — (va, — ¢l,,) at time step t. We assume
that the agent uses an arbitrary bounded-regret strategy, i.e., her total regret

Ethl ary up to time T is bounded by a function f(T) for each time step T

The goal is to design an algorithm that in each time step t, given the history
of the agent actions up to this time step (i.e., the costs c!,...,c!~! and the
actions a1, ...,a;—1 of the agent, but not the rewards the agent has received)
and the costs ¢! of the arms in this time step, picks an arm p;. Because of this
choice, the algorithm accrues a regret of pry = (v, — ¢5,) — (vp, — c},,) at step
t. Our metric for the algorithm’s performance is measured by the total regret it
achieves as compared to the regret of the agent.

Our main result is that there exists an algorithm with a regret bound of

O(K*(£(T) + 1) log(T)).

4 Prediction Algorithm

In this section, we describe our prediction algorithm. A key step in designing
the algorithm is our assumption that the agent’s regret is bounded by f(t) for
each time step t. This allows us to define a set of values for the agent that are
consistent with their actions so far and their regret bound. A value vector v is
consistent with the actions up to time ¢ if there exists a regret vector r such
that:

Va, — €, > vi — ¢ —rg VL€ [t —1],Vi € [K]

2j<emi S F(0) Veelt—1] (1)

We denote the set of consistent values at time ¢ with CV(¢). Note that for every
v € CV (t), the optimal arm is argmax,{v; — ¢! }. The main idea of the algorithm
is to pick an arm which is the optimal arm for the largest portion of CV ().
Formally, for each arm ¢ define w; as the probability that ¢ is the optimal arm
for a vector v € CV(t) chosen uniformly at random. At every time step ¢, our
algorithm picks the arm ¢ with the highest w;.

ALGORITHM 1: Prediction Algorithm
CV(O0)={v]|0< v <1,Vi};
for each time step t do
¢! < costs of playing arms at time step t;
CV (t) < the set of consistent values at time step ¢ ;
w; := Pry unigcvylve — ¢ > v — ¢, Vjl;
Pt < arg max; wi;

end




The time complexity of our algorithm at each time step is equivalent to the
time complexity of computing the volume of polynomially many & dimensional
polytopes.

4.1 Regret Analysis

In this section we analyze the regret bound of Algorithm [ In the main theorem
of this section, Theorem [II we show Algorithm [Fs predictions for the first T
rounds has a regret bound of O(k*(f(T) + 1)In(T)). Note that after each ac-
tion by the agent, the set of consistent values should satisfy the following new
constraints.

Vi # ag,Va, —Vj +1¢ > Cap — €5

Lemma [[lwill be used later in the proof of Theorem [l to show that each time the
prediction of the algorithm is wrong (meaning a; # p;) the set CV(¢) shrinks.
Before stating the lemma, we need to define the following notations:

Uij(t) = mazyecv ) {vi — vi}

Lij (t) = minvecv(t){vi — Uj}

Lemma 1. If the predicted arm p; is not the arm a; that is played by the agent,
then

1
Ct - Ctt 2 LatPt (t) + 37 Uatpt (t) - Latpt (t))

at P Sk(

Proof. Let us simplify the notations by omitting some of the indices: a = ay,
p=pt, L =Lg,p,, U=Ugsp,, and ¢ = cq, — Cp,. Suppose

1
<L+ —=U-L 2
<L+ (U-1) )
for the sake of contradiction. Using Inequality (2]), we show an arm i exists
such that its weight w; is higher than the weight of the arm p. Therefore, we
have a contradiction because the algorithm chooses an arm p such that w, =
max;e(;] wi. Lemma [ follows from this contradiction.

Let us define G(2) = Pryunif(cv #)[va —vp < 2] and g(z) = %ﬁz). We first
show g¢(z) is concave and non-negative in [Lgp, Ugp).

Claim 1. g(z) is concave and non-negative in [Lqp, Uqp).

Proof. For simplicity and without loss of generality we suppose C'V (t) is full
dimensional. Following the definition, G(z) is the probability that a randomly
drawn point from CV (¢) is in the half space v, — v, < z. In other words, G(z) is



ratio of the volume of intersection of C'V'(t) and the half space v, — v, < z over
the volume of C'V (¢), i.e.,

_ Vol(CV () N{v: vg —vp < 2})

G(z) Vol(CV (1))

Now it is easy to see that the derivative of G(z), g(z), is the surface area of
the intersection of the hyperplane v, — v, = z and CV (¢t). Therefore, the claim
follows due to convexity of CV (t).

Considering Inequality (@]), the following claim proves an upper bound on
the weight w, of arm p and the next claim (Claim [3) shows a lower bound on
the sum of weights of all arms except arm p, i.e, >, £p Wi- These claims will lead
to the contradiction we need.

Claim 2. w, < 2¢(c)(c—L).

Proof. Note that
wp < G(e) (3)
because we have wy, = Pryunifcv )|V, vp — ¢p > vj — ¢;] and so

wy < Pryunifcve)lvp — ¢p = Ve — ca) = G(c).

It suffices for the proof to show g(z) < 2¢(c), Vo € [L,c] because G(c) =
/ LC g(z)dz. By Claim [Ml we know that ¢ is a non-negative and concave function
in [L, U]. Therefore, we have

Ve e [L,c, glx)<gle)—~v(c—2x)

: ot : : 9(U)—g(c)
where 7 is the derivative of g at point c. By concavity of g, we have y > £=—="-.

Therefore, for every z € [L, ¢], we have

(@) < g(e) - LDy
< g(e) +9(0) T—

where the second inequality follows from the non-negativity of g(U), and the
last inequality holds because by Inequality @), c— L < U — ¢, and therefore for

every x € [L, ], =% < 1.

Claim 3. Y, w; > %2(U — o).
Proof. Note that ), w; = 1. Therefore, by Inequality (3], we have

d wi=1-w,>1-G(c) =GU) - Gle), (4)

9FED



Since g is a non-negative concave function on [L, U], we have

Vo € [¢,U], g(z) > g(c) + wu )
Therefore,
U
GU)-G(c) = / g(x)dx

U —

> / (g(c) - g(UU)_i( )) (z —¢)de

g0

> g(c) (U0

This, together with Inequality (@) complete the proof of Claim

Now we show a contradiction using Claim[2, Claim Bland Equation (2]). Note
that g(¢) > 0 and U — ¢ > % by Claim 2] and Inequality (2)), respectively.
Therefore,

wp < 2¢(c)(c—L) < %(U -L)< %(U —0),

where the first and the second inequalities follow from Claim [2] and Inequality
@), respectively. On the other hand, using Claim Bl we know there exists an arm
1 such that

g(c)
w; > %(U —o).

Therefore, we have w; > 92(2) (U —c¢) > w, which contradicts the way p is selected
by Algorithm [II

Theorem 1. Total regret of Algorithm [ for the first T rounds is bounded by
O(K*(f(T) +1)In(T)).

Proof. To prove the theorem, we show that

Y opre < f(T) + K*AH(T)(F(T) + 1) (5)

for A > 2+ m and § =1— 8Lk' Here H(T') denotes the harmonic series.

Let v* denote the actual value vector of the arms. By the definition of regret we
have

pri = (v5, = ¢,) = (v, = c3,)
= ((v3, —c5,) = (v3, — o)) + ((vs, — <o) — (v, = c},)

=ary + (v, —cq,) — (v, — p,))



Let us define er, = max(0, (v}, —¢},) — (v5, — c},)). Therefore,

at at y43 Pt
Zprt < Zam + Zem < f(T)+ Zert.
t<T t<T t<T t<T

Therefore, to prove Inequality (F), it is enough to show Y, . ery < K*XH (T)(f(T)+
1). We define Bog(T) = {t: t <T and (at,pt) = (o, 8)}. Note that we have

Z ery = Z Z ery
t<T a,B t€Bag(T)

< k2. rg%x{ Z er}. (6)

tEBap(T)

Therefore, to prove Inequality (), it is enough to show that for every «, 3,

> en SAH(T)(f(T)+1).

teB.g (T)

Let us fix @ and 3. Suppose | = |Bag(T)| and Bag(T) = {t1,...,t;} where
t1 < .-+ < t;. We only consider cases where o # 3 because Va, EteBw ery = 0.

Therefore, using Lemma [[l we know L(t;) < cfi — cg That gives

[e3%

In following claim we show (v;, — vj3) — L(t;) is bounded by M
Claim 4. For every t; € Bog(T), we have

)\(f(ti_) + 1)'

(v —vp) = L(t) < =

Proof. The proof is by contradiction. Suppose there is a t; such that
Af) +1)

(v —v3) - L) > =2

Let t; be the smallest such ¢;. Therefore,

Mf(t) +1).

Vi <i, (v —vg) = L(t)) 7

IN

(8)

Let v € C'V (¢;) be a point that minimizes v, —vg, i.e., 9o —0g = L(t;). Note that
we have i > 1 because the values are bounded by 1. Let us recall the definition
of CV(t;) here. A vector v is in CV (t;) if 3r € R such that:

AS [ti_l]vj5 Va, _Cflt > v _CE‘—Tt

Vielti—1] e < f(0)



This can be written as:

Vet —1V5: (v —cf) — (va, — ch,) <14
Vtelti—1] : Xome < f(?)

Since v € CV (t;), we have

S max(0, (3, — cb,) — (0, — b)) € S < flti— 1)

t<t; t<t;

Note that Bag(t; — 1) C [t; — 1]. Therefore, we get

> max(0, (v — ) — (o — c¥)) < ft:i — 1)

t;€Bag (ti—1)

Note that we can write (05 — ctB’) — (Ve — cfj) as

(05 = vf) = L(t:)) = (05, = vp) = (clf = ¢5))

because 0o — 95 = L(t;). If we combine the above equations we get

t —1 >Zmax —U,@)—L(ti)) ((UZ_UB)_(CE _Cﬁ])))
> Zmax ) +1 — (v — U@) — (el — Cﬂ]))) 9)

where the second inequality follows from Inequality (). On the other hand, we
have

(v, —vp) — (cli — CB) < (v, —vp) — ((1 — 8—1k)L(t )+ iU(t )>
< (1= (s~ vB) — (1), (10)

where the first inequality follows from Lemma [ and the second inequality follows
from the fact that U(t;) > vy, — vj. Inequalities (@) and (10) imply:

£t -1 2 Y max0, MY - (s —op) - 1)) (1)

j<i

Recall 6 =1— ﬁ. If we apply Equation (8) into Equation (1) we get:



o =1) 2 P max (0,5 ) 21)

j<i J
A(f(t) +1) ft) +1
> max [ 0, : — N/~
S AU H) )+

i -

[oi]<j<i
1 1
> D M)+ D5 -6,
Loi]<j<i J

where the last inequality follows from the fact that f is monotone and increasing.
With some straightforward calculations on the above we get:

1>A1-001+ > L)

i) <j<i”

It is easy to see > 5 < % < In(}) since £ < < 1. Therefore,
1> A(1-8) = SIn(3)

and (1—0) —d1In(3) > 0. The

| =

which is a contradiction because A > m

claim follows from this contradiction.

By Claim [4]

Z ery. < Z )‘(f(ti')"’l)

t;€Bap(T) t;€Bap(T)
AT DY
i<l
SAS(T)+DH) < MA(T) + D H(T),

which completes the proof of Theorem [I1

4.2 Bounding the number of wrong predictions

Note that predicting the exact arm an advertiser would choose is not always
feasible. If there is more than one optimal arm, finding which one the advertiser
would choose is not possible. Therefore, we need an assumption that the optimal
arm is unique in every time step.

The following theorem is a corollary of Theorem [l It bounds the number
of wrong predictions of Algorithm 1. In this theorem, the utility of an arm is
defined as the value of the arm minus the cost of playing it.



Theorem 2. If the utility of the optimal arm is higher than the utility of other

arms by 0 for every time step, then the number of mistakes is bounded by
KU(f(T)+1) log(D)+/(T),

Proof. Let m,(t) be the number of wrong predictions in which the algorithm
chooses the optimal arm, i.e., ps = 0;. Note that in such time steps the agent has
a regret of at least . Therefore, the overall regret of the agent is lower bounded
by m,(t)d, and so m,(t) < @.

Let m,(t) be the number of wrong predictions in which the algorithm does
not choose the optimal arm. In such time steps the algorithm has a regret of at
least ¢. Therefore, the overall regret of the algorithm is at least mq(¢)d. Using
Theorem [1 we get
K1(f(T) +1) log(T)

)

me(t) <

The total number of wrong predictions up to time step t is m,(t) + mq(t) <
@ k“(f(T)J(rsl)log(T)'

B

5 Lower bound

In this section, we show a lower bound on the prediction regret that holds even
when the regret of the agent is zero, that is, f(7') = 0. We prove that there is no
algorithm that can predict the agent’s actions with a regret bound lower than
% even when f(T) = 0.

Theorem 3. Given any algorithm A, there exists a sequence of costs in which
we have 37,y o Pre > k.

Proof. For simplicity suppose k is even. Consider the following sequence of cost

vectors.
ct :(0,0,H,H,...,H,H)
c? :(H,H,0,0,H,...,H)

c*/? =(H,H,...,H,H,0,0)
where H is any constant bigger than 1. Formally, ¢! = (¢}, ..., c}) where
0 =1 2t,2t —1
t__ { (AS { ’ } (12)

C.
‘ H otherwise

Note that at each time step ¢, the algorithm has no information about arms 2t
and 2t — 1. Therefore, the algorithm cannot do better than choosing at random.
If we set the rewards for arms as follows

oF — 1 z %s even (13)
0 ¢isodd



then the algorithm has a regret of % at every step. Therefore, the total regret
will be at least %

6 Conclusion

In this paper, we studied a multi-armed bandits setting where in each step, a cost
for playing each arm is announced to the agent. We proved that if we observe an
agent that achieves a regret of at most f(T'), then even without observing any
rewards, we can learn to play with a regret of at most O(k*(f(T) + 1) log(T)),
where k is the number of arms.

We used this model to capture applications like ad auctions, where the goal
is to understand and predict the behavior of an advertiser with unknown utility
and unobserved rewards.

There are several problems that are left open. The most natural open ques-
tion is to find the best regret bound achievable in our setting. The only lower
bound we know is O(k) in the case that f(T") = 0. Also, the broader question of
predicting an selfish agent’s actions in a dynamic environment without observing
her rewards is open in more complicated settings.
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