Skip to main content

Application of Information Redundancy Measure To Image Segmentation

  • Conference paper
  • First Online:
Book cover Intelligent Data Processing (IDP 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 794))

Abstract

In this paper, the problem of image segmentation quality is considered. The main idea is to find a quality criterion, which could have an extremum. The problem is viewed as selecting the best segmentation from a set of images generated by segmentation algorithm at different parameter values. We propose to use information redundancy measure as a criterion for optimizing segmentation quality. The method for constructing the redundancy measure provides criterion with extremal properties. To show efficiency of the proposed criterion, computing experiment is carried out. The proposed criterion is combined with SLIC and EDISON segmentation algorithms. Computing experiment shows that the segmented image corresponding to a minimum of redundancy measure produces acceptable information distance when compared with the original image. In most cases, the lowest information distance between this segmented image and ground-truth segmentations is obtained. An example of applying the redundancy measure to segmentation of images of painting material cross-sections is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels. Technical report (2010)

    Google Scholar 

  2. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012). https://doi.org/10.1109/tpami.2012.120

    Article  Google Scholar 

  3. Ana, L.N.F., Jain, A.K.: Robust data clustering. In: 2003 Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 128–133. IEEE (2003). https://doi.org/10.1109/cvpr.2003.1211462

  4. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011). https://doi.org/10.1109/tpami.2010.161

    Article  Google Scholar 

  5. Atick, J.J., Redlich, A.N.: Towards a theory of early visual processing. Neural Comput. 2(3), 308–320 (1990). https://doi.org/10.1162/neco.1990.2.3.308

    Article  Google Scholar 

  6. Barlow, H.B.: Possible principles underlying the transformations of sensory messages. Sens. Commun., 217–234 (1961). https://doi.org/10.7551/mitpress/9780262518420.003.0013

    Chapter  Google Scholar 

  7. Beneš, M., Zitová, B., Hradilová, J., Hradil, D.: Image processing in material analyses of artworks. In: Proceedings of International Conference on Computer Vision Theory and Applications (VISAPP), pp. 521–524 (2008). https://doi.org/10.5220/0001079705210524

  8. Christoudias, C.M., Georgescu, B., Meer, P.: Synergism in low level vision. In: 16th International Conference on Pattern Recognition, ICPR 2002, Quebec, Canada, 11–15 August 2002, pp. 150–155 (2002). https://doi.org/10.1109/ICPR.2002.1047421

  9. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002). https://doi.org/10.1109/34.1000236

    Article  Google Scholar 

  10. Csurka, G., Larlus, D., Perronnin, F., Meylan, F.: What is a good evaluation measure for semantic segmentation? In: BMVC, vol. 27, pp. 32.1–32.11 (2013). https://doi.org/10.5244/c.27.32

  11. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004). https://doi.org/10.1023/B:VISI.0000022288.19776.77

    Article  Google Scholar 

  12. Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78(383), 553–569 (1983). https://doi.org/10.1080/01621459.1983.10478008

    Article  MATH  Google Scholar 

  13. Frosio, I., Ratner, E.R.: Adaptive segmentation based on a learned quality metric. In: VISAPP 2015, vol. 1, pp. 283–292 (2015). https://doi.org/10.5220/0005257202830292

  14. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Pearson Prentice Hall, Upper Saddle River (2008)

    Google Scholar 

  15. Haindl, M., Mikeš, S., Pudil, P.: Unsupervised hierarchical weighted multi-segmenter. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 272–282. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02326-2_28

    Chapter  Google Scholar 

  16. Haralick, R.M., Shapiro, L.G.: Image segmentation techniques. Comput. Vis. Graph. Image Process. 29(1), 100–132 (1985). https://doi.org/10.1016/s0734-189x(85)90153-7

    Article  Google Scholar 

  17. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall PTR, Upper Saddle River (1998)

    MATH  Google Scholar 

  18. Kaspar, R., Petru, L., Zitová, B., Flusser, J., Hradilova, J.: Microscopic cross-sections of old artworks. In: 2005 IEEE International Conference on Image Processing, ICIP 2005, vol. 2, pp. II-578. IEEE (2005). https://doi.org/10.1109/icip.2005.1530121

  19. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: 2001 Proceedings of Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 2, pp. 416–423. IEEE (2001). https://doi.org/10.1109/iccv.2001.937655

  20. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004). https://doi.org/10.1109/tpami.2004.1273918

    Article  Google Scholar 

  21. Meer, P., Georgescu, B.: Edge detection with embedded confidence. IEEE Trans. Pattern Anal. Mach. Intell. 23(12), 1351–1365 (2001). https://doi.org/10.1109/34.977560

    Article  Google Scholar 

  22. Meilă, M.: Comparing clusterings by the variation of information. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS (LNAI), vol. 2777, pp. 173–187. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45167-9_14

    Chapter  Google Scholar 

  23. Meilă, M.: Comparing clusterings: an axiomatic view. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 577–584. ACM (2005). https://doi.org/10.1145/1102351.1102424

  24. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971). https://doi.org/10.2307/2284239

    Article  Google Scholar 

  25. Unnikrishnan, R., Pantofaru, C., Hebert, M.: A measure for objective evaluation of image segmentation algorithms. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005) - Workshops, CVPR 2005, vol. 03, pp. 34–41. IEEE Computer Society, Washington, DC (2005). https://doi.org/10.1109/CVPR.2005.390

  26. Wagner, S., Wagner, D.: Comparing clusterings - an overview. Technical report 2006–04, Universität Karlsruhe (TH) (2007)

    Google Scholar 

  27. Zhang, H., Fritts, J.E., Goldman, S.A.: Image segmentation evaluation: a survey of unsupervised methods. Comput. Vis. Image Underst. 110(2), 260–280 (2008). https://doi.org/10.1016/j.cviu.2007.08.003

    Article  Google Scholar 

  28. Zitová, B., Beneš, M., Hradilová, J., Hradil, D.: Analysis of painting materials on multimodal microscopic level. In: IS&T/SPIE Electronic Imaging, pp. 75,310F–1–75,310F–9. International Society for Optics and Photonics (2010). https://doi.org/10.1117/12.838872

Download references

Acknowledgements

The research was supported in part by the Russian Foundation for Basic Research (grants No. 18-07-01385 and No. 18-07-01231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Murashov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Murashov, D. (2019). Application of Information Redundancy Measure To Image Segmentation. In: Strijov, V., Ignatov, D., Vorontsov, K. (eds) Intelligent Data Processing. IDP 2016. Communications in Computer and Information Science, vol 794. Springer, Cham. https://doi.org/10.1007/978-3-030-35400-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35400-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35399-5

  • Online ISBN: 978-3-030-35400-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics