
ar
X

iv
:1

90
9.

11
34

6v
1

 [
ec

on
.T

H
]

 2
5

Se
p

20
19

A New Approach to Fair Distribution of Welfare

Moshe Babaioff ∗ Uriel Feige †

September 26, 2019

Abstract

We consider transferable-utility profit-sharing games that arise from settings in which agents
need to jointly choose one of several alternatives, and may use transfers to redistribute the welfare
generated by the chosen alternative. One such setting is the Shared–Rental problem, in which
students jointly rent an apartment and need to decide which bedroom to allocate to each student,
depending on the student’s preferences. Many solution concepts have been proposed for such
settings, ranging from mechanisms without transfers, such as Random Priority and the Eating
mechanism, to mechanisms with transfers, such as envy free solutions, the Shapley value, and the
Kalai-Smorodinsky bargaining solution. We seek a solution concept that satisfies three natural
properties, concerning efficiency, fairness and decomposition. We observe that every solution
concept known (to us) fails to satisfy at least one of the three properties. We present a new
solution concept, designed so as to satisfy the three properties. A certain submodularity condition
(which holds in interesting special cases such as the Shared-Rental setting) implies both existence
and uniqueness of our solution concept.

1 Introduction

1.1 Background

We introduce a new solution concept for situations in which agents with cardinal preferences need
to jointly choose one alternative from a set of alternatives, possibly compensating each other using
transfers. This is a well studied setting in cooperative game theory, and we follow a normative
approach that specifies properties that we wish our solution concept to have, and then design a
solution concept that meets these specifications. To motivate our new solution concept and contrast
it with well established previous solution concepts, we start with an example.

Suppose that three students jointly rent a three bedroom apartment for a total rent of r units
of money. The students need to do two things. One is to jointly pay the rent, and the other is to
solve the allocation problem, namely, decide which student gets which room, possibly compensating
each other with money. We assume that the students are equals, in the sense that each student
bears equal responsibility in paying the rent, and equal eligibility in receiving a room. Being equals,
each student first pays r/3 towards the rent. It remains to solve the allocation problem, where this
solution may possibly involve transfer of money among the students.

Remark 1.1 In cases in which no student receives a transfer larger than r/3, transfers may be
implemented indirectly by having students pay unequal parts of the rent. However, in this paper we do

∗Microsoft Research, moshe@microsoft.com.
†Weizmann Institute, Rehovot, Israel, Uriel.Feige@weizmann.ac.il. Supported in part by the Israel Science Founda-

tion (grant No. 1388/16). Part of this work was done at Microsoft Research, Herzeliya.

1

http://arxiv.org/abs/1909.11346v1

not constrain transfers to be smaller than r/3, and the question of whether transfers are implemented
as direct transfers among the students or as modification to rent payments is not a concern of the
current paper.

A common approach for allocating rooms (and other goods) is using the Random Priority mecha-
nism (a.k.a. random serial dictatorship), that we abbreviate as RP. A total order among the students
is chosen uniformly at random, and each student in her turn chooses a room among those that are
still available. RP has obvious advantages, being easy to implement in practice, agents (students
in our case) have dominant strategies (given an agent’s turn to choose, she should simply choose
the available alternative that she most prefers), and being perceived as “fair” (all agents are treated
equally from the mechanism’s point of view). A significant drawback of RP is that it does not max-
imize welfare – the resulting allocation may produce less welfare (sum of utilities) than alternative
allocations. Hence some economic efficiency is lost.

Let us consider a concrete example. Suppose that the students can express their valuation for
rooms in units of money, and that they are risk neutral (they wish to maximize the expected received
value). Suppose further that for some small 0 < δ < 1

4 , the value that each student derives by being
given each of the rooms is as in the following table:

Example 1 Room 1 Room 2 Room 3

Student 1 1− δ δ 0

Student 2 1− 2δ 2δ 0

Student 3 0 1
2 − δ 1

2 + δ

The maximum welfare allocation assigns room i to student i for every i, giving welfare of 3
2 +2δ.

However, RP will result with probability half with an assignment in which student 2 gets room 1,
giving welfare 3

2 , and hence the expected welfare of RP is δ lower than optimal.
The RP mechanism does not involve transfer of money among agents. In our language, we refer to

it as an ANT, which is an abbreviation for Allocation mechanism with No Transfers. To overcome its
weaknesses (shared by other ANTs as well), one often considers allocation mechanisms with transfers
(abbreviated as AWT – Allocations With Transfers). AWTs allow for the following paradigm: first
choose a maximum welfare allocation (thus creating the largest pie to divide: the maximum possible
welfare to distribute among the agents), and then employ monetary transfers among the agents so
as to distribute the high welfare to all agents, so as to satisfy some fairness criteria. In the example
above, this would mean assigning room i to student i for every i, and then figuring out what the
transfers should be so that the combination of allocation with transfers would be “fair”.

To reason about transfers, we make the assumption that students have quasi-linear utilities: the
utility of a student is simply the sum of her value for the room that she receives plus the transfer that
she receives (the transfer may be negative if the student gives money rather than receives money).
Moreover, we assume that the mechanism that computes the allocation and the transfers has access
to the true valuations of the students. (This full information assumption is standard in cooperative
game theory, and there are impossibility results showing that it cannot be avoided in our setting.
See more details in Appendix R.) Within such a setting, there is a well studied class of AWTs that
is referred to as envy free solutions [8, 27, 9]). The basic principle is that one associates a transfer
with each room (where the sum of transfers equals 0 – this is a budget balance condition) such that
given the transfers, each student (weakly) prefers a different room. Then each student gets the room
and associated transfers that she prefers, and no one prefers to switch with another agent. In the
example above we can associate the following transfers with the rooms:

2

Room 1 Room 2 Room 3

−2
3 + 2δ 1

3 − δ 1
3 − δ

These transfers are indeed budget balanced and envy free, that is, each student i prefers her
assigned room i (along with the associated payment) over any other room, leading to an allocation
that maximizes welfare and in which supposedly every student is happy (as she got her most preferred
one out of the three available options).

Let us consider a natural question. Suppose that the students initially intend to use the RP
mechanism. Will the students be better off by using the envy free mechanism (that we abbreviate
EF) instead of using RP? In some respects, the answer is no: RP is simpler to implement than EF,
as it does not require students to disclose their valuation functions and to implement transfers. In
other respects the answer is yes: EF generates higher welfare. But let us consider this last aspect
more carefully. The social justification to maximize welfare is (in our opinion) the belief that the
extra welfare will eventually get distributed to all members of the society that contributed to the
increase in welfare. Is it the case that the increase in welfare (generated by moving from RP to EF)
is distributed over the three students in a reasonable way? The answer is negative in our opinion.

• In RP, the sum of expected values derived by students 1 and 2 is 1. In EF, the sum of values
increases to 1 + δ, but the sum of what they lose due to transfers is 1

3 − δ. If δ < 1
6 , each of

the two students gets higher expected utility from RP than from EF. It is not true that the
increase in welfare is distributed over all students in a way that every student (at least weakly)
benefits.

• Student 3 contributes nothing to the increase in welfare when changing from RP to EF (in
both cases her allocation is exactly the same – room 3). Nevertheless, under EF, student 3 not
only gets her most preferred room, but also gets paid. Moreover, this payment is even larger
than the total increase in welfare that EF offers compared to (the expected welfare of) RP.

Another aspect that we find troublesome with the EF solution is the following.

• In every Pareto efficient allocation, student 3 gets room 3 and the only question is which of
the rooms 1 and 2 is allocated to which of the students 1 and 2. Hence the instance naturally
decomposes into two subinstances, I3 involving room 3 and student 3, and I1,2 involving the
other two students and two rooms. If one does this decomposition and then employs an EF
mechanism on each component separately, student 3 does not receive any payments from the
other students, and hence the resulting payments are completely different from those without
the decomposition. Likewise, suppose that we had started with two separate instances, I1,2
and I3 as above, where every student prefers the rooms in her own instance over those in
the other instance (it may even be that each instance concerns a different apartment). If we
use EF mechanisms, then combining the two instances into one results in different payments
compared to solving each of the instances separately. This sensitivity of the payments in EF
mechanisms to composition and decomposition of instances (importantly, we are considering
here cases in which composition and decomposition have no effect on the allocation itself) may
lead to disagreements among the agents regarding what constitutes a single instance.

An allocation instance may have several different envy free solutions, but the above shortcomings
are shared by all envy free solutions in the above example, provided that δ is sufficiently small1.

1If δ is sufficiently small, then in every envy free solution the transfer associated with room 3 is positive: Let pi

3

Summarizing, ANT mechanisms such as RP need not maximize welfare. AWT mechanisms can
address this weakness. A common AWT approach, that of envy free (EF) mechanisms has elegant
conceptual properties when considered in isolation. However, when comparing its outcomes to those
of RP, we identified several troubling aspects with its transfers. These include the fact that despite
increase in welfare (compared to RP), some individual agents suffer loss in (expected) utility, the fact
that agents who contribute nothing to the increase in welfare might receive payments (even beyond
the total increase in welfare), and the fact that natural composition and decomposition properties
are not respected by EF mechanisms.

Many other AWT approaches that have been proposed in the literature can be applied in the
room allocation setting. They include (among others) the Shapley value, the Nucleolus, the Nash
bargaining solution and the Kalai-Smorodinsky (KS) bargaining solution. Every one of them suffers
from at least one of the troubling aspects listed above, see sections 4.5, G.3 and Appendix I for more
details. In fact, the same holds for every AWT approach that we could find in the literature. Hence
despite the many solution concepts that already exist, we find it appropriate to introduce a new
AWT mechanism that does not suffer from any of the troubling aspects listed above.

1.2 The model

We consider transferable-utility profit-sharing games, a setting that has been studied in previous work
(e.g., by Moulin [20]). The room allocation problem of the previous section is a special case of this
more general setting.

There is a set N of n agents (also referred to as players) and a set A of alternatives. Every
agent i ∈ N has a valuation function vi : A → R. All valuation functions are expressed in the
same units (of money). We let v = (v1, . . . , vn) denote the tuple of all the valuation functions. An
NT (no transfers) social choice function f receives as input the pair (A, v) that includes the set of
alternatives and the valuation functions, and outputs one of the alternatives from A. A randomized
NT social choice function may use randomization when choosing its output. Consequently, its output
is a probability distribution over alternatives.

Given the tuple v of valuation functions, a set S ⊆ N of agents and an alternative A ∈ A, the
welfare wS,v(A) that alternative A offers to S is defined as wS,v(A) =

∑
i∈S vi(A). An NT social

choice function f maximizes welfare (with respect to N) if the alternative A∗ ∈ A that f selects
satisfies wN ,v(A

∗) ≥ wN ,v(A) for all A ∈ A.
We allow transfer of money among agents. Such transfers are represented as a vector p =

(p1, . . . , pn), where pi is the payment to agent i, measured in units of money. We refer to the case
of pi > 0 as an in-payment (the amount of money of agent i increases), and to the case of pi < 0 as
an out-payment (the amount of money of agent i decreases). A transfer vector p is budget balanced
if
∑n

i=1 pi = 0. A transfer function g receives as input the triple (A, v, A∗) that includes the set of
alternatives, the valuation functions, and an alternative chosen by an NT social choice function, and
outputs a budget balanced transfer vector.

We assume that the utility functions of the agents are quasi-linear. Namely, for agent i ∈ N
with valuation function vi, her utility ui from the pair of alternative A and transfer vector p is
ui(A, p) = vi(A) + pi. We further assume a setting of “full information upon request”: the social
planner may request information about valuation functions of agents (this information might be
limited to the ordinal preferences of an agent over a set of alternatives, or might be as general as

denote the transfer associated with room i. For student 3 not to envy student 2 we must have p2 ≤ p3 + 2δ. For
student 2 not to envy student 1 we must have p1 ≤ p2 − 1 + 4δ ≤ p3 − 1 + 6δ. Together with the budget balance
requirement we have that p3 = −p1 − p2 ≥ −p3 + 1 − 6δ − p3 − 2δ, implying that p3 ≥

1−8δ
3

> 0, where the last
inequality holds when δ is sufficiently small.

4

the full valuation function of an agent), and the agents reply truthfully to such requests. (These
assumptions will be discussed in Appendix R.)

Let us illustrate how the above model captures the example presented in Section 1.1, of three
students renting a three bedroom apartment. N corresponds to the set of three students, and A
corresponds to the set of six possible permutations over rooms, matching one room to one student.
The valuation functions vi are as in the example. An example of a randomized NT social choice
function is the output of the Random Priority (RP) mechanism: once v is given (in fact, knowledge of
ordinal preferences suffices here) RP induces a well defined probability distribution over alternatives.
The envy-free allocation and transfers provided in the example are a solution (implicitly) involving
an NT social choice function f and a transfer function g.

1.3 Our contribution

For the setting described above, we wish to design a solution concept that has two components: an
NT social choice function, and an associated transfer function. We have three goals. One is economic
efficiency. This goal is easily attainable in our full information framework – we simply select a welfare
maximizing alternative, which we denote by A∗. (If there are several welfare maximizing alternatives,
A∗ denotes one of them, selected arbitrarily.) Another goal is to achieve fairness, in the sense that
the welfare will be shared “fairly” among all agents. Achieving this goal is made possible by the use of
transfers. Those agents for which alternative A∗ is undesirable can be compensated by in-payments,
and the budget balance requirement can be met by extracting an equal amount of out-payments
from those agents who do desire alternative A∗. The assumption that agents have quasilinear utility
functions simplifies the accounting of the extent to which utility derived from payments can replace
utility derived from the selected alternative. The third goal is that of decomposability, which basically
means that if a large game involving multiple agents can be naturally decomposed into many smaller
games over disjoint sets of agents, then the solution of the large game should also decompose into
solutions of the smaller games. Equivalently, one should be able to solve each smaller game separately,
and obtain a solution to the large game as the concatenation of the solutions to the smaller games.

Our contributions in this work are in setting the above three goals, proposing definitions for the
fairness properties and decomposition properties that they refer to, proposing a solution concept that
attains the above three goals, and providing sufficient conditions for its existence and uniqueness.
Here is an informal statement of our main result when specialized to the Shared–Rental problem.

Theorem (informal). The lex-max-WS solution (introduced in our work) for the Shared–Rental
problem maximizes welfare and satifies the fairness and the decomposition properties alluded to above
(and formally defined later in this paper). Moreover, in a well defined sense, it is the unique solution
that satisfies these properties.

Here are more details regarding our contributions:

1. We propose a new notion of fair solutions, the welfare-sharing core (abbreviated WS-core). See
Definition 2.1. It combines three principles that are briefly sketched below.

(a) One principle is domination with respect to the utility agents can receive from a disagree-
ment point, or reference point. This is mathematically similar to the familiar concept of
individual rationality (IR), though conceptually there is a distinction between these two
notions. See Section A.1 for more details.

(b) Another principle is that fairness entails not only lower bounds on the utilities that agents
derive from the solution, but also natural upper bounds. We introduce a set-function
Wmax, where for a set S of agents, Wmax(S) is the welfare that S could derive from the

5

alternative that is best for S. The same notion appears in [21], where is is referred to as
stand alone utility. We require that the utility that a solution (with transfers) offers to
a set S of agents does not exceed Wmax(S). This leads to the notion that we (and [21])
refer to as the anticore. See Section A.2 for more details.

(c) Another principle is that of decomposability , as discussed above (see Section 3 for more
details). A key property of the anticore is that it decomposes: the anticore of a decom-
posable game is the concatenation of the anticores of each of the component games.

2. We show that in our setting, if Wmax is submodular, then the WS-core is non-empty. See
Theorem 2.2.

3. We propose to use egalitarian considerations (specifically, the lexicographically-maximal welfare-
sharing rule, denoted lex-max-WS) for selecting a single solution from the WS-core, see Section
4. When Wmax is submodular, we show (see Theorem 4.4, which relates to a previous result
of Dutta and Ray [6]) that different egalitarian considerations (e.g., also the min-square rule,
defined in Section 4) all lead to the same unique solution.

4. When Wmax is submodular, we show that computing the lex-max-WS solution can be done in
polynomial time. See Appendix O. Moreover, it is a continuous function (with a small Lipschitz
constant) of the valuation functions at points where the disagreement utility is a continuous
function of the valuations. See Appendix P. The lex-max-WS solution may not be continuous
at points in which the disagreement utility is not continuous.

5. We explain the similarities and differences between our new solution concept and several related
notions. These include coalitional games and imputations (Section A); cost-sharing games (Sec-
tion A); notions related to our notion of decomposability, such as Separability (Section C) and
consistency for reduced games (implicitly addressed in Section I.3); previous notions referred
to as the anticore (Section A.2); egalitarian solution concepts and Lorenz ordering (Section 4);
the Shapley value (Section 4.5); the Nucleolus (Appendix I); envy free solutions (Section G.3.1);
Nash bargaining and Kalai-Smorodinsky (KS) bargaining (Appendix I); population monotonicity
and resource monotonicity (Appendix N).

6. We show that for the Shared–Rental problem Wmax is submodular, and hence the lex-max-WS
solution enjoys those properties shown above to be implied by submodularity. In addition, the
lex-max-WS solution dominates Random Priority (by definition), and moreover, when instances
are “decomposable” it satisfies a strong notion of decomposability. See Section G.

2 The Welfare-Sharing Core

Our starting point is the (not necessarily new) premise that statements such as “this solution is fair”
have no rigorous meaning on their own. Rather, the fairness of a solution needs to be judged in
relation to a reference context. In our definition of fairness, the reference context will be the set A of
alternatives together with a probability distribution π over A (which we will refer to as a reference
point, or disagreement point). We now present the definition of the WS-core, and then follow it up
with a discussion and comparison with related work.

A solution (A∗, p) is composed of a welfare maximizing alternative A∗ and a budget balanced
transfer vector p = (p1, . . . , pn). The utility that agent i derives from solution (A∗, p) is ui(A∗, p) =
vi(A

∗) + pi. In our context, two solutions (A∗, p) and (A′∗, p′) are equivalent if ui(A
∗, p) = ui(A

′∗, p′)

6

for every agent i. Consequently, we sometimes refer to the utility vector (u1(A
∗, p), . . . , un(A∗, p)) as

the solution.
A solution will need to satisfy certain constraints, where these constraints are expressed as a

function of the utilities that agents derive from the solution. We shall use wS,v(A) =
∑

i∈S vi(A) to
denote the welfare derived by a set S of agents from an alternative A, and uS(A

∗, p) =
∑

i∈S ui(A
∗, p)

to denote the utility derived by S from solution (A∗, p).
We associate two classes of constraints with solutions (A∗, p):

1. Domination: We assume that a probability distribution π over A is given, where π(A) denotes
the probability associated with alternative A. This distribution represents the alternative that
would be chosen in the absence of agreement to use a mechanism with transfers. As such,
the distribution π may depend on the valuations v, and we shall sometimes use the notation
πv to make this explicit. The value that agent i derives from πv is

∑
A∈A πv(A)vi(A), and

we refer to it as the agent’s disagreement utility. The domination constraints require that
ui(A

∗, p) ≥
∑

A∈A πv(A)vi(A) holds for every agent i.

2. The anticore: We introduce a welfare function over sets of agents, which we denote by Wmax.
For every S ⊆ N let Wmax(S) = maxA∈A[

∑
i∈S vi(A)] indicate the maximum welfare achievable

by S. The anticore constraints require that uS(A
∗, p) ≤ Wmax(S) for every set S ⊆ N .

Definition 2.1 (WS-core) Suppose one is given a tuple v of valuation functions, a set A of al-
ternatives, and a probability distribution πv over A. A solution (A∗, p) (composed of an alternative
A∗ ∈ A that maximizes welfare and a budget balanced vector p of transfers) is said to belong to
the welfare-sharing core (WS-core) if the solution (A∗, p) satisfies the above two sets of constraints
(domination and anticore) with respect to the given v and πv.

There are cases in which the WS-core is empty. Here is one such example. Suppose that there
are three agents and two alternatives. A1 is the disagreement alternative and all agents value it as 0,
whereas A2 is the alternative that maximizes welfare, agent 1 values it as −1, whereas each of the
other two agents values it as 1. Hence there is welfare of −1 + 1 + 1 = 1 to share among the three
agents, and each agent needs to receive utility at least 0 (his disagreement utility). The function
Wmax has value 0 both for the set {1, 2} and for the set {1, 3}, and hence there is no way of sharing
the welfare without violating at least one of the anticore constraints.

Despite the above, in important special cases, the WS-core is nonempty. We first recall some
standard terminology. A set function f is monotone if f(S) ≥ f(T) for all T ⊂ S. A set function
f is submodular if for every two sets S and T it holds that f(S) + f(T) ≥ f(S ∩ T) + f(S ∪ T).
Equivalently, f is submodular if it has the decreasing marginal returns property: for every item i
and two sets S ⊂ T it holds that f(S ∪ {i}) − f(S) ≥ f(T ∪ {i}) − f(T). A submodular function
need not be monotone.

Our main existence result is the following:

Theorem 2.2 Given a tuple v of valuation functions, a set A of alternatives, and a probability
distribution π over A, either one of the following conditions suffices in order for the WS-core to be
nonempty.

1. Wmax is submodular (though not necessarily monotone).

2. Wmax−Wπ is monotone (though not necessarily submodular), where Wπ(S) =
∑

i∈S
∑

A∈A πv(A)vi(A)
is the expected value derived by set S from the disagreement distribution π. Note: if the dis-
agreement utilities are 0, then a sufficient condition (though not necessary) for Wmax −Wπ to
be monotone is that the valuation functions are nonnegative.

7

The proof of Theorem 2.2 appears in Appendix E.1. In is based on the following approach. Similar
to proofs of the well known Bondareva-Shapley theorem [3, 26], non-emptiness of the WS-core can
be cast as a feasibility question for a certain linear program, which then translates to showing that
the dual of the linear program is bounded. Each of the submodularity and monotonicity conditions
listed above is shown to imply that the dual is bounded, thus proving the theorem.

In Section A we provide more details on the domination and anticore constraints. We now
formally define the decomposability property that plays an important part in our work.

3 Decomposability

A central aspect in applying game theory, social choice and mechanism design in practice is that of
decomposing large games into smaller games and reasoning about each small game separately. One
may view all humanity (and other strategic living creatures) as participating in one huge game in
which individuals pursue their own goals and have multiple interactions with other individuals. This
game is too heterogeneous and complicated to reason about as a whole. Moreover, the actions of
some individuals have very low influence (if at all) on some other individuals, to the extent that they
can be ignored. Thus, to be able to reason about interactions between individuals, it is reasonable
to decompose this huge game into smaller games, involving smaller numbers of individuals, and
having a more homogeneous character. For example, a smaller game might be a particular auction,
a particular room allocation problem, or elections for a particular position. In such a smaller game
we specify who the players are, what actions are available to them, what the possible outcomes are,
and assume that the value derived by the players from the game depends only on the outcome of
that game. The decomposition of the huge “game of humanity” into smaller games is a modeling
decision that captures reality only in some approximate sense (the small games are not really isolated
from each other, there might be players affecting or affected by the game that we are not aware of,
etc.), but seems to be an unavoidable modeling decision in areas such as social choice and mechanism
design.

Given the ubiquity of game decompositions, we think it is important that mechanisms (for profit-
sharing games, in our context) will remain consistent throughout decompositions. Ideally, we would
like the solution to problems that have a natural partition to subproblems, to be the same whether or
not we consider the problem as a whole and find a solution, or consider each subproblem separately
and find a solution to each.

Motivated by the above view, in this section we introduce formal definitions for the notion of
an instance being decomposable, and for two notions of decomposability for mechanisms: weak and
strong.

Let A be a set of alternatives, N be a set of agents, and let v = (v1, . . . , vn) be a tuple specifying
the valuation functions of the agents. We say that alternative A ∈ A is Pareto optimal with respect
to a set S ⊂ N of agents if for every alternative B ∈ A, either there is some agent i ∈ S such that
vi(A) > vi(B), or for all agents i ∈ S it holds that vi(A) = vi(B).

Definition 3.1 (independent component, decomposable instance) A set of players S ⊂ N
is referred to as an independent component (or just component, for brevity) if for every alternative
A ∈ A that is Pareto optimal with respect to S (given v) and for every alternative B ∈ A that is
Pareto optimal with respect to S̄ = N \ S, there is an alternative C ∈ A (possibly C = A or C = B)
such that for every agent i ∈ S it holds that vi(C) = vi(A), and for every agent j ∈ N \ S it holds
that vj(C) = vj(B). We say that an instance is decomposable if it has a component that is nontrivial
(the component is neither empty, nor the whole instance).

8

It is implicit in the above definition that if a decomposable instance has more than one Pareto
optimal alternative, then there are agents that are indifferent among some choices of alternatives.

Observe that if S ⊂ N is a component then so is N \S. Definition 3.1 implies that if each of the
two components S and N \S selects a most preferred alternative on its own (such an alternative will
be Pareto optimal with respect to the component), then there will be no conflicts between the two
choices – we will be able to select a single alternative that is just as good, from the point of view of
every player in every component.

As an example to the decomposition concept introduced above, consider the Shared–Rental prob-
lem example from Section 1.1, with valuation functions as in the table titled Example 1, and with
δ < 1

4 . In that example, there are two components, one containing Students 1 and 2, and the other
containing Student 3. Every alternative A that is Pareto optimal for the first component assigns
the first two rooms to the first two students, and every alternative B that is Pareto optimal for the
second component assigns the third room to the third student. The two alternatives A and B can
be replaced by one alternative C (in fact, in this simple example it will hold that C = A as there
is only one room in the second component), and every agent values C as being equally good as the
alternative chosen by his own component.

A solution involves two aspects: a choice of alternative, and transfers. In Proposition B.1 (Ap-
pendix B) we show that any alternative that maximizes welfare also maximizes welfare for each
component separately. Thus the proposition shows that every welfare maximizing solution respects
the component structure of the given instance, as far as the choice of alternative is considered. For
a solution to qualify as “decomposable”, it makes sense to in addition require that there are no
transfers between components. We refer to this forbidding of transfers between components as weak
decomposability.

Definition 3.2 (weak decomposability) Let N be the set of agents, let A be the set of alterna-
tives, and let v be the tuple of valuation functions of the agents. A solution (A, p), composed of an
alternative A ∈ A (in this definition we do not require A to be a welfare maximizing alternative,
as decomposability is relevant also to mechanisms that do not maximize welfare) and a vector p of
transfers (summing up to 0), is weakly decomposable if for every component S ⊂ N it holds that∑

i∈S pi = 0. Namely, the net transfer into the component is 0 (consequently, the same holds for the
net transfer out of the component).

As a trivial example, every solution that involves no transfers is weakly decomposable.
We also introduce a notion of strong decomposability that postulates that utilities of individual

agents within a component are not influenced by decisions in other components. Unlike the notion of
weak decomposability which is the property of a single solution, the notion of strong decomposability
is a property of a mechanism and not just of a single solution. In the context of our work in which we
assume “full information upon request”, a mechanism M is a mapping from instances to solutions.
The input to M is an instance I of arbitrary size, composed of a set N of agents, a set A of
alternatives, and a tuple v of valuation functions of the agents. The output M(I) is the proposed
solution for the instance I, where the solution is composed of a winning alternative (in general, it is
not required to be an alternative that maximizes welfare) and a vector of transfers. A mechanism
can be randomized, in which case, given an input instance, the mechanism generates a distribution
over solutions, and the proposed solution is a random sample from this distribution.

Definition 3.3 (strong decomposability) We say that a mechanism M is strongly decomposable
if for every decomposable instance I, the output of the mechanism is consistent with the outputs of the
mechanism on each of the components separately, in the following sense. Let N be the set of agents
in I, let A be the set of alternatives, and let v be the tuple of valuation functions of the agents. Given

9

N , A and v, let S ⊂ N be a component. Let IS be the instance that results from restricting the set of
agents of I to be just S (without changing the set of alternatives and the valuation functions of the
agents in S). Let M(I) (M(IS), respectively) denote the outcome (chosen alternative and vector of
transfers) when M is applied to instance I (IS, respectively). Then for every agent i ∈ S, her utility
in both cases is the same. Namely, ui(M(I)) = ui(M(IS)). (For randomized mechanisms, equality
needs to hold for the expected utility.)

Thus, strongly decomposable mechanisms essentially decide on the solution in each component
independently of other components. Proposition B.2 in Appendix B shows that strong decompos-
ability implies weak decomposability in the following sense: assume that M is a mechanism that for
every instance selects an alternative that maximizes welfare and a budget balanced vector of trans-
fers. If M is strongly decomposable, then for every decomposable instance the solution produced by
M is weakly decomposable.

Observe that strong decomposability does not require that the same alternative be chosen in I
and in IS , but rather only that agents in S receive the same utilities in both instances (and likewise,
as S̄ is also a component, that agents in S̄ receive the same utilities in I and in IS̄). In Section G.2
we shall revisit decomposability in the context of the room allocation problem, and there we shall
additionally require (and achieve) that the choices made by M in different components give one single
alternative for all of I.

We now present a proposition that describes the component structure of an instance.
Given a set U , a collection C of subsets of U is a (distributive) lattice if for every two sets S, T ∈ C

it holds that S∩T ∈ C and S∪T ∈ C. The minimal sets of a lattice (a set from the lattice is minimal
if it is nonempty and does not contain any other nonempty set from the lattice) form a partition of
U . The following proposition is proved in Appendix B.

Proposition 3.4 Given a set A of alternatives, a set N of agents, and a tuple v of valuation
functions, the components of N form a lattice.

It follows from Proposition 3.4 that the minimal components form a partition of N . (It could be
that only N itself is a nonempty component.) It can be shown by induction that that if each of the
minimal components S selects a most preferred alternative on its own, then there will be no conflicts
between the choices – we will be able to select a single alternative that is just as good, from the point
of view of every player in every component.

The anticore and decomposition: A major benefit of the anticore is that it ensures decom-
posability properties. We remark that even though our notion of the anticore is the same as that
of [21], the notion of decomposability was not defined in that or other previous work, and hence the
connection between anticore and decomposability is a new contribution of the current paper. For
weak decomposability (Definition 3.2) we have:

Proposition 3.5 Every solution in the anticore is weakly decomposable.

Proof: Let N be the set of agents, let A be the set of alternatives, let v be the tuple of valuation
functions of the agents, and let S ⊂ N be a component. Consider an arbitrary solution (A∗, p)
in the anticore, composed of a welfare maximizing alternative A∗ ∈ A and a vector p of transfers.
By Proposition B.1, A∗ also maximizes the welfare of each of the components S and S̄ separately.
By the anticore constraints, the net transfer into S is at most 0, and so is the net transfer into S̄.
Consequently, the net transfer into S is exactly 0. Hence the solution is weakly decomposable.

It is premature at this stage to address strong decomposability (Definition 3.3). This will be done
later, in Proposition 4.3.

10

4 Selection from within the welfare-sharing core

The set of constraints corresponding to domination over a disagreement point are meant to achieve
the property of having each agent (weakly) prefer (in terms of utility) every solution in the WS-core
over the disagreement point. Our guideline for selecting a unique solution from within the WS-core
(when the WS-core is nonempty) is that we wish this property to hold not only in a qualitative
manner, but also in a quantitative manner, to the largest extent possible. Ideally, we would like it to
be that for every agent, switching to our mechanism offers a worthwhile increase in utility compared
to the disagreement point. This calls for an egalitarian distribution of the welfare gain among all
agents, where the welfare gain is the difference in welfare between the maximum welfare alternative
(Wmax(N)) and the expected welfare generated by the disagreement point (Wπ(N)). However, equal
sharing of the welfare gain might not be in the WS-core, because it might violate the constraints
of the anticore. Hence we aim to equalize the shares of the gain as much as possible, subject to
satisfying the anticore constraints.

4.1 Selection concepts

Before proceeding, let us establish some conventions and notation. We assume for convenience that
the valuation function of each agent is such that at the disagreement point her expected value is 0.
This can be enforced by applying an additive shift of uπ(i) to each valuation function vi. Given
a solution (A∗, p), we let ui denote the utility ui(A

∗, p) = vi(A
∗) + pi derived by agent i from the

solution (where the valuation function vi is such that the expected value offered by the disagreement
point is 0). We shall sometimes refer to the vector u = (u1, . . . , un) (rather than to (A∗, p)) as our
solution, as this vector summarizes what the agents care about in a solution. An egalitarian solution
will give every agent utility ui =

Wmax(N)
n

, but might not be in the WS-core. We present several
different approaches for how to relax the egalitarian requirement so as to select a solution within the
WS-core (when it is nonempty).

• The min-square solution. Here we seek the unique solution within the WS-core minimizing∑
i∈N (ui)

2. This solution minimizes the variance in the distribution of the welfare, subject to
being in the WS-core.

• The lexicographically-maximal (lex-max-WS) solution. Given a vector x ∈ Rn, let x̂ be the
same vector with coordinates rearranged such that in the new order x̂1 ≤ x̂2 ≤ . . . ≤ x̂n. For
two vectors x ∈ Rn and y ∈ Rn of equal sum of their entries, x ≥Lex y denotes that for the
rearranged vectors x̂ and ŷ and for some 1 ≤ k < n it holds that x̂k > ŷk, with x̂i = ŷi for
every 1 ≤ i < k. A solution u in the WS-core is lexicographically maximal if u ≥Lex u′ for every
other solution u′ in the WS-core.

• A Lorenz-maximal solution. Given a vector x ∈ Rn, let x̂ be the same vector with coordinates
rearranged such that in the new order x̂1 ≤ x̂2 ≤ . . . ≤ x̂n. For two vectors x ∈ Rn and
y ∈ Rn of equal sum, we say that x Lorenz dominates y (denoted by x ≥Lor y) if for the
rearranged vectors x̂ and ŷ it holds that

∑k
i=1 x̂i ≥

∑k
i=1 ŷi, for every 1 ≤ k ≤ n. A Lorenz

maximal solution is a solution in the WS-core that Lorenz-dominates every other solution in
the WS-core. By definition, it also minimizes the so called Gini index of inequality [10].

The next proposition presents some properties of the WS-core, for the proof see Appendix E.2.

Proposition 4.1 When the WS-core is nonempty:

1. The min-square solution exists and is unique (in terms of the utility that it offers each agent).

11

2. The lexicographically-maximal solution exists and is unique.

3. The min-square solution and the lexicographically-maximal solution need not coincide.

4. A Lorenz dominating solution need not exist.

5. If a Lorenz dominating solution exists, it is unique, and moreover, it coincides both with the
lexicographically-maximal solution and with the min-square solution.

Thus, the min-square and the lexicographically-maximal solutions exist whenever the WS-core is
nonempty, whereas a Lorenz dominating solution need not exist. Out of the two solutions that do
exist, we suggest picking the lexicographically-maximal-Welfare-Sharing solution, which we denote by
lex-max-WS . (This choice is not of major significance to our work. Proposition 4.2 (with a different
algorithm) and Proposition 4.3 also hold with respect to the min-square solution, and Corollary 4.5
shows that the two solutions coincide in many cases of interest.)

4.2 The water filling algorithm

When Wmax is submodular, the utilities in the lex-max-WS solution can be computed using an
algorithm that we refer to as water filling (this is a generic name, used also elsewhere, for algorithms
that increment variables at a uniform rate, subject to constraints). It proceeds in iterations. Initially
(at iteration 0), all agents are free and every agent i starts with her disagreement utility uπ(i). If
any of the constraints of the anticore are tight (satisfied with equality) by this initial solution, then
the set S1 of agents involved in the tight constraints become locked. Thereafter, in every iteration
j ≥ 1 we do the following. If there are no free agents, the algorithm ends and outputs the utilities of
the agents. If there are free agents, then the utility of every free agent is incremented by the same
value xj , where xj > 0 is the smallest value that leads to some new anticore constraint becoming
tight (equivalently, xj is the largest increase that does not violate any of the anticore constraints).
At this point, the set Sj of agents involved in a newly tight constraint become locked (some of these
agents may have been locked already earlier), and iteration j ends.

Proposition 4.2 When Wmax is submodular, the water filling algorithm computes the lex-max-WS
solution.

Proof: By design, the water filling algorithm satisfies all domination constraints and all con-
straints of the anticore. Likewise, it produces a lexicographically maximal solution subject to
these constraints. It remains to show that by the end of the algorithm, the anticore constraint∑

i∈N u(i) ≤ Wmax(N) is tight (meaning that all welfare has been shared by the agents), where here

u(i) =
∑j

t=1 xj is the utility of agent i that was locked right after iteration j (and u(S) will serve as
shorthand notation for

∑
i∈S ui).

When the water filling algorithm ends, every agent is involved in a tight anticore constraint.
Suppose for the sake of contradiction that the constraint u(N) ≤ Wmax(N) is not tight. Let Sj

(for j = 1, 2, . . .) be the sets of agents whose constraints became tight in iteration j of the execution
of the water filling algorithm. Consider a set function W ′max that is identical to Wmax, except that
W ′max(N) = u(N) < Wmax(N). Then W ′max is submodular, all the sets Sj referred to above are tight
with respect to it, and so is N . By Lemma P.2, all unions of these sets Sj are also tight with respect
to W ′max. By repeatedly taking unions, we arrive at two sets S and T such that S ∪ T = N , both
u(S) = W ′max(S) = Wmax(S) and u(T) = W ′max(T) = Wmax(T) hold, and u(S∩T) = W ′max(S∩T) <
Wmax(S ∩ T). By linearity, u(N) = u(S) + u(T)− u(S ∩ T) ≥ Wmax(S) +Wmax(T)−Wmax(S ∩ T).

12

By submodularity of Wmax we have that Wmax(N) ≤ Wmax(S) +Wmax(T) −Wmax(S ∩ T). These
last two inequalities contradict our assumption that u(N) < Wmax(N).

The water filling algorithm has at most n iterations, because in every iteration at least one
more agent becomes locked. For an agent i that becomes locked at iteration k, her final utility is
uπ(i) +

∑k
j=1 xj . The total running time of the algorithm depends on the complexity of computing

the disagreement utilities, and the computational cost of identifying a violated constraint in the
anticore. We show (see Theorem O.3 for the exact statement) that when the disagreement utilities
are given and Wmax is submodular, the lex-max-WS solution can be computed in time polynomial
in n, but without the submodularity requirement, computing the lex-max-WS solution is NP-hard.

When Wmax is not submodular, the water filling algorithm might fail to find the lex-max-WS
solution, even when the WS-core is nonempty. Consider an instance with three agents and three
alternatives, with the following valuation functions.

Alternative 1 Alternative 2 Alternative 3

Agent 1 0 -2 2

Agent 2 0 2 -1

Agent 3 0 2 -1

When Alternative 1 serves as the disagreement alternative, the WS-core is nonempty and contains
a unique solution, given by choosing Alternative 2 (that has total welfare of 2), and transfers such
that the utility of Agent 1 is 0 and of the other two agents is 1. Being unique, this is also the
lex-max-WS solution. However, the water filling algorithm will start by giving evert agent a utility
of 1

2 . At this point every agent is part of a tight anticore constraint), and the algorithm ends before
distributing all the welfare to the agents.

4.3 Decomposability of lex-max-WS

The lex-max-WS solution lies in the anticore, and hence by Proposition 3.5 it is weakly decomposable.
We now consider strong decomposability (see Definition 3.3). This property involves comparing the
solutions generated for different instances. As the lex-max-WS solution for an instance depends on
the disagreement point for the instance, we need to also relate between the disagreement points of
different instances. For this purpose, we assume that there is a mechanism that given an instance
outputs the disagreement point for that instance. For example, RP served as such a mechanism in
Section 1.1.

Proposition 4.3 When Wmax is submodular, every mechanism M that satisfies both following prop-
erties is strongly decomposable.

1. For every instance M selects the respective lex-max-WS solution.

2. The disagreement utilities (that define the domination constraints for the WS-core) are the
output of a disagreement mechanism that is strongly decomposable.

Proof: The outcome of the water filling algorithm on the whole instance is identical to the
concatenation of its outcomes on each component separately, because of Proposition D.1.

4.4 A Lorenz dominating solution

We next show that in the important case that Wmax is submodular (e.g., in the Shared–Rental
problem), a Lorenz dominating solution necessarily exists. Theorem 4.4 below is an adaptation of a

13

theorem of Dutta and Ray [6], which considers Lorenz minimal solutions and supermodular charac-
teristic functions (we consider Lorenz maximal solutions and submodular characteristic functions).
We provide a detailed proof of Theorem 4.4 rather than attempt to use the results of [6] as a blackbox,
because in our setting we need to ensure that the solution dominates a given disagreement point, and
this issue does not seem to have an analog in the setting of [6]. The proof of the following theorem
appears in Appendix F.

Theorem 4.4 If Wmax is submodular, then the lex-max-WS solution (which is in the WS-core)
Lorenz-dominates all other solutions in the WS-core.

From Proposition 4.1 and Theorem 4.4 we derive the following corollary, implying that our so-
lution lex-max-WS satisfies all three properties: it is a Lorenz dominating solution, the min-square
solution and the lexicographically-maximal solution.

Corollary 4.5 If the function Wmax is submodular then the WS-core is non-empty, a Lorenz dom-
inating solution exists, it is unique, and it coincides with both the min-square solution and the
lexicographically-maximal solution.

Summarizing, when selecting a solution from the WS-core, we employ the egalitarian paradigm.
As we shall see, in several natural settings (such as the Shared–Rental problem, see Section G)
Wmax is submodular. In these cases, Theorem 4.4 offers a natural choice of a unique solution
within the WS-core, because (essentially) all natural relaxations of the notion of being egalitarian
(min-square, lexicographically-maximal, Lorenz-maximal) coincide. Moreover, in these cases the
solution is computable in polynomial time, and also is continuous with a Lipshitz constant of 1 (see
Appendices O and P for exact statements.

4.5 Comparison with the Shapley value

We find it particularly instructive to compare our lex-max-WS solution concept with that of the
Shapley value [25]. In our context, it is natural to let Wmax play the role of a characteristic function
in the definition of the Shapley value. Given a permutation σ over the agents, let S denote the set of
agents that precede agent i in σ. Themarginal contribution of agent i in σ isWmax(S∪{i})−Wmax(S).
The Shapley value of agent i is her expected marginal contribution in a random permutation over
the players. The sum of Shapley values of all players is exactly the maximum welfare Wmax(N). The
Shapley value mechanism selects an allocation that maximizes welfare, and arranges the transfers so
that the utility of every player equals her Shapley value.

When Wmax is submodular, the Shapley value resides in the anticore (this follows from the
known fact that the Shapley value is in the cost-sharing core whenever the characteristic function is
submodular). However, being oblivious to the reference point, the Shapley value is sometimes not in
the WS-core, even when Wmax is submodular. We shall see such examples in Appendix H.

The use of the Shapley value as a solution concept for problems such as Shared–Rental problem
was advocated in [21]. There is was shown that the Shapley value solution satisfies four properties
that are referred to as individual rationality, resource monotonicity, population monotonicity, and
stand alone test. Our lex-max-WS solution satisfies the stand alone test (which is equivalent to
being in the anticore) and satisfies the domination property that is considerably stronger and more
versatile than the notion of individual rationality used in [21]. However, it does not satisfy that
resource monotonicity and the population monotonicity properties, see Appendix N for details.

In Appendix M we compare between the solutions offered by the Shapley value and the solutions
offered by lex-max-WS , covering all instances of two agents and two alternatives. In these instances

14

the Shapley value solution does lie in the WS-core, and for some range of values it coincides with
lex-max-WS . For those ranges of values for which the two solutions differ, the lex-max-WS solution
offers a more egalitarian sharing of welfare compared to that offered by the Shapley value.

Other solution concepts: Previous work proposes many other solution concepts for profit-
sharing and cost-sharing games. See for example [20], [19], [23] and references therein, as well as
Appendix I in which we discuss the nucleolus and some known bargaining solution concepts. It
would be too space consuming to discuss all these solution concepts in an informative manner, so
let us just note that despite the many existing solution concepts, our solution concept appears to
be new, and the first to satisfy the combination of properties that we seek. It is our opinion that
in the setting studied in the current paper (which in particular includes a disagreement point), our
solution concept is preferable over any of the previous solution concepts in terms of the balance
that it achieves between fairness properties and the incentives that it provides to switch (from a
mechanism with no transfers) to our mechanism.

Acknowledgments

We thank Herve Moulin and Eyal Winter for helpful discussions.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness
of approximation problems. J. ACM, 45(3):501–555, 1998.

[2] A. Bogomolnaia and H. Moulin. A new solution to the random assignment problem. Journal of
Economic Theory, 100(2):295–328, October 2001.

[3] O. N. Bondareva. Some applications of linear programming methods to the theory of cooperative
games (in russian). Problemy Kybernetiki, (10):119–139, 1963.

[4] X. Deng and C. H. Papadimitriou. On the complexity of cooperative solution concepts. Mathe-
matics of Operations Research, 19(2):257–266, 1994.

[5] J. Derks, H. Peters, and P. Sudhölter. On extensions of the core and the anticore of transferable
utility games. International Journal of Game Theory, 43(1):37–63, Feb 2014.

[6] B. Dutta and D. Ray. A concept of egalitarianism under participation constraints. Econometrica,
57(3):615–635, 1989.

[7] U. Feige. On maximizing welfare when utility functions are subadditive. SIAM J. Comput., 39
(1):122–142, 2009.

[8] D. K. Foley. Resource allocation and the public sector. Yale Econ Essays, 7(1):45–98, 1967.

[9] Y. K. Gal, M. Mash, A. D. Procaccia, and Y. Zick. Which is the fairest (rent division) of them
all? J. ACM, 64(6):39:1–39:22, 2017.

[10] C. Gini. Concentration and dependency ratios. Rivista di Politica Economica, 87:769–789, 1909.
English translation, 1997.

[11] M. X. Goemans, S. Gupta, and P. Jaillet. Discrete newton’s algorithm for parametric submodular
function minimization. In IPCO, volume 10328 of Lecture Notes in Computer Science, pages
212–227. Springer, 2017.

15

[12] J. Goldman and A. D. Procaccia. Spliddit: Unleashing fair division algorithms. ACM SIGecom
Exchanges, 13(2):41–46, 2014.

[13] E. Kalai and M. Smorodinsky. Other solutions to nash’s bargaining problem. Econometrica, 43
(3):513–518, 1975.

[14] S. Khot, D. Minzer, and M. Safra. Pseudorandom sets in grassmann graph have near-perfect
expansion. Electronic Colloquium on Computational Complexity (ECCC), 25:6, 2018.

[15] B. Lehmann, D. J. Lehmann, and N. Nisan. Combinatorial auctions with decreasing marginal
utilities. Games and Economic Behavior, 55(2):270–296, 2006.

[16] M. Maschler, J. A. M. Potters, and S. H. Tijs. The general nucleolus and the reduced game
property. International Journal of Game Theory, 21(1):85–106, Mar 1992.

[17] J. Milnor. Reasonable Outcomes for N-person Games. Research memorandum. Rand Corpora-
tion, 1953.

[18] D. Monderer, D. Samet, and L. S Shapley. Weighted values and the core. International Journal
of Game Theory, 21:27–39, 1992.

[19] H. Moulin. Axioms of Cooperative Decision Making. Econometric Society Monographs.

[20] H. Moulin. Egalitarianism and utilitarianism in quasi-linear bargaining. Econometrica, 53(1):
49–67, 1985.

[21] H. Moulin. An application of the shapley value to fair division with money. Econometrica, 60
(6):1331–49, 1992.

[22] K. Nagano. A strongly polynomial algorithm for line search in submodular polyhedra. Discrete
Optimization, 4(3-4):349–359, 2007.

[23] B. Peleg and P. Sudholter. Introduction to the theory of cooperative games (second edition).
Springer, 2007.

[24] D. Schmeidler. The nucleolus of a characteristic function game. SIAM Journal of Applied
Mathematics, 17:1163–1170, 1969.

[25] L. S. Shapley. A value for n-person games. In H. W. Kuhn and A. W. Tucker, editors, Con-
tributions to the Theory of Games II, pages 307–317. Princeton University Press, Princeton,
1953.

[26] L. S. Shapley. On balanced sets and cores. Naval Research Logistics Quarterly, (14):453–460,
1967.

[27] F. E. Su. Rental harmony: Sperner’s lemma in fair division. The American Mathematical
Monthly, 106(10):930–942, 1999.

[28] M. E. Yaari and M. Bar-Hillel. On dividing justly. Social Choice and Welfare, 1(1):1–24, 1984.

16

A Discussion of domination and of the anticore

In our setting, one alternative among A must be selected. Our solution concept postulates that an
alternative A∗ of maximum welfare is selected, and budget-balanced transfers are used in order to
share the welfare fairly among the agents. The reason for choosing a maximum welfare A∗ is to
create as large as possible pool of welfare to be distributed among the agents. The assumption that
utility functions are quasi-linear allows the transfers to redistribute the welfare in an arbitrary way
among the agents, regardless of the value of A∗ to each of the agents. The outcome of this welfare
distribution is summarized by the utilities of the agents, which combine the values derived from A∗

and from the transfer. Hence our setting can be described in the following equivalent way. There
is a set N of agents, and a given amount of welfare which equals wN ,v(A

∗). This welfare needs to
be shared among the agents, where the share of each agent i is her utility ui, under the condition
that

∑
i∈N ui = wN ,v(A

∗). The reference context that is available to us is the tuple v of valuation
functions, the set A of alternatives, and a probability distribution πv over A. Our welfare-sharing
(WS) core (Definition 2.1) is based on two sets of constraints. Below we justify each set of constraints,
and also discuss its relation to other notions in cooperative game theory.

A.1 Domination

We assume that a probability distribution πv over alternatives A is given. This πv serves as a reference
point (also referred to as a disagreement point). Namely, πv represents what the agents intend to
do (select one alternative A ∈ A according to probability distribution πv) if they are restricted to
use a (randomized) social choice function without transfers. For example, students allocating rooms
in a shared apartment may intend to use the Random Priority mechanism, which is quite simple to
implement. We propose to them that they use a mechanism with transfers instead, a mechanism that
generates more welfare, but may be more complicated to implement. However, we cannot enforce
that the agents switch from the reference point to our mechanism. We can only try to convince them
to do so, and moreover, we might need to convince each and every one of them before the switch
to our mechanism actually happens. In order for an individual agent to be convinced to switch, it
does not suffice that the utility of other agents will increase by the switch – we need to guarantee
that she herself will get higher utility from the new mechanism (or at least not lose utility). Here we
make the assumption that agents are risk neutral, and hence the distribution over utilities that an
agent derives from the randomized reference point can be summarized by one number – the expected
utility. Hence we impose the domination constraint ui(A

∗, p) ≥
∑

A∈A πv(A)vi(A) for every agent i.
We remark that if agents are risk averse (rather than risk neutral) then the utility that they

derive from the randomized reference point becomes smaller, making our deterministic mechanisms
even more attractive.

We assume that a reference point is given for the original game, but make no assumption regarding
how this reference point is chosen. In particular, the reference point, which may be a function of the
valuations, need not be a continuous function of the valuation functions. Indeed, in many natural
cases (reference points derived from Random Priority, or from the Eating mechanism of [2]) the
reference point is not continuous in the valuation functions.

There are other solution concepts that also require domination over a disagreement point. For
example, this is the case for Nash bargaining solution, and for the Kalai-Smorodinsky bargaining
solution (see Appendix I). Often, the disagreement point represents the bargaining power of agents
– the utility that they can obtain by not participating in the mechanism. Hence it is natural that
the mechanism needs to offer them at least their disagreement utility, as otherwise they would not
participate. Considerations of this sort are referred to as individual rationality (IR). However, in

17

our context, agents do not have an outside option of not participating. Rather, the disagreement
point itself is the outcome of a mechanism that involves all agents, referred to as the disagreement
mechanism. Hence it is not clear what utility, if any, an agent will derive by refusing to participate in
our mechanism, because this may depend on what the other agents do. Hence we view our domination
property as implementing a fairness principle rather than reflecting bargaining power: switching from
the disagreement mechanism to a new mechanism with transfers generates extra welfare, and it is
“fair” that this extra welfare be shared by all participants, or at the very least, that no agent suffers
a loss in utility.

There are solution concepts that fix a particular reference point (e.g., two possible reference points
are considered in [21], leading to notions that the paper refers to as weak and strong IR). Our work
differs from these works in the sense that our mechanisms can receive an arbitrary reference point
as an input parameter, and dominate the given reference point.

A.2 The anticore

When agent i receives an in-payment of pi, we wish it to be the case that agent i could justify to
others why she deserves such a payment. Such a justification is needed because against every in-
payment to one agent there is an equal amount of out-payment from other agents, and these other
agents need to be convinced that their out-payments are extracted for a good reason. A justification
that agent i can provide is that A∗ is not her preferred alternative, and so she should be compensated
for not contesting the choice of A∗. This justification has a limit. Without transfers, the highest
utility that agent i can hope to achieve is Wmax(i) = maxA∈A vi(A). Hence there is no justification
for pi to exceed Wmax(i) − vi(A

∗).
More generally, we require that also every set S of agents (e.g., all agents of a certain gender) will

be able to justify receiving net in-payment into S. Against every in-payment to S there is an equal
amount of out-payment from the set S̄ = N \ S of remaining agents (e.g., all agents of the other
gender), and this other set needs to be convinced that their out-payments are extracted for a good
reason. Without transfers, there is no alternative that can offer S total utility higher than Wmax(S).
Hence it is difficult to justify extracting out-payments from S̄ if their use is to increase the utility of
S beyond Wmax(S). This gives the constraints of the anticore.

Related notions: The constraint ui ≤ Wmax(i) is referred to as reasonable from above (REAB)
by Milnor [17] (see page 21 in [23]). The anticore extends the REAB constraint to sets, requir-
ing uS(A

∗, p) ≤ Wmax(S) for every set S. The anticore was defined in [21], where the constraint
uS(A

∗, p) ≤ Wmax(S) was referred to as the stand alone test for set S. The term anticore also ap-
peared in some other work, though not necessarily with the same interpretation. Let us elaborate
on this.

We first recall the notion of core in transferable utility cooperative games. Suppose that there is a
set N of players and a characteristic function f : N → R, specifying for each coalition of players the
payoff that the coalition can achieve on its own. An imputation I = (I1, . . . , In) is a vector of payoffs,
distributing the payoff f(N) of the grand coalition among the players. Namely,

∑
i∈N Ii = f(N). An

imputation is said to be in the core (which we shall call here the imputation core, so as to distinguish
it from others notions of core used in this paper) if for every set S ⊆ N of players,

∑
i∈S Ii ≥ f(S).

In our context, the utilities ui play the same mathematical role as the imputations Ii. The
function Wmax indirectly plays the role of the characteristic function, by defining a characteristic
function D(S) = Wmax(N)−Wmax(N \S) (technically referred to as the dual of Wmax) and requiring
uS(A

∗, v) ≥ D(S). This dual definition is more in line with our setting being that of a profit game (the
inequalities ensure some minimum utility for each set of agents). However, we find it inconvenient to
work with the dual definition (in particular when it is combined with the domination constraints),

18

and hence we use the equivalent definition of uS(A
∗, v) ≤ Wmax(S).

The anticore resembles the notion of core in cost-sharing games, and indeed such a core is some-
times referred to as an anticore (see [18]). Suppose that there is a set N of players and a characteristic
function f : N → R, specifying for each coalition of players the cost of receiving service on its own.
A cost-sharing vector c = (c1, . . . , cn) is a vector of costs, distributing the cost f(N) of the grand
coalition among the players. Namely,

∑
i∈N ci = f(N). A cost-sharing vector is said to be in the

anticore (which we shall call here the cost-sharing anticore, so as to distinguish it from our notion of
anticore) if for every set S ⊆ N of players,

∑
i∈S ci ≤ f(S). Our anticore has the same mathemat-

ical structure as a cost-sharing anticore, equating Wmax with the characteristic function f , and the
utilities ui(A

∗, p) with the cost shares ci. A major difference is that we impose this mathematical
structure in a profit-sharing game in which agents wish to maximize their utility, rather than in a
cost-sharing game in which agents wish to minimize their cost.

The term anticore has been used in [5] for profit-sharing games. There, the characteristic function
f : N → R specifies for each coalition of players the profit that it can generate on its own. A profit-
sharing vector u = (u1, . . . , un) is a vector of profits, distributing the profit f(N) of the grand
coalition among the players. Namely,

∑
i∈N ui = f(N). In [5], a profit-sharing vector is said to be in

the anticore if for every set S ⊆ N of players,
∑

i∈S ui ≤ f(S). Derks et al [5] provide the following
justification for the anticore: “if one coalition obtains less than its worth, then it is only fair that
all coalitions obtain at most their worths”. Our anticore has the same mathematical structure as
that of [5], equating Wmax with the characteristic function f , and the utilities ui(A

∗, p) with the
profit shares ui. However, our function Wmax does not carry the same interpretation that one usually
associates with a characteristic function of a profit-sharing game. In our setting, a set S of players
cannot generate for itself a utility Wmax(S) if it breaks from the grand coalition. Rather, Wmax(S)
is the maximum utility that S can obtain (without transfers) if it stays in the grand coalition, and
all players, including the players not in S, agree to choose the alternative that maximizes the welfare
of S.

Depending on the nature of the characteristic function f , the anticore in [5] might be either empty
or nonempty. (In fact, the main content of that work concerns how to handle cases in which both
the core and the anticore are empty.) In contrast, in our setting, the anticore is always nonempty.
In particular, not using any transfers (equivalently, using the all 0 transfer vector) is always in the
anticore. By nature of its construction, our function Wmax, when viewed as a characteristic function
in a profit-sharing game, guarantees non-emptiness of the anticore.

B Decomposability

The following proposition shows that the goals of maximizing welfare and of satisfying decomposition
properties are compatible with each other.

Proposition B.1 Any alternative that maximizes welfare also maximizes welfare for each component
separately.

Proof: Let A be an alternative that maximizes welfare, namely, for which
∑

i∈N vi(A) is largest
possible. For a component S, let B be an alternative that maximizes the welfare of S, namely, for
which

∑
i∈S vi(B) is largest possible. We need to show that

∑
i∈S vi(A) =

∑
i∈S vi(B).

Suppose for the sake of contradiction that
∑

i∈S vi(A) <
∑

i∈S vi(B). Let C be an alterna-
tive that maximizes the welfare of S̄. Then necessarily

∑
i∈S̄ vi(C) ≥

∑
i∈S̄ vi(A). By the fact

that S is a component, there must be an alternative D for which
∑

i∈S vi(D) =
∑

i∈S vi(A) and

19

∑
i∈S̄ vi(D) =

∑
i∈S̄ vi(C). It follows that

∑
i∈N vi(D) >

∑
i∈N vi(A), contradicting the assumption

that A maximizes welfare.

We next prove that strong decomposability implies weak decomposability.

Proposition B.2 Let M be a mechanism that for every instance selects an alternative that maxi-
mizes welfare and a budget balanced vector of transfers. If M is strongly decomposable, then for every
decomposable instance the solution produced by M is weakly decomposable.

Proof: Let S be a component. Let A be the alternative (maximizing welfare for N) chosen by M in
instance I, and let AS be the alternative (maximizing welfare for S) chosen by M in instance IS . By
Proposition B.1 we have that

∑
i∈S vi(A) =

∑
i∈S vi(AS). By strong decomposability of M we have

that ui(M(I)) = ui(M(IS)) for every i ∈ S, and consequently
∑

i∈S ui(M(I)) =
∑

i∈S ui(M(IS)).
As a utility of an agent is the sum of value for the chosen alternative and the transfer, we have that
the sum of transfers of the agents in S must be the same in I and in IS . But in IS the sum of
transfers is 0, because of budget balance. Hence in I the net transfer into S is 0 as well, as required
by weak decomposability.

We now prove Proposition 3.4, which is restated here for convenience.

Proposition B.3 Given a set A of alternatives, a set N of agents, and a tuple v of valuation
functions, the components of N form a lattice.

Proof: For every component S, also its complement S̄ = N\S is a component as well. Consequently,
if we prove that for every pair of components their intersection is also a component, this will imply
that their union is a component as well.

Let S and T be components. We need to show that S∩T is a component. Let A be an alternative
that is Pareto optimal for S ∩T . Let the vectors of values that A gives to the sets S ∪T , S \T , T \S
and N \ (S ∪T) be a1, a2, a3 and a4, respectively. Let B be an alternative that is Pareto optimal for
N \ (S ∩ T). Let the vectors of values that B gives to the sets S ∪ T , S \ T , T \ S and N \ (S ∪ T)
be b1, b2, b3 and b4, respectively. We need to show the existence of an alternative C for which the
respective vectors of values are a1, b2, b3, b4.

Let AS be an alternative that is Pareto optimal for S and for every agent in S offers at least as
much value as A does. Such an alternative must exist for the following reason. If A is Pareto optimal
for S, then take AS = A. If A is not Pareto optimal for S, then there must be an alternative A′ that
dominates A for all agents in S. Continue the argument with A′.

Likewise, let BS̄ be an alternative that is Pareto optimal for S̄ and for every agent in S̄ offers
at least as much value as B does. Such an alternative must exist as well. By the fact that S is a
component, there must exist an alternative CS whose vector of values dominates a1, a2, b3, b4.

Repeating the above argument with T instead of S, there must exist an alternative CT whose
vector of values dominates a1, b2, a3, b4.

Now take an alternative A′T that is Pareto optimal for T and for every agent in T offers at least
as much value as CS does, and an alternative B′

T̄
that is Pareto optimal for T̄ and for every agent

in T̄ offers at least as much value as CT does. By the fact that T is a component, there must be
an alternative C whose vector of values dominates a1, b2, b3, b4. In fact, it must equal a1, b2, b3, b4,
because otherwise either A was not Pareto optimal for S ∩ T , or B was not Pareto optimal for
N \ (S ∩ T). The existence of C shows that S ∩ T is a component, as desired.

20

C Decomposability versus separability

Recall the notion of decomposable solutions and mechanisms defined in Section 3. This notion
appears to be new, but there are other known concepts that bear superficial similarity to decompos-
ability. The purpose of this section is to present one such concept, that of separability, and clarify
the differences between separability and decomposability.

Separability (see for example [19] and references therein) of profit-sharing games is an internal
consistency property for profit-sharing mechanisms. Suppose that that there is a profit-sharing
mechanism M that given a set N of players, disagreement utilities ui for each i ∈ N , and a total
welfare W ≥

∑
i∈N ui to be divided among the players, assigns shares xi ≥ ui of the welfare to the

respective agents, satisfying
∑

i∈N xi = W . Then M is separable if it has the property that for every
S ⊂ N , had M been applied to an instance in which S is the set of players, in which the same ui as
above (for i ∈ S) are their disagreement utilities, and in which the total welfare to share is

∑
i∈S xi,

then M would propose the same shares xi as above (for i ∈ S). A simple example of a separable
mechanisms is the egalitarian mechanism that equalizes the profit (above disagreement point) of all
agents.

A major difference between decomposability and separability is that decomposability (of a so-
lution, or a mechanism) is a property that needs to hold only for decomposable instances, whereas
separability needs to hold for all instances. Consequently, decomposable mechanisms need not be
separable, and in fact our lex-max-WS mechanism is not separable. If S ⊂ N is not a component,
then the way the part of the welfare allocated to a subset S of players is distributed among the players
of S is affected by the way the remaining welfare is distributed among members of N \S, because the
anticore constraints involve constraints on sets T of players that intersect both S and N \S, and these
constraints affect which share allocations within S are feasible. Likewise, separable mechanisms need
not be decomposable (and in general are not). For example, the egalitarian profit-sharing mechanism
(equalizing xi − ui) is separable, but fails to satisfy even the weak decomposability property.

A property that is related to separability and can take into account the anticore constraints
is consistency for reduced games. This property is satisfied by a solution concept referred to as the
Nucleolus. This property can coexist with decomposability and can be incorporated into our solution
concept by changing the rule that selects a solution from the WS-core, but we prefer not to enforce
this property for reasons explained in Section I.3.

D More on the anticore

The following property of the anticore plays a central role in decomposability aspects.

Proposition D.1 For a given decomposable instance, let T1, . . . Tt be a partition of the set N of
agents into components (in the sense of Definition 3.1). Then a solution (A, p), composed of a chosen
alternative A and vector p of transfers, satisfies the anticore constraints (uS(A, p) ≤ Wmax(S) for
every set S ⊆ N) if and only if it satisfies them for every set S that is fully contained in a component
(namely, S ⊆ Tj for some 1 ≤ j ≤ t).

Proof: The “only if’ direction is a triviality. For the “if” direction, assume for the sake of
contradiction that there is a set S such that uS(A, p) > Wmax(S), but for every 1 ≤ j ≤ t it
holds that uS∩Tj

(A, p) ≤ Wmax(S ∩ Tj). Then for every j there is an alternative Aj such that
uS∩Tj

(A, p) ≤ uS∩Tj
(Aj), and then Definition 3.1 implies that there is some alternative A∗ such that

uS∩Tj
(A, p) ≤ uS∩Tj

(A∗) simultaneously for all j. Consequently, uS(A, p) ≤ uS(A
∗) ≤ Wmax(S),

which contradicts our assumption.

21

E Properties of the WS-core

E.1 Proof of Theorem 2.2

Recall that the welfare-sharing (WS) core contains those solutions that are in the anticore and
dominate the reference point. We now turn to prove Theorem 2.2, that the WS-core is nonempty
when either Wmax is sobmodular, or Wmax − Wπ is monotone. Our proof is based on the well
known Bondareva-Shapley theorem [3, 26], though our setting involves some subtleties that might
be overlooked in attempts to directly apply the Bondareva-Shapley theorem.

We first recall some standard terminology. A set function f is additive if for every set S, f(S) =∑
i∈S f(i). A set function f is submodular if for every two sets S and T it holds that f(S) + f(T) ≥

f(S∩T)+f(S∪T). Equivalently, f is submodular if it has the decreasing marginal returns property:
for every item i and two sets S ⊂ T it holds that f(S ∪ {i}) − f(S) ≥ f(T ∪ {i}) − f(T).

A collection of sets T1, . . . , Tk and nonnegative coefficients λ1, . . . , λk is said to be a fractional
cover for set S if for every item i ∈ S it holds that

∑
j | i∈Tj

λj ≥ 1. This fractional cover for
S will be referred to as proper if furthermore Ti ⊂ S for every 1 ≤ i ≤ k. A set function f is
(proper) fractionally subadditive if for every S, whenever T1, . . . , Tk and λ1, . . . , λk form a (proper,
respectively) fractional cover for S, the inequality

∑k
j=1 λjf(Tj) ≥ f(S) holds.

A set function f is XOS [15] if for some t there are additive set functions g1, . . . , gt such that
for every set S, f(S) = maxtj=1 gj(S). Observe that by definition, the function Wmax belongs to the
class XOS.

Given π = πv (the previously defined reference point), the set functionWπ(S) =
∑

A∈A π(A)
∑

i∈S vi(A)
describes the expected total utility that a set of agents receives from the reference point. Observe that
Wπ is an additive set function. We now define a characteristic function f as f(S) = Wmax(S)−Wπ(S).
This function belongs to the class XOS (because Wmax is in XOS and Wπ is additive) and is non-
negative.

It was shown in [7] that for nonnegative monotone set functions, the class of XOS functions is
the same as the class of fractionally subadditive functions. However, this correspondence need not
apply to the XOS function f defined above, because f need not be monotone. The example provided
after Definition 2.1 can serve to illustrate this difficulty. For this reason Theorem 2.2 considers two
special cases. In the second of these special cases f(S) is indeed monotone, and hence as explained
above, it is fractionally subadditive (which implies that it is also proper fractionally subadditive). In
the first special case, Wmax is submodular, and for this case we can use the following proposition.

Proposition E.1 If f is a nonnegative submodular function then it is proper fractionally subadditive.

Proof: Suppose for the sake of contradiction that the proposition is false. Then there is a counter
example: a set S, a fractional cover for S composed of sets {Ti} with nonnegative coefficients {λi},
such that

∑
λif(Ti) < f(S), and Ti ⊂ S for all i (this is the property of being a proper fractional

cover). Consider the smallest such counter example, with smallest |S|, and conditioned on |S|, with
smallest

∑
λi. For each item j ∈ S, let cj =

∑
i|j∈Ti

λi. By virtue of being a fractional cover we have
that cj ≥ 1 for all j ∈ S.

We claim that there must be at least one item j in S for which cj = 1. This holds because otherwise
we could divide all λi by minj cj and obtain a smaller counter example (

∑
λi would decrease, we will

still have a fractional cover, and
∑

λif(Ti) will decrease because all terms are nonnegative).
Given that there is an item j ∈ S with cj = 1, we may remove j both from S and from all sets

Ti, and we remain with a proper fractional cover. The condition
∑

λif(Ti) < f(S) together with
the decreasing marginal returns property imply that

∑
λif(Ti − {j}) < f(S − {j}). Hence we have

a smaller counter example, which is a contradiction.

22

Corollary E.2 If the function Wmax is submodular, then the function f(S) = Wmax(S)−Wπ(S) as
defined above is nonnegative and proper fractionally subadditive.

Proof: AsWmax(S) is submodular andWπ(S) is additive, their difference f(S) = Wmax(S)−Wπ(S)
is submodular. The function f(S) is nonnegative because Wπ(S) is the expected welfare that S
derives from a distribution over the alternatives, whereas Wmax(S) is the welfare derived from the
best alternative. The proper fractional subadditivity property follows from Proposition E.1.

We are now ready to prove Theorem 2.2.
Proof: (of Theorem 2.2) Observe that the theorem is equivalent to the statement that the cost-
sharing core with respect to the characteristic function f(S) = Wmax(S) − Wπ(S) contains a non-
negative cost-sharing vector c = (c1, . . . , cn), with

∑
i ci = f(N). Being in the cost-sharing core

with respect to f implies being in the anticore with respect to Wmax, and being nonnegative implies
domination over Wπ.

Consider the primal linear program (LP) with variables x1, . . . , xn (which in a feasible solution
will give the desired cost shares):

Maximize
∑

i∈N xi subject to:

•
∑

i∈S xi ≤ f(S) for every set S

• xi ≥ 0 for every i

The dual to the above LP has variables yS for every set S:

Minimize
∑

S⊆N f(S)yS subject to:

•
∑
{S | i∈S} yS ≥ 1 for every i

• yS ≥ 0

The fact that f is proper fractionally subadditive implies that the value of the dual is at least
f(N). Being a minimization problem, the value of the dual is in fact exactly f(N), by taking yN = 1,
and yS = 0 for S 6= N . Hence the primal LP is feasible and has value f(N), as desired.

E.2 Proof of Proposition 4.1

We next restate and prove Proposition 4.1.

Proposition E.3 When the WS-core is nonempty:

1. The min-square solution exists and is unique (in terms of the utility that it offers each agent).

2. The lexicographically-maximal solution exists and is unique.

3. The min-square solution and the lexicographically-maximal solution need not coincide.

4. A Lorenz dominating solution need not exist.

5. If a Lorenz dominating solution exists, it is unique, and moreover, it coincides both with the
lexicographically-maximal solution and with the min-square solution.

Proof:

23

1. The WS-core is a bounded polytope (with constraints u ≥ 0,
∑

i ui = Wmax(N), and the anti-
core constraints). The function

∑
i∈N (ui)

2 is strictly convex. Hence it has a unique minimum
in the WS-core.

2. Assume for the sake of contradiction that there are two lexicographically maximal solutions u
and u′ with u 6= u′. As the WS-core is a convex set, it holds that also u” = u+u′

2 is in the
WS-core. It is not difficult to see that either u” >Lex u or u” >Lex u′ (with a strict inequality).
This contradicts the assumptions that both u and u′ are lexicographically maximal.

3. To see that the min-square solution and the lexicographically-maximal solution need not coin-
cide, consider the following example with four alternatives and six players:

Example2 Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 6

Alternative A 1 1 1 1 3 3

Alternative B 0 2 2 2 2 2

Alternative C -1 -1 -1 -1 4 -9

Alternative D 0 -2 -2 -2 -9 4

The disagreement distribution π is uniform over the four alternatives. Under this distribution,
the expected utility of each agent is 0. (In the above example π is supported on Pareto-
optimal alternatives. If this is not required, we may replace Alternatives C and D by a single
disagreement alternative that gives utility 0 for every agent, thus simplifying the example.)
Any of the first two alternatives maximizes welfare, giving a welfare of 10. An egalitarian
distribution of the welfare will give each agent utility 5/3, but this is not in the anticore
because it violates the constraint for Agent 1 (whose utility is upper bounded by 1). The
lexicographically maximal solution is to choose Alternative A and have no transfers. This
gives Agent 1 his maximum possible value of 1, and then conditioned on that, it gives each of
Agents 2, 3 and 4 their maximum utility of 1 (because agent 1 and agent j ∈ {2, 3, 4} combined
are not allowed to have utility above 2). However, this is not a min-square solution: choosing
Alternative B with no transfers gives a lower value for the sum of squares (20 instead of 22).

4. In the above example, there is no Lorenz dominating solution, because the lexicographically
maximal solution (utilities as in Alternative A) does not Lorenz dominate the solution corre-
sponding to the utilities under Alternative B.

5. If follows essentially by definition that x ≥Lor y implies that also x ≥Lex y. Hence Lorenz
domination implies being lexicographically maximal. To obtain the Lorenz dominating vector
of utilities from any other vector of utilities (that maximizes welfare and is in the WS-core),
one needs to shift utility from coordinates of higher utility to coordinates of lower utility, by
this lowering the sum of the squares of the utilities. This shows that a Lorenz dominating
solution is also a min-square solution.

F Proof of Theorem 4.4 – Lorenz domination

In this section we prove Theorem 4.4: If Wmax is submodular, then the lex-max-WS solution (which
is in the WS-core) Lorenz-dominates all other solutions in the WS-core.

24

Proof: Let f be the characteristic function associated with the WS-core. Namely, f = Wmax, when
the valuation function of each agent is such that the expected value of the disagreement point is 0
(recall that this can be enforced by applying an additive shift to the valuation functions). Recall that
f is nonnegative, though it need not be monotone. By our assumption, f is submodular. We need to
show that the core of the corresponding cost-sharing game contains a solution that Lorenz-dominates
all other solutions in the core.

Let x = (x1, x2, . . . , xn) denote the lex-max-WS solution, as found by the water filling algorithm.
We now show that x ≥Lor y for every y in the core. We need to sort the coordinates of x by order of
nondecreasing values (equivalently, sort the agents by nondecreasing utilities, above the disagreement
point, under x). In this order the sets Si appear in the order S1, S2, . . . Sm. More precisely, denoting
Sj \

⋃
i<j Si by Tj for every j ≥ 1, the sets Ti appear in order T1, T2, . . . , Tm. For y, we may pick an

order of our choice (not necessarily nondecreasing) on its coordinates. If in this arbitrary order we
have

∑
j≤i xj ≥

∑
j≤i yj for every i, then x ≥Lor y. The order we choose for y is also T1, T2, . . . Tm,

and within each Ti we sort the coordinates by order of nondecreasing values. Observe that for every
Ni = ∪j≤iTi it holds that x(Ni) ≥ y(Ni), because by the proof of Proposition 4.2 (replacing N
by Ni in the proof of the proposition), x gives the set Ni its maximum possible value given the
constraints of f (and y has to be in the core). Consider now any intermediate coordinate k within
an interval Si (starting at Ni−1 and ending at Ni). At the left endpoint of the interval Si we have
x(Ni−1) ≥ y(Ni−1). The x values are constant within the set Si whereas the y values are increasing.
Hence if it would happen that

∑
j≤k xj ≥

∑
j≤k yj fails to hold, this would lead to x(Ni) < y(Ni),

which would be a contradiction. Hence it must be that x ≥Lor y.

G Shared Rental (Unit-Demand Matching)

A motivating example for our new solution concept is the Shared–Rental problem. In the Shared–
Rental problem n ≥ 2 agents rent an apartment with n bedrooms and jointly need to pay the rent
r and decide on the matching of rooms to the agents. We assume that they are already committed
to rent the apartment2 and that each will first pay an equal share of the rent, that is, will pay r/n,
and then they will need to decide on the matching of the agents to the rooms (each getting exactly
one room), and the transfers between the agents to make the outcome ”fair”. The Shared–Rental
problem can be restated more abstractly as a matching problem for unit-demand agents which we
describe next.

In the problem of matching with unit-demand agents, the goal is to allocate a set M of n ≥ 2
items to n unit-demand agents, giving each of them one item. Each unit-demand agent i assigns
a value vi(j) to each item j ∈ M. We would like to match agents with items - each agent will
receive exactly one item.3 Mapping this to the general framework, the set of alternatives is the set
of permutations over the n items, and the value that an agent assigns to an alternative is his value
for the item he receives in that permutation. That is, permutation σ assigns item σ(i) to agent i,
and his value for σ is vi(σ(i)).

Note that we can indeed frame the Shared–Rental problem as a matching with unit-demand
agents problem, although in the Shared–Rental problem there is the additional component of paying
the rent. The rent payment from each agent can be encoded by some shifted unit-demand valuations
obtained from the original valuations by decreasing the valuation of each item4 by the rent amount

2We will not handle the question of how they have entered this commitment and if it was rational for them to do
so.

3In our framework no items can be left unallocated.
4We make no assumption that the value of an item is necessarily non-negative. Note that even if that was the case

25

r/n. Thus, the two problems are essentially equivalent and we will go back and forth between the
two.

G.1 The WS-core and the lex-max-WS solution

To define the welfare-sharing core (WS-core), we first discuss reasonable distributions that the agents
might consider as their reference point and expect the solution to dominate. Such distributions
naturally arise from some standard mechanisms (without transfers) that may be considered natural,
for example, for the Shared–Rental problem.

1. Uniform (U). The allocation π is a permutation chosen uniformly at random, independent of
v.

2. Random priority (RP). One selects a random permutation over agents, and then the agents in
turn each select one item from those remaining.

3. Eating (Eat), also known as probabilistic serial [2]. Each item has unit volume. Each agent
“eats” items at the same rate, starting at his most preferred item. Whenever an item is totally
consumed, each agent eating it switches to his highest priority item that still has some volume
left. When all items are consumed, we have a fractional allocation. It is decomposed into a
weighted sum of integral allocations, and one of them is chosen (with probability proportional
to its weight).

It is easy to see that Uniform might actually have Pareto dominated allocations in its support, so it
seems less attractive to use. In fact, it is shown in [2] that Eating Pareto dominated RP which in
turn Pareto dominates Uniform. As Uniform might select an allocation that is Pareto dominated,
we take RP as a natural reference mechanism (yet all our claims below will also hold for the Eating
mechanism). The disagreement point we take will be the expected utility of the output of the RP
mechanism on the specific valuations. We note that this utility is not continuous in valuations
when the preference order of some agent changes, but it is easy to see it is continuous (and even
Lipschitz continuous with a small constant of 1) as long as the ordinal preferences remain the same.
Observe that we can again shift the unit-demand valuations by decreasing from each agent valuation
his expected utility from the reference distribution, normalizing his utility in the new disagreement
point to zero. We make this normalization assumption in the rest of the section.

To complete the definition of the welfare-sharing core, we consider the anticore constraints
Wmax(·) for these unit-demand valuations. We observe that in the matching with unit-demand
setting, Wmax(S), the maximal achievable welfare that a set S ⊆ N of agents can obtain, is the
maximal weighted matching of the set S to any subset T ⊆ M with |T | = |S|. The set function
Wmax(·) (when the sets are sets of agents) satisfies the OXS property defined by [15]. They have
proved that any such set function is submodular. We immediately get the following implications by
Theorem 2.2, Theorem 4.4 and Proposition 4.1:

Proposition G.1 For any unit-demand setting, the set function Wmax : N → ℜ is submodular.
Thus, within the WS-core there is a Lorenz dominating solution. This solution is unique, and more-
over, it coincides both with the lexicographically-maximal solution (lex-max-WS) and with the min-
square solution.

before the shift, it might fail to hold after the shift.

26

So we see that all three above solutions exist and coincide for the unit-demand case, and recall
that we call it the lex-max-WS solution. We next observe that in the Shared–Rental problem this
solution satisfies some desirable decomposability properties.

Remark G.2 We note that unit-demand valuations are submodular, and Wmax is submodular for
unit-demand valuations. Another case where Wmax is submodular is when the valuation functions
of the agents are additive over the items (which is also a class of submodular valuation functions).
However, there are submodular valuations for which Wmax is not submodular. See Appendix J for
more details.

G.2 Decomposability

Recall the notion of decomposability from Definition 3.1. This notion, when specialized to of unit-
demand matching instances (such as the Shared Rental problem) is equivalent to the definition
below.

Definition G.3 We say that a unit-demand matching instance I = (N ,M, v) is decomposable if
there is some partition of N into P1, P2, . . . , Pt (with t > 1) and of M into M1, . . . ,Mt, with the
properties that |Pℓ| = |Mℓ| for all 1 ≤ ℓ ≤ t, and that in every Pareto optimal allocation, in every
part Pℓ (referred to also as a component), each agent of Pℓ receives an item from Mℓ.

A sufficient condition for P1, P2, . . . , Pt and M1, . . . ,Mt to serve as a decomposition of an instance
is that for every 1 ≤ ℓ ≤ t, every agent in Pℓ prefers every item in Mℓ over every item not in Mℓ.

Consider a large house with five rooms, three on the east wing and two on the west wing, and five
renters. Hence for the room assignment problem, which is a unit demand matching instance, there
are 5! = 120 alternatives, one for each permutation. Assume that the five renters can be partitioned
to two groups, the “east group” with three renters and the “west group” with two renters. The
agents have the following preferences: each agent in the east group prefers any room on the east
wing over any on the west wing, and each agent on the west group prefers any room on the west over
any on the east. In such a case, given a mechanism that provides solutions to the room assignment
problem, there are two natural options regarding how to use it. One is to apply the mechanism on
the whole input instance. The other is to first assign each group of agents to its preferred wing, and
thereafter apply the mechanism to each wing independently (one such subproblem has three agents
and 3! = 6 alternatives, the other has two agents and 2! = 2 alternatives), without further exchange
of information or transfer of money between the two groups. If the mechanism enjoys the strong
decomposability property (Definition 3.3) then every agent is indifferent regarding which of the two
options is used, in the sense that both options give her the same utility. So the agents may as well
decompose the instance.

Conversely, if the strong decomposability property fails, then for some agents the first option
gives higher utility than the second, and for some other agents the second option gives higher utility
than the first (this will necessarily happen for a budget balanced mechanism that maximizes welfare,
because the sum of utilities in both options is the same). Hence it might be difficult to reach
agreement among the agents regarding which option to choose. Likewise, had we started with two
separate instances, one for the east group and one for the west group, with no group interested in
rooms in the other wing, we would be faced with the question of whether or not to compose these
two instances into one larger instance for the whole house, as this affects the distribution of welfare
among the agents. The use of a strongly decomposable mechanisms eliminates the source of such
conflicts.

27

For unit demand matching instances, decomposition goes beyond the weak and strong decom-
position properties of Section 3. The added feature is that when an instance decomposes, then also
each (Pareto optimal) alternative by itself can also be decomposed. For example, an allocation of
rooms to agents in the above example can be decomposed into the allocation of the east wing rooms
and the allocation of the west wing rooms. In these settings, the fact that a solution decomposes
is not only a statement about the end result of the solution, but also about the physical procedure
by which the solution can be obtained. We can indeed partition the players into disjoint groups,
let each group solve its own subproblem with no communication with the other groups, and the
concatenation of the separate solutions derived independently by each group gives back one welfare
maximizing alternative (and a vector of budget balanced transfers).

Considering allocation mechanisms without transfers for unit-demand matching, we observe that
Uniform does not respect the component structure (agents need not get an item from their own part
in the partition), whereas both RP and Eating are strongly decomposable.

When addressing strong decomposability of our lex-max-WS mechanism, we postulate that the
reference point used by the lex-max-WS comes from a strongly decomposable reference mechanism
(like RP). The reference point for each part of the decomposition is the outcome of the execution of
the reference mechanism on the corresponding sub-problem separately. The following Corollary is a
special case of Proposition 4.3.

Corollary G.4 The lex-max-WS mechanism for unit-demand matching problems is strongly decom-
posable whenever the reference mechanism is strongly decomposable. In particular, this holds when
the reference mechanism is either RP or Eating.

G.3 Comparison to other solutions

It will be insightful to compare our solution to two standard solutions from the literature: the envy-
free solution, and the Shapley solution (defined in Section 4.5). In this section we show that neither
one of them satisfies all the properties we are after, even for the Shared–Rental problem. We also
present a complete comparison of the solutions for the case that n = 2 in Appendix M.

G.3.1 Envy-free solutions

Recall that an allocation is envy free if no agent prefers some other agent’s allocation and payment
over her own. We have already seen in Section 1.1 examples for unit demand matching in which every
envy free solution is not in the anticore, does not dominate RP, and does not satisfy decomposability.

Additional related examples are provided by Proposition L.1 in Appendix L. In that appendix
we also prove the following:

Proposition G.5 There are instances of the Shared–Rental problem in which the valuation function
of each player is nonnegative and sums up to the total rent (in particular, this is the setting studied
in [9]), but nevertheless there is a player that in every envy-free solution both gets his most desired
room and receives more money than his rent share.

G.3.2 The Shapley value solution

The Shapley value solution is unique. The next proposition lists some of its properties, see Appendix
H for the proof.

Proposition G.6 The Shapley-value solution is in the anticore of the Shared–Rental problem and
satisfies strong decomposability, yet it does not dominate RP (and hence also does not dominate
Eating).

28

H Properties of the Shapley-value solution

A theoretical justification given for using the Shapley value is that it is the unique solution that
satisfies three properties referred to as symmetry (agents with the same valuation function receive
the same utility), zero player (an agent whose valuation function is 0 for all alternatives does not
receive nor pay any transfer) and linearity (linear changes to Wmax lead to linear changes in the
distribution of welfare).

When the WS-core in nonempty, the solution offered by the Shapley value will in general be
different than our lex-max-WS solution, and the reason for this is that lex-max-WS does not satisfy
the linearity property with respect to Wmax. Not satisfying properties associated with Wmax alone
(linearity or other) is a natural consequences of the fact that our WS-core is not defined only by
constraints derived from Wmax, but also by constraints derived from the disagreement point. Hence
even if Wmax remains unchanged and only the disagreement point changes, our solution will change,
whereas the Shapley value solution would not change.

It is known that in general cost-sharing games, the Shapley value solution might be outside the
cost-sharing core. Likewise, in our more specialized setting (in which Wmax is not arbitrary, but
rather derived from valuations over alternatives) the Shapley value solution might be outside the
anticore. This is shown in [21]. For completeness, we also provide such an example. Consider three
agents and four alternatives, with valuation functions as in the following table:

Example 3 Alternative 1 Alternative 2 Alternative 3 Alternative 4

Agent 1 2 0 0 1

Agent 2 0 2 0 1

Agent 3 0 0 2 2

Alternative 4 generates the highest welfare. The anticore restricts the combined utility of the
first two agents to at most 2, and likewise for the utility of Agent 3. Hence in the anticore the utility
of agent 3 is exactly 2. However, the Shapley value for agents 1 and 2 is 7/6, and for agent 3 it is
5/3. Hence in the Shapley value mechanism agent 3 pays agents 1 and 2.

In the above example Wmax is not submodular: the marginal contribution of agent 1 to the set
{2, 3} is 1, whereas her marginal contribution to the set {2} is 0.

H.1 Proof of Proposition G.6

We restate and prove Proposition G.6.

Proposition H.1 The Shapley-value solution is in the anticore of the Shared–Rental problem and
satisfies strong decomposability, yet it does not dominate RP.

Proof: As noted earlier, the function Wmax is submodular for the Shared–Rental problem, and the
Shapley value for submodular cost-sharing games lies in the cost-sharing core. As mathematically
the anticore has the same definition as the cost-sharing core, it follows that the Shapley value is in
the anticore.

To see that the Shapley value is strongly decomposable, recall that the Shapley value of an agent
i is computed by considering a uniform distribution over all permutations, and taking the expected
marginal value (with respect to Wmax) of the agent over a random choice of permutation. As the
instance is decomposable, these marginals only depend on those agents from the part Pj that contains
i that arrived before agent i. The uniform distribution for permutations over all agents indices a
uniform distribution over the permutations for the agents in part Pj . Hence the vector of Shapley

29

values for all agents is simply the concatenation of the vectors of Shapley values for each of the parts,
implying strong decomposability.

The fact that it does not dominate RP follows from the fact that the Shapley value mechanism
is continuous, whereas the RP mechanism is not, not even when its output maximizes welfare (see
Proposition K.1). Consequently, computing the utility of the agents under the Shapley value mech-
anism for the example used in the proof of Proposition K.1 will provide an example proving the
current proposition.

I Comparison to some prior solution concepts

Many bargaining solutions have been suggested in the past. Below we discuss some of the most known
ones, and show that none of them satisfy all the properties we consider desirable. The solutions we
discuss include the Nash bargaining solution and the Kalai-Smorodinsky bargaining solution [13]. As
transfers are allowed, each of them picks a division of the utility generated by the social maximizing
outcome among the players. These solutions can be defined to dominate RP, but need not lie in the
anticore. This last fact has the following undesirable consequences.

Proposition I.1 The Nash bargaining solution is not reasonable from above (ui ≤ Wmax(i) might
fail for some agent i), and it fails to satisfy even the weak decomposition property.

Proposition I.2 The Kalai-Smorodinsky bargaining solution is reasonable from above, but it fails
to satisfy even the weak decomposition property.

Below we present examples proving the above propositions. We also discuss another solution
concept, the nucleolus. We explain how a version of this notion can be defined so that it will be in
our WS-core. As such, it can potentially serve as an alternative to the solution that we propose to
select from the WS-core, namely, the lex-max-WS solution. Faced with these two alternatives, we
explain why we prefer lex-max-WS over the version of the nucleolus that resides in the WS-core.

I.1 The Nash bargaining solution

The Nash bargaining solution, when applied in our setting, becomes identical to the egalitarian
solution, equalizing the gains of all agents above their respective disagreement utilities. As such, it
dominates RP, but need not lie it the anticore. Moreover, the Nash bargaining solution need not
be reasonable from above. Namely, it may hold that ui > Wmax(i) for some agent i. The following
example illustrates this point.

Consider a setting with two agents and a two alternatives. The first agent has values of 24 and
0 for the two alternatives, while the second agents has value of 0 and 4. Random priority will give
the agents expected utilities of 12 and 2, respectively. These are the disagreement utilities, and their
total is only 14, which is 10 less than the maximum welfare of 24. The Nash bargaining solution will
give each of them an additional utility of 5 so the final utilities will be 17 and 7. In particular, the
utility of the second agent is higher than the utility offered to her by the best alternative.

Likewise, the Nash bargaining solution fails to satisfy the even the weak decomposition property.
The example in Appendix I.2 can serve to illustrate this last point (details omitted).

I.2 The Kalai-Smorodinsky bargaining solution

The Kalai-Smorodinsky (KS) solution has the following geometric interpretation. Each alternative
corresponds to a point in ℜn

+, specifying the utility of each of the n agents. The point of best

30

utilities is the point with coordinate for each agent equal to the best utility she gets in any feasible
alternative. The Kalai-Smorodinsky solution is the intersection of the Pareto frontier with the line
from the disagreement point to the point of best utilities.

We note that while our solution aims to equalize utility gains (compared to disagreement utilities)
as much as possible (subject to anticore constraints), the KS solution aims to equalize the fraction
of the utility improvements (from the disagreement to the best point).

Like in our solution, the KS solution never gives any agent more than her utility in the best
alternative for her. Yet, the KS solution might fail to satisfy the anticore constraints for groups of
more than one player. Consequently, it fails to satisfy even the weak decomposition property. This
is illustrated by the following example:

Consider an item allocation setting in which there are four agents and four items, and in each
alternative each agent receives one item. Hence there are 4! = 24 possible alternatives. The valuation
of each agent for each item is presented in the following table:

Example Item 1 Item 2 Item 3 Item 4

Agent 1 4 8 0 0

Agent 2 4 12 0 0

Agent 3 0 0 4 8

Agent 4 0 0 4 20

The problem decomposes to the first two agents (with maximum welfare 16) and last two agents
(with maximum welfare 24), giving a total maximum welfare 40. Random priority will give the agents
expected utilities of 6, 8, 6 and 12, respectively. These are the disagreement utilities, and their total
is only 32, which is 8 less than the maximum welfare.

The best utility each of the agents can get is 8, 12, 8 and 20, respectively, for a total of 48.
Subtracting the disagreement values this gives the agents 2, 4, 2 and 8, respectively, which in total is
16 above the disagreement point, rather than 8 that can be divided among the agents.

The KS solution lowers what each agent gets (above disagreement) in a uniform rate, meaning
that the agents will get utilities 7, 10, 7 and 16, respectively. That is, each agent gets half the gap
between his disagreement utility and his best utility. Hence the first two agents together get 17
instead of 16 (the maximal they could get in any alternative), and the last two agents get 23 instead
of 24. This means that there is a transfer between the two components, not satisfying the weak
decomposition property (or the anticore constraint for the first two agents).

I.3 The Nucleolus

The nucleolus [24] is a solution concept that gives a unique solution to a coalitional game. If the
core of the game is nonempty, the nucleolus resides in the core. Part of its attractiveness is due to
possessing a property referred to as consistency for reduced games (see [19] or [16] for more details).

To apply this solution concept, one needs to describe our setting as a coalitional game, where
there is a characteristic function associated with sets of agents. The question becomes which charac-
teristic function to use. In general, readers may propose whatever characteristic function they find
appropriate, and at this level of generality we have nothing to say about the nucleolus. However, part
of our work concerns exactly the issue of selecting characteristic functions that we find appropriate
for our setting, and they can serve as the basis for the definition of the nucleolus.

Our notion of anticore and the fact that we have a profit game (in which agents share the
welfare increase that results from selecting a maximum welfare alternative) suggests the use of
D(S) = Wmax(N)−Wmax(N \S) as a characteristic function (see the end of Section A.2). Applying
the nucleolus framework to this characteristic function is then equivalent to selecting a solution that

31

satisfies the anticore constraints with as large a margin as possible (measured in terms of a lexico-
graphic vector of the margins). This solution satisfies the weak decomposability property (because
it is in the anticore, see Proposition 3.5), but need not satisfy the domination constraints (and hence
might not be in the WS-core). Even in the room (item) allocation setting (which is submodular),
there are examples in which the nucleolus fails to dominate the Random Priority mechanism. The
instance described in Appendix K serves as one such example (for the same reason that it shows
that the Shapley value solution does not dominate RP – see the last paragraph of the proof of
Proposition H.1 for an explanation).

To force the nucleolus solution to lie within the WS-core, one may modify the characteristic
function so that its value on each set S is the maximum betweenD(S) and the sum of the disagreement
utilities of agents in S. We refer to this function as the WS characteristic function, and to the
resulting nucleolus concept as nucleolus-WS. It selects a solution that satisfies all constraints of the
WS characteristic function with as large a margin as possible (measured in terms of a lexicographic
vector of the margins). In contrast, our lex-max-WS solution satisfies only the domination constraints
with as large a margin as possible, subject to not violating the anticore constraints. Having a large
margin for the domination constraints serves the purpose of giving agents as strong as possible
incentives to give up the reference point and adapt our mechanism. Keeping a large margin from all
constraints (including the anticore constraints) serves a different purpose: it attempts to keep the
selected solution away from all boundaries of the feasible region. We prefer the lex-max-WS solution
over nucleolus-WS, though using nucleolus-WS is also a reasonable option for selecting a solution
from the WS-core. In particular, like the lex-max-WS , the nucleolus-WS mechanism satisfies the
strong decomposability property. This is a consequence of being in the anticore (that ensures weak
decomposability), together with the fact that the nucleolus satisfies consistency for reduced games
(details omitted).

Section M presents (among other things) a comparison between lex-max-WS and nucleolus-WS
when there are two agents.

J Is Wmax submodular for submodular Combinatorial Valuations?

Proposition G.1 is the result of the fact that for unit-demand valuations the set function Wmax is
submodular. Thus, a similar claim is true for other classes of combinatorial valuation functions
over the items that ensure that the set function Wmax is submodular. One would be tempted to
think that the fact that unit-demand valuations are submodular was sufficient to prove that Wmax

is submodular. Yet care should be taken. The submodularity of unit-demand valuations is for each
valuation function, with respect to sets of items, while the submodularity of Wmax is for the total
welfare, and with respect to sets of agents. Indeed, we next show that the fact that the class of
submodular valuation functions does not ensure that the set function Wmax is submodular.

Proposition J.1 There are instances of allocation problems in which all agents have valuation func-
tions that are submodular (and in fact, also belonging to the classes of budget additive valuations
and coverage valuations) but nevertheless, the associated set function Wmax is not submodular.

Proof: Consider an example with four agents and three items. The values that agents associate
with individual items are presented in the following table.

32

Example 4 Item 1 Item 2 Item 3

Agent A 1 0 0

Agent B 0 2 0

Agent C 0 0 2

Agent D 2 1 1

Given the values of individual items, the valuation functions of each of the agents A, B and C are
additive, and the valuation function of agent D is budget additive with a budget of 2 (it also happens
to be a coverage function). Hence any set of either two or three items has value as 2 for agent D, even
if the sum of item values is larger than 2. All four valuation functions are submodular. However, the
set function Wmax is not submodular. Consider the sets S = {A,B,D} and T = {A,C,D}. Then
4 + 4 = Wmax(S) +Wmax(T) < Wmax(S ∩ T) +Wmax(S ∪ T) = 3 + 6, violating the submodularity
inequality.

We conclude by remarking that if all agents have additive valuation functions then is is true that
the set function Wmax is submodular, and Proposition G.1 applies to this setting as well.

K Both Random Priority and Eating are not continuous

Proposition K.1 Neither the Random Priority (RP) mechanism nor the Eating mechanism are
continuous, not even on instances on which they nearly maximize welfare.

Proof: Consider an instance with three players and three items. For small ǫ > 0, the valuation
vectors of the players are (1, 1 − ǫ, ǫ), (1, 1 − ǫ, ǫ), (1, 0, ǫ). The maximum welfare allocation has
welfare 2, and so does each allocation that might result from RP and Eat (because it is never the
case that player 3 gets item 2). The expected utilities under RP are roughly (56 ,

5
6 ,

1
3) (up to O(ǫ)),

and likewise for Eat (in both cases player 3 has probability 1
3 of getting item 1). Consider now a

slightly modified set of valuation vectors: (1− ǫ, 1, ǫ), (1− ǫ, 1, ǫ), (1− ǫ, 0, ǫ). Again, the maximum
welfare allocation has welfare 2, and so does each allocation that might result from RP and Eat
(because it is never the case that player 3 gets item 2). The expected utilities under RP are roughly
(23 ,

2
3 ,

2
3) (up to O(ǫ)), and likewise for Eat (in both cases player 3 has probability 2

3 of getting item 1).
As ǫ tends to 0, every player suffers discontinuity in its utility.

L Properties of envy-free mechanisms

Proposition L.1 There are instances of the unit-demand matching problem in which in each in-
stance there is unique envy-free solution, and this solution fails to satisfy some desirable properties,
as follows.

1. It does not satisfy decomposability.

2. It does not dominate the Random Priority allocation, and moreover, some agent i exceeds his
own upper bound on utility Wmax(i) = maxjvi(j).

3. It does dominate the Random Priority allocation and even the Eating mechanism, but never-
theless, some agent i exceeds his own upper bound on utility Wmax(i).

4. It is in the anticore but still fails to dominate Random Priority.

33

5. It dominated Random Priority (and even Eating) and no agent i exceeds his own upper bound
on utility Wmax(i), but is not in the anticore.

Proof: We write valuation functions as vectors of item values. In all cases an allocation that
maximizes welfare is the identity permutation. (It can be made unique by adding a small ǫ > 0 to
every vi(i), but this is omitted from the examples so as to keep the notation simple.)

1. See example in the introduction.

2. Valuations (6,0,0), (6,0,0), (0,6,6). The only envy free transfer is (−4, 2, 2). Agents 1 and 2 get
less utility than in Random Priority (2 instead of 3), and agent 3 gets more utility than his
highest value (8 instead of 6).

3. Valuations (6,0,0), (6,0,0), (1,0,0). The unique envy free transfer is (−4, 2, 2). In both Random
Priority and Eating each agent get the first item with probability 1/3. Agent 3 gets more
utility than his highest value (2 instead of 1).

4. Valuations (2,1,0), (2,1,0), (0,1,0). The unique envy free transfer is (-1,0,1). This satisfies
the anticore constraints, but does not dominate Random Priority (each of agents 1 and 2 gets
utility 1, whereas in Random Priority they get expected utility 7

6).

5. Valuations (7,0,0,0), (7,0,0,0), (2, 0, 1, 0), (2, 0, 1, 0). The unique envy free transfer is
(−5, 2, 1, 2). This dominates the Eating mechanism and no agent i exceeds his own upper
bound on utility Wmax(i), but it violates the core upper bound constraints on some group (the
group {3, 4} has utility 4, higher than their upper bound of 3).

L.1 Envy-free solutions might pay a renter that got his top room

We restate and prove Proposition G.5.

Proposition L.2 There are instances of the Shared–Rental problem in which the valuation function
of each player is nonnegative and sums up to the total rent (this is the setting studied in [9]), but
nevertheless there is a player that in every envy-free solution both gets his most desired room and
receives more money than his rent share.

Proof: Consider an instance with five players (and five rooms) in which they need to pay rent of
1. For 0 < ǫ < 1

8 , the valuations functions are (in vector notation):

v1 = v3 = (1− ǫ, 0, ǫ, 0, 0)

v2 = v4 = (0, 1 − ǫ, 0, ǫ, 0)

v5 = (0, 0,
1− ǫ

3
,
1− ǫ

3
,
1 + 2ǫ

3
)

Observe that these valuation functions are normalized (each sums up to 1) and nonnegative.
Every maximum welfare solution will place players 1 and 3 in rooms 1 and 3, players 2 and 4

in rooms 2 and 4, and player 5 in room 5. In particular, player 5 receives the room that he desires
most. In an envy free solution, how much should each player pay? To avoid envy between players 1

34

and 3, room 1 needs to be priced exactly 1− 2ǫ above room 3. Likewise, room 2 needs to be priced
exactly 1− 2ǫ above room 4. To avoid envy for agent 5, room 5 needs to be priced at most ǫ above
any of rooms 3 and 4. Using the above information, the maximum that player 5 can be charged is at
most −1+8ǫ

5 (with players 1 and 2 getting rooms 1 and 2 and charged 4−7ǫ
5 each, and players 3 and 4

getting rooms 3 and 4 and charged −1+3ǫ
5 each). For 0 < ǫ < 1

8 players 1 and 2 more than cover
the rent, and each of players 3, 4 and 5 receives money rather than pays rent. In a sense, players 1
and 2 are paying the other players so that the other players agree to give them rooms 1 and 2. It is
perhaps justified that players 3 and 4 get paid – they really wanted rooms 1 and 2, and instead got
rooms of almost no value. Hence they sacrificed something to enable the solution, and may deserve
some compensation. In contrast, player 5 got his most desirable room and sacrificed nothing, but
nevertheless, is also getting paid.

M A complete analysis for unit-demand matching with two agents

In this section we present a complete analysis of unit demand matching when n = 2 (two agents and
two items). This is fact captures all settings in with two agents and two alternatives (here the two
alternatives are the two possible permutations over the items). We compare between the following
four mechanisms:

1. Envy-free. To select a unique solution among all envy-free solutions, we use max-min as the
selection rule, as was recommended in [9].

2. The Shapley value solution.

3. Kalai-Smorodinsky bargaining. Here we use RP (or equivalently for the case n = 2, Eating) as
the disagreement mechanism.

4. Our lex-max-WS , again with RP as the disagreement mechanism.

Let us denote the agents by {A,B} and the items by {a, b}. After some normalization, we may
assume that the valuation function for A is vA(a) = 1 and vA(b) = −1, and for B is vB(a) = δ and
vB(b) = −δ, with −1 ≤ δ ≤ 1. The maximum welfare allocation (with a ties in case that δ = 1)
allocates item a to agent A and item b to agent B. The following table presents the pair of utilities
(for agent A and B) under the mechanisms max-min-EF (maxmin envy free), Shapley value, KS
(Kalai-Smorodinsky bargaining) and our lex-max-WS .

max-min-EF Shapley value KS lex-max-WS

δ ≤ 0 (1+|δ|2 , 1+|δ|2) (1, |δ|) (1, |δ|) (1, |δ|)

0 ≤ δ ≤ 1
3 (1−δ2 , 1−δ2) (1− δ, 0) (1−δ1+δ

, δ(1−δ)1+δ
) (1− 2δ, δ)

1
3 ≤ δ ≤ 1 (1−δ2 , 1−δ2) (1− δ, 0) (1−δ1+δ

, δ(1−δ)1+δ
) (1−δ2 , 1−δ2)

We wish to draw the attention of the reader to the following facts.
When δ < 0, implying that each agent desires a different item, the max-min-ES solution dictates

a transfer from agent A to agent B. Thus agent B not only gets his most desired item, but also gets
paid for taking it. Agent A is better of in the RP disagreement mechanism, where he gets his most
desired item without having to pay agent B.

The utility that agent B gets from the Shapley value solution is equal to his expected utility at
the disagreement point (the expected output of RP). This goes against our perception of fairness, in
which increase in the general welfare should be shared by all those who contributed to the increase.

35

Both the Kalai-Smorodinsky bargaining solution and the lex-max-WS solution share the increase
in welfare among the two agents, though to different extents. We leave it to the reader to decide
which of the two does it better. The case n = 2 is too small to illustrate our main reason for preferring
lex-max-WS over KS, which is the fact that KS does not satisfy decomposition properties. This is
illustrated in the proof of Proposition I.2), by an example where n = 4.

In Section I.3 we explained how the notion of the nucleolus can be adapted to our WS-core, giving
the nucleolus-WS mechanism. For the two agents case, nucleolus-WS gives the same solution as
lex-max-WS , except in the range 0 < δ < 1

2 , where nucleolus-WS gives the pair of utilities (1− 3δ
2 ,

δ
2).

Interestingly, there is a unique value (δ = 1
3) in the range 0 < δ < 1 for which the KS solution

and the nucleolus-WS solution coincide, and in that range KS never coincides with any of the other
solution concepts presented above.

N Population and resource monotonicity

We consider here the unit-demand matching setting. Population monotonicity means that by in-
troducing an additional agent, it cannot be that a different agent gains utility. Resource mono-
tonicity means that by introducing an additional item, it cannot be that an agent looses utility.
Moulin [Econometrica 1992] showed that the Shapley value satisfies both population and resource
monotonicity. Here is an example showing the the lexmax-WS solution does not satisfy population
monotonicity and does not satisfy resource monotonicity. In the example both random priority and
the Eating mechanism give the same disagreement utility, and hence the example applies to both.

Example 5 Item A Item B Item C Item D

Agent 1 12 0 6 0

Agent 2 12 6 0 0

Agent 3 24 12 0 25

There are three agents {1, 2, 3} and four items {A,B,C,D}. The valuation function of agents is
as described in the table.

If only agents {1, 2} participate and only items {A,B,C}, then for each agent, both the dis-
agreement utility and the lexmax-WS utility are 9. If the set of agents is changed to {1, 2, 3}, the
disagreement utilities become 8 for agent 1, only 7 for agent 2, and 14 for agent 3. The lexmax-WS
solution has welfare 36, giving agent 1 utility of 9.5 and agent 2 utility of 8.5 (at this point the
anticore constraint for the set {1, 2} is tight). Hence population monotonicity for agent 1 does not
hold upon introducing agent 3.

Changing now the set of items to {A,B,C,D} changes the disagreement utilities of each of
agents 1 and 2 to be 9. This is also their utility in the respective lexmax-WS solution, hence item
monotonicity does not hold – introducing item D caused the utility of agent 1 to drop from 9.5 to 9.

O Algorithms and computational complexity

The water filling algorithm of Section 4 can be seen to imply the following proposition.

Proposition O.1 Suppose that the valuation functions of the players are expressed as rational num-
bers (namely, every vi(j) is expressed as p

q
for some integers p and q.) If Wmax is submodular, the

transfers of the lex-max-WS solution are also rational.

In this section we make the convention that valuation functions take only integer values in the
range [−M, . . . ,M], where M is taken to be sufficiently large. (If valuation functions take arbitrary

36

rational values, they can be scaled to give integer values, by multiplying by the lowest common
denominator.) As to the output of the algorithm, we shall not insist on getting the exact lex-max-
WS solution, but rather a solution that gives every agent a utility that differs by at most ǫ from her
utility in the lex-max-WS solution. Here ǫ > 0 is some parameter of the algorithm that corresponds
to the smallest unit of money that agents care about (note that if M is very large, it may well
be that ǫ > 1, in which case we assume that ǫ is an integer). Consequently, the numerical values
manipulated by algorithms can be restricted to numbers expressible by O(logM + log(1 + 1

ǫ
)) bits,

even though the true lex-max-WS solution might require much higher precision. We view the use
of ǫ as justified in essentially all practical situations, as payments can practically be made only at a
precision determined by the smallest denomination accepted in the relevant currency.

In general, running times of algorithms can be expressed as functions of the number of players
n, number of alternatives |A|, range of valuations M , the precision parameter ǫ, and the description
length of the disagreement distribution πv. To reduce the number of parameters in Definition O.2,
we do not state explicitly the dependency on |A| and πv. Later, in contexts in which it matters, we
will also consider the effect on |A| and πv.

Definition O.2 Using the above notation, we consider the following classes of running times for
algorithms:

• Weakly polynomial. The number of operations performed is polynomial in (n,M, 1
ǫ
).

• Polynomial. The number of operations performed is polynomial in (n, logM, log 1
ǫ
).

• Strongly polynomial. The number of operations performed is polynomial in n and independent
of M and 1

ǫ
, though each operation may involve numbers with O(logM + log(1 + 1

ǫ
)) bits,

and hence the time per operation (for example, adding two numbers) might be polynomial in
logM + log(1 + 1

ǫ
).

To extract an algorithm out of the water filling algorithm, one needs subroutines for the following
three tasks:

1. Compute the disagreement utilities uπv(i) for every agent i.

2. Compute the increments xj for every iteration j.

3. Determine at each iteration which agents are involved in constraints that become tight, so as
to lock these agents.

Suppose first that the disagreement utilities are easy to compute. A specific case when this
happens is when there is one designated disagreement alternative, and π is supported only on this
alternative. In fact, whenever the disagreement utilities are easy to compute, we may add a “dummy”
alternative (which will serve as the disagreement alternative) whose value to each agent exactly equals
the computed disagreement utility of the agent, and shift π to be supported only on the dummy
alternative. (Note that adding this dummy alternative does not change any of the constraints of the
anticore.) Hence Theorem O.3 extends to all cases in which the disagreement utilities are easy to
compute.

Theorem O.3 Consider instances in which the number of alternatives is bounded by some poly-
nomial in n, and one is given a disagreement alternative that forms the support of disagreement
distribution π. Then:

37

1. If there is even a weakly polynomial time algorithm for computing the lex-max-WS solution on
such instances, then P = NP .

2. Nevertheless, if Wmax is submodular, then lex-max-WS can be computed in strongly polynomial
time. Moreover, this result extends also to the case where the number of alternatives is not
bounded by a polynomial in n, provided that there is a value oracle for computing Wmax (namely,
given S, the value of Wmax(S) can be computed in time polynomial in n).

Proof: We first prove the NP-hardness result. It is by reduction from the maximum independent
set problem MIS. Let α(G) denote the maximum size of an independent set in a graph G. We
shall consider the standard gap version MISc,s, where c is the completeness parameter, s is the
soundness parameter, and 0 < s < c < 1. The input to MISc,s is a graph G on n vertices, and
the computational task is to output yes if α(G) ≥ cn, to output no if α(G) ≤ sn, and any output
is allowed if sn < α(G) < cn. We may assume without loss of generality that G has no isolated
vertices. It is known that MISc,s is NP-hard for some values of 0 < s < c < 1 (this is a consequence
of the PCP theorem [1], and following a long line of work, the current best bounds can be found
in [14]). This easily implies also NP-hardness when s = 1

2 for some c > 1
2 . (For example, starting

with MISc,s with s < 1/2, add to the graph (1 − 2s)n isolated vertices, and connected them all to
the same vertex in the graph.)

We reduce an instance of MISc, 1
2

with 1
2 < c < 1 to an instance of lex-max-WS as follows. Given

an input graph G(V,E) with n vertices (an instance of MISc, 1
2

), every vertex v ∈ V corresponds to

an agent and every edge (u, v) ∈ E corresponds to an alternative. Every agent v derives value n from
each of the alternatives that correspond to the edges incident with v, and value 0 from every other
alterative. Hence every alternative has welfare exactly 2n. In addition, there is the disagreement
alternative D that gives each agent value 1

c
(where c is the completeness parameter of the MISc, 1

2

instance).
This completes the description of the lex-max-WS instance. Observe that the number of agents is

n and that M = n. Fix ǫ =
2− 1

c

2 = 2c−1
2c . Hence a weakly polynomial time algorithm for lex-max-WS

simply needs to run in time polynomial in n.
The amount of welfare offered by the maximum welfare alternative (any of the edges) is 2n. If the

welfare could be distributed evenly over all agents, it would give each agent a utility of 2. However,
such a solution might not be in the anticore. So let us consider the value of Wmax(S) for various

nonempty subsets S of agents. If S forms an independent set in G, then Wmax(S) = max[n, |S|
c
].

Else, Wmax(S) = 2n.
It follows that if G is a no instance of MISc, 1

2

, giving each agent a utility of 2 is feasible (it

is in the anticore). However, if G is a yes instance, there is a set S of cn > n/2 agents for which
Wmax(S) = n. As the disagreement utility is 1

c
, all members of this set S get utility exactly 1

c
< 2.

Hence the minimum utility in the lex-max-WS solution is 2 when G is a no instance and 1
c
< 2 if G

is a yes instance. Computing lex-max-WS with error smaller than 2c−1
2c will allow us to distinguish

between these cases. This completes the proof of the NP-hardness result.
We now show that lex-max-WS can be computed in strongly polynomial time when Wmax is

submodular. For this, we explain how each of the three tasks of the water filling algorithm can be
computed in strongly polynomial time.

1. Compute the disagreement utilities uπ(i) for every agent i. This can be done in strongly
polynomial time because the disagreement alternative is given.

2. Compute the increments xj for every iteration j. This task is a special case of a problem known

38

as line search in submodular polyhedra, and can be solved in strongly polynomial time, given
value oracle access for the underlying submodular function [22, 11].

3. Determine at each iteration which agents are involved in constraints that become tight, so
as to lock these agents. Once xj for iteration j has been computed, the agents involved in
tight constraints are those agents whose utility cannot be increased, unless either an anticore
constraint is violated, or the utility of some other agent is decreased. Computing the maximum
increase of utility of an agent, subject to keeping the utility of other agents unchanged and not
violating an anticore constraint, is again a special case of line search in submodular polyhedra.
Going over all agents not locked in previous iterations and determining for which of them the
maximum increase is 0 gives us the newly locked agents.

P Continuity of the lex-max-WS solution

In this section we consider continuity properties of the lex-max-WS solution as a function of the
cardinal valuations of the agents. First, it is important to note that when the disagreement utilities
are a function of the valuations, this function might have discontinuity points. For example, this
might happen if the disagreement utilities are computed as the outcome of the Random Priority
mechanism, and cardinal valuations change to the extent that ordinal preferences over alternatives
also change. At discontinuity points for disagreement utilities we shall not require (and do not expect)
that the lex-max-WS solution will be continuous. Hence we shall assume in this section that the
disagreement utility is the outcome of some distribution πv over the set A alternatives, and that this
distribution does not change when cardinal valuations of agents change (though the disagreement
utility itself might change, due to the change in valuations of the alternatives). Hence for agent i the
disagreement utility can be expressed as EA←πvA[vi(A)]. We remark that if the disagreement utilities
are computed as the outcome of the Random Priority mechanism, our results hold with respect to
changes of cardinal valuations that do not alter the ordinal preferences over the alternatives.

As a convention, we shall apply additive shifts to the valuations so that the disagreement utilities
are 0. This is done without loss of generality, because the allocation and the transfers of the lex-
max-WS solution remain unchanged when an additive shift is applied to the valuation function of an
agent. After these additive shifts, EA←πvA[vi(A)] = 0 for every agent i. We let ui denote the utility
of agent i in the lex-max-WS solution.

We now introduce additional notation for the purpose of discussing continuity, and the associated
Lipshitz constant. We shall consider the effects of the change of the valuation function of a single
agent i (while keeping the valuation functions of all other agents fixed) on the utilities of each of
the agents. Let I be an instance, and let vi be the valuation function of agent i (viewed as a vector
in Rm where m = |A|). Let e ∈ Rm be a modification vector, leading to a new valuation function
v′i = vi + e, and correspondingly a new instance I ′. To satisfy our convention that the disagreement
utility of agent i is 0, we require the modification vector to satisfy EA←πvA[e(A)] = 0, which then
implies that also EA←πvA[v

′
i(A)] = 0.

Introduce a parameter t (for time) that changes gradually from −1 to 1. For −1 ≤ t ≤ 1, let
instance It be the instance in which the valuation function of i is vi + te. Hence I0 = I and I1 = I ′.
Let |e| denote the maximum difference between entries in vector e (the maximum value minus the
minimum value). For every set S and every −1 ≤ t ≤ 1, the change in Wmax(S) from instance I to
instance It is at most |t| · |e| if i ∈ S, and there is no change if i 6∈ S.

39

For an arbitrary player j (it can be that j = i), let uj(t) denote the utility of player j under the
lex-max-WS solution on instant It.

Proposition P.1 For instance I and modification vector e as above, for every agent j the associated
utility function uj(t) is continuous in the interval −1 ≤ t ≤ 1 (as long as the WS-core remains
nonempty).

Proof: This is a consequence of the water filling algorithm. Details omitted.

Having established continuity, we now analyse the associated Lipshitz constant. Let B denote the
total welfare of the maximum welfare alternative, and let bS stand for Wmax(S). The lex-max-WS
solution satisfies the following set of linear constraints that we refer to as the WS-constraints:

1.
∑

i∈S ui ≤ bS for every S ⊂ [n].

2.
∑n

i=1 ui = B (where B = b[n]).

3. ui ≥ 0 for every 1 ≤ i ≤ n.

Given a feasible solution u to the WS-constraints (the lex-max-WS solution is one such solution),
we say that a set S ∈ [n] is tight if its corresponding constraint is satisfied with equality (namely,∑

i∈S ui = bS). Observe that the set [n] is always tight, by constraint 2, and we may treat the empty
set as tight as well.

A collection S of sets is a (distributive) lattice if for every S ∈ S and T ∈ S it holds that S∩T ∈ S
and S ∪ T ∈ S.

Lemma P.2 If Wmax is submodular, then for every feasible solution u, the collection of tight sets
(w.r.t. the WS-constraints) forms a lattice.

Proof: Recall that bS = Wmax(S). Let S and T be two sets that are tight under the feasible
solution u, and for Y ⊂ [n] let U(Y) denote the sum of utilities derived in u by the players in set
Y . The tightness implies that U(S) = Wmax(S) and U(T) = Wmax(T). Additivity of U implies that
U(S) + U(T) = U(S ∩ T) +U(S ∪ T). Submodularity of Wmax implies that Wmax(S) +Wmax(T) ≥
Wmax(S ∩ T) + Wmax(S ∪ T). Consequently, it must hold that U(S ∩ T) = Wmax(S ∩ T) and
U(S ∪ T) = Wmax(S ∪ T), since for every set Y ⊆ [n] it holds that U(Y) ≤ Wmax(Y). Namely, both
S ∩ T and S ∪ T are tight.

Remark P.3 If Wmax is submodular, then given only the collection of sets that are tight for lex-
max-WS solution (but not lex-max-WS itself), we can compute lex-max-WS as follows. Process the
tight sets in an order consistent with the natural partial order over these sets (a tight set is processed
only after all tight sets that it contains are processed). Given a set S in the collection, let S′ ⊂ S
denote those variables ui ∈ S whose value was already determined by sets previously visited in the

partial order. Then every variable in S \ S′ gets value
bS−

∑
j∈S′ xj

|S|−|S′| .

Theorem P.4 When Wmax is submodular and the disagreement utilities are the outcome of some
distribution πv over the alternatives, the lex-max-WS solution (which is continuous in t, see Propo-
sition P.1) has Lipshitz constant at most 1.

40

Proof: We shall refer to a value −1 ≤ t ≤ 1 as a breakpoint if at that point (either approaching
it from the left of from the right or both) some set that was not tight (with respect to the WS-
constraints for lex-max-WS) becomes tight. There are only finitely many breakpoints. Removing
these breakpoints, the interval −1 ≤ t ≤ 1 breaks into finitely many subintervals (open subintervals,
except at the points t = ±1). By continuity, if we bound the Lipshitz constant in every subinterval,
this implies the same bound on the Lipshitz constant for the whole interval.

Consider now an arbitrary subinterval. By Lemma P.2, the collection T of tight sets forms a
lattice. Given two instances It and It+ǫ in the subinterval, by how much could the solutions change?
Recalling Remark P.3 (and the notation S and S′ from that remark), this entails checking by how
much bS −

∑
j∈S′ xj might change (due to the change in vi between the two instances). If i 6∈ S

then there is no change. If i ∈ S but i 6∈ S′ then bS changes by at most ǫ|e| and
∑

j∈S′ xj does not
change, and hence the change is at most ǫ|e|. If i ∈ S′ then consider the collection of sets {Tk} such
that for every k it holds that Tk ∈ T , Tk (S and there is no set T ∈ T such that Tk (T (S
(the Tk are maximal). By the lattice structure, the sets Tk are disjoint. Without loss of generality,

i ∈ T1. Then the change of value for each variable in S\S′ is exactly
bS [It+ǫ]−bS [It]−

∑
k(bTk [It+ǫ]−bTk [It])

|S|−|S′| .

Observe that bS [It+ǫ]− bS[It] is nonzero only as a result of an alternative changing value for i, and
likewise for bT1

[It+ǫ] − bT1
[It] (and for the rest of the Tk we have that bTk

[It+ǫ] − bTk
[It] = 0). By

the definition of |e|, the difference in these changes cannot exceed ǫ|e|. (The change in bS [It+ǫ] is
upper bounded by the change in value of the alternative allocated to i when computing bS [It+ǫ], and
similarly for the change in bT1

[It+ǫ]. Hence the difference between these two changes cannot exceed
ǫ|e|.) Consequently, we get in all cases a Lipshitz constant of at most 1.

Remark P.5 If the WS-core is nonempty and Wmax is not submodular, then the Lipshitz constant
of lex-max-WS might depend on n, the number of agents. For example, suppose that there are n
agents and four alternatives, A1, A2, A3, A4. Let v1 = (1, 2, 0, 0), v2 = . . . = vn−1 = (1, 0, 6, 0), and
vn = (1, 0, 0, 6n). Alternative A1 serves as the disagreement alternative, and alternative A4 maxi-
mizes welfare (which is 6n). The function Wmax is not submodular. In particular, Wmax({1}) = 2,
Wmax({1, 2}) = 6, Wmax({1, 3}) = 6, Wmax({1, 2, 3}) = 12, showing that Wmax({1, 2})+Wmax({1, 3}) <
Wmax({1}) + Wmax({1, 2, 3}). The lex-max-WS solution will allocate utilities (2, 4, . . . , 4, 2n + 6).
Changing v1 to (1, 3, 0, 0), lex-max-WS will allocate utilities (3, . . . , 3, 3n + 3). Hence a change of 1
in v1 results in a change of n− 3 in un.

Q Computing disagreement utilities

The water filling algorithm for computing the lex-max-WS solution requires the computation of the
disagreement utilities uπv(i). Let us discuss briefly the computational complexity of this task in the
special case of the room (item) allocation problem. Suppose that there are n agents and n items,
that the valuation functions of the agents for the items are given (where vi(j) is the value that agent
i associates with item j, and is an integer with absolute value at most M), and one needs to allocate
one item to each agent. In our setting, the disagreement utility for agent i in lex-max-WS is the
expected utility that agent i derives from some default allocation mechanism with no transfers. We
consider here the three candidate default mechanisms that were presented in Section G.1, sketch how
they can be implemented algorithmically, and briefly discuss the modifications employed in these
mechanisms to handle situations in which the valuation function of an agent might have ties.

• Uniform (U). The disagreement utility of agent i is 1
n

∑n
j=1 vi(j). It can be computed exactly

in time polynomial in n and logM .

41

• Random priority (RP). Suppose first that for every agent, her valuation function has no ties
(there is no agent i and items j 6= j′ such that vi(j) = vi(j

′)). The naive approach for computing
the disagreement utilities (exactly) involves considering all n! permutations over the agents,
and for each permutation determining which item is received by which agent, based on the
ordinal preferences of the agents. This procedure can be implemented in polynomial space (in
n), but it is not polynomial time, and we (the authors) have no reason to believe that there
is an alternative algorithm that does compute the disagreement utilities in polynomial time.
(Computation of the Shapley value, which is also defined in terms of all possible permutations,
is known to be #P complete in some settings [4].)

The RP mechanism is adapted as follows to allow for valuation functions that have ties. Recall
that an alternative A is a matching of items to agents. Given a permutation over the agents
(as before, all n! permutations are considered), each agent in her turn is faced with a list of
alternatives that are still available, and items that are still available to her (matched to her
in an least one of the remaining alternatives). Of the items available to her, the agent selects
one or more items as most desirable, and discards those alternatives that match to her an item
that is not one of the most desirable available items. Implementing this mechanism naively
seems to require n! space to store all alternatives. However, it can also be implemented in
polynomial space (though still not polynomial time) as follows. When it is the turn of an agent
i to select an item, and several of the remaining items are tied in being most desirable (all have
the highest value under vi), the agent is temporarily put on hold, allowing subsequent agents
to select items. At every step, if the set of agents on hold contains a subset S of agents whose
union of desirable items is also of size |S| (we call such a set tight), the members of S each get
one of their desired items. Finding tight sets can be done in polynomial time (using standard
algorithms for bipartite matching).

We remark that one can also compute the disagreement utilities up to precision ǫ using a
randomized weakly polynomial time algorithm that succeeds with high probability. This is done

by randomly sampling O(M
2
√
logn

ǫ2
) permutations, for each of them computing the allocation

obtained when agents serially select their most preferred item, and for every agent averaging
over the utilities that she derives from all the allocations.

• Eating mechanism (EAT). The Eating mechanism can naturally be adapted to the case that
the valuation function of an agent may have ties: instead of “eating” one item at rate 1, the
agent can “eat” all k tied items, each at rate 1/k. EAT has at most n phases, where a phase
ends when some item becomes fully consumed. The length of each phase can be computed in
a number of operations that is polynomial in n. The precision required in order to express the
exact length of a phase may grow significantly as phases progress. Hence practically one would
compute the output up to some desirable precision ǫ. This can be done in strongly polynomial
time (details omitted).

Combining the above discussion on the Eating mechanism and Theorem O.3, we have the following
corollary.

Corollary Q.1 In the room allocation problem with n agents and with the Eating mechanism serving
as a disagreement point, the lex-max-WS solution can be computed in strongly polynomial time.

We remark that for small values of n, the polynomial time algorithms of Theorem O.3 and
Corollary Q.1 might be slower than other simpler to implement algorithms that are not polynomial
time. Consider for example the room allocation problem. If the disagreement point is the random

42

priority mechanism, then the disagreement utility of all agents can be determined by considering all
n! orders over players. The anticore has 2n − 1 constraints. In each iteration j of the water filling
algorithm, one can check what upper bound each of these constraints places on xj, and take for xj
the smallest of these upper bounds. Shared apartments rarely have more than n = 4 rooms, and the
above simple algorithm will run very quickly on such instances.

R Full information upon request

In this work we assume (as is often assumed in literature on cooperative games and in systems
like Spliddit [12]) that knowledge of the true valuation functions of the agents is available to our
mechanisms. This should not be interpreted as if we assume that all agents know the valuation
functions of all other agents. Rather, the interpretation is that a mechanism can request information
from the agents about their valuation functions (e.g., the most preferred alternative from a set of
alternatives in the random priority mechanism, full ordinal preferences for the eating mechanism,
cardinal valuations for lex-max-WS) and obtain truthful replies. In practice, presumably agents will
be asked to report their valuation functions to the mechanism in private – in our mechanisms there
is no need for an agent to know the valuation functions of other agents.

Below we explain why we view it as both necessary and reasonable to assume that agents will
supply truthful information to our mechanisms.

Dominant strategies. Informally, a (deterministic) mechanism has dominant strategies, if for
every agent, whenever the agent needs to provide information to the mechanism, then the combination
of the information previously provided to the agent by the mechanism and the valuation function of
the agent itself suffice in order for the agent to figure out a “best response”. Here the response is
the information that the agent provides, and being “best” means that regardless of the information
not available to the agent (such as valuation functions of other agents), no other response will lead
to higher end utility for the agent. (The definition for randomized mechanisms is somewhat more
complicated, but not needed for the discussion here.) It is well known (and easy to prove) that in
our setting, even in the special case of Shared–Rental problem with only two agents, there is no
mechanism that satisfies the following three properties simultaneously: maximizing welfare, being
budget balanced, and having dominant strategies. Hence it is unavoidable to give up at least one of
three properties, and we choose to give up having dominant strategies.

Why would agents report their true valuation function to the mechanism? As remarked
earlier, our mechanisms do not have the property that being truthful is a dominant strategy (as this
is theoretically impossible). So why is it reasonable to assume that agents will be truthful? We
propose here several practical reasons why this may be (approximately) the case in some real world
settings. One reason is that games are not played in isolation, but in a larger social context that
involves various educational processes and social norms, and this context may encourage truthful
behavior in the game. For example, a common social norm is that cheating by someone who has
been treated unfairly is more socially acceptable than cheating by someone who was treated fairly.
Our solution concept incorporates fairness features (an agent is guaranteed utility at least as high as
the disagreement utility, and is furthermore guaranteed that her monetary payments are used only
so as to compensate those agents for which the chosen alternative is less desirable, and not so as
to provide agents with profits beyond what they could obtain from their best alternative), and this
may help reduce the drive to cheat. Another reason why agents may report their true valuation
functions is because in our mechanisms, being truthful is a strategy that is not dominated by any
other strategy. Unless an agent knows the valuation function of other agents, being untruthful might
cause the agent to lose utility.

43

The burden of reporting valuations. Two features of our lex-max-WS mechanism alleviate
some of the cognitive/computational burden that an agent might suffer when computing what to
report to the mechanism. One aspect is the continuity property, and moreover, the small Lipshitz
constant. For example, in situations where Theorem P.4 applies, an agent may provide the requested
information up to an additive error of ǫ of her choice, and be guaranteed that the effect of this error
of her final utility will be a difference of at most ǫ. So an agent that is not sensitive to a difference
of ǫ in her utility can afford to compute only ǫ-approximations to her valuation function. The other
aspect that sometimes alleviates the burden of reporting valuations is the issue of decomposability,
especially in settings like Shared–Rental problem. The mechanism can be broken into two phases,
where in the first phase it suffices to report only ordinal valuations, and in the second phase, cardinal
valuations need to be reported only for the component to which the agent ends up belonging, and
not for the whole input instance.

S Discussion of some other modeling assumptions

Quasi-linear utilities. We assume that the utility functions of the agents are quasi-linear. It is
desirable to limit quasi-linearity assumptions so that they need to hold only in a limited range of
values. All solutions in the WS-core satisfy the property that for every agent i her utility lies between
minA[vi(A)] = Wmin(i) and maxA[vi(A)] = Wmax(i). Hence it suffices for our purposes that for every
agent i, her utility function is quasi-linear in the range [Wmin(i),Wmax(i)].

The role of monetary transfers. Monetary transfers are used in our solution concept in order
to make it beneficial for all agents to move from the disagreement point to a solution that maximizes
welfare. Monetary transfers can be used for other purposes as well, such as taxing those agents that
happen to be rich and subsidizing those agents that happen to be poor, but these uses of monetary
transfers are beyond the scope of this work, and can be applied (if desired) independently of our
solution concept.

Outcome versus process. We assume that what the agents care about is the final outcome
– the alternative chosen and the transfers. However, sometimes agents care also about the process
by which the outcome was reached. For example, players may derive satisfaction not only from
“winning”, but also from a sense “playing well” (e.g., making clever moves in challenging situation,
regardless of the outcome). In our setting, by changing the mechanism (e.g., from RP to lex-max-
WS) the nature of the “game” changes, and the amount of “pleasure” (or displeasure) derived from
playing the game changes. Aspects of this nature are not captured by our work.

Valuation functions and fairness. The mechanisms discussed in this paper are based on
either ordinal preferences or cardinal valuations of the agents. We remark that there are studies that
suggest that even full knowledge of cardinal valuations is insufficient information if the goal is to
achieve a solution that is deemed fair by humans. It turns out (see [28], for example) that depending
on additional annotation that is provided for the same cardinal valuations, such as whether the
valuation is based on needs, on preferences or on beliefs, humans tend to choose different solutions
as being fair.

Disagreement point for Shared–Rental problem. We assumed a situation in which the
students who are faced with the room allocation problem already rented the apartment, and for this
setting we used RP as a disagreement mechanism. One may consider also a situation in which the
students are contemplating the possibility of renting the apartment, but have not yet committed to
renting it. In this case the problem changes because another alternative is introduced, that of not
renting the apartment. The value of this alternative for each student is r

n
(where r is the total rent

and n is the number of students), because this is the amount of money saved by the student by not

44

renting. It is natural to treat this new alternative as the disagreement point. As our lex-max-WS
mechanism is sensitive to the choice of disagreement point, this will lead to a difference between the
solutions that it proposes in the two settings: the one in which the students already committed to
rent the apartment, and the one in which they maintain the outside option of not renting.

45

	1 Introduction
	1.1 Background
	1.2 The model
	1.3 Our contribution

	2 The Welfare-Sharing Core
	3 Decomposability
	4 Selection from within the welfare-sharing core
	4.1 Selection concepts
	4.2 The water filling algorithm
	4.3 Decomposability of lex-max-WS
	4.4 A Lorenz dominating solution
	4.5 Comparison with the Shapley value

	A Discussion of domination and of the anticore
	A.1 Domination
	A.2 The anticore

	B Decomposability
	C Decomposability versus separability
	D More on the anticore
	E Properties of the WS-core
	E.1 Proof of Theorem ??
	E.2 Proof of Proposition ??

	F Proof of Theorem ?? – Lorenz domination
	G Shared Rental (Unit-Demand Matching)
	G.1 The WS-core and the lex-max-WS solution
	G.2 Decomposability
	G.3 Comparison to other solutions
	G.3.1 Envy-free solutions
	G.3.2 The Shapley value solution

	H Properties of the Shapley-value solution
	H.1 Proof of Proposition ??

	I Comparison to some prior solution concepts
	I.1 The Nash bargaining solution
	I.2 The Kalai-Smorodinsky bargaining solution
	I.3 The Nucleolus

	J Is Wmax submodular for submodular Combinatorial Valuations?
	K Both Random Priority and Eating are not continuous
	L Properties of envy-free mechanisms
	L.1 Envy-free solutions might pay a renter that got his top room

	M A complete analysis for unit-demand matching with two agents
	N Population and resource monotonicity
	O Algorithms and computational complexity
	P Continuity of the lex-max-WS solution
	Q Computing disagreement utilities
	R Full information upon request
	S Discussion of some other modeling assumptions

