
UC Priced Oblivious Transfer with Purchase Statistics
and Dynamic Pricing

Aditya Damodaran1, Maria Dubovitskaya2, and Alfredo Rial1

1 SnT, University of Luxembourg
firstname.lastname@uni.lu

2 Dfinity
maria@dfinity.org

Abstract. Priced oblivious transfer (POT) is a cryptographic protocol that can be
used to protect customer privacy in e-commerce applications. Namely, it allows
a buyer to purchase an item from a seller without disclosing to the latter which
item was purchased and at which price. Unfortunately, existing POT schemes
have some drawbacks in terms of design and functionality. First, the design of
existing POT schemes is not modular. Typically, a POT scheme extends a k-out-
of-N oblivious transfer (OT) scheme by adding prices to the items. However, all
POT schemes do not use OT as a black-box building block with certain secu-
rity guarantees. Consequently, security of the OT scheme needs to be reanalyzed
while proving security of the POT scheme, and it is not possible to swap the un-
derlying OT scheme with any other OT scheme. Second, existing POT schemes
do not allow the seller to obtain any kind of statistics about the buyer’s purchases,
which hinders customer and sales management. Moreover, the seller is not able
to change the prices of items without restarting the protocol from scratch.
We propose a POT scheme that addresses the aforementioned drawbacks. We
prove the security of our POT in the UC framework. We modify a standard POT
functionality to allow the seller to receive aggregate statistics about the buyer’s
purchases and to change prices dynamically. We present a modular construction
for POT that realizes our functionality in the hybrid model. One of the building
blocks is an ideal functionality for OT. Therefore, our protocol separates the tasks
carried out by the underlying OT scheme from the additional tasks needed by a
POT scheme. Thanks to that, our protocol is a good example of modular design
and can be instantiated with any secure OT scheme as well as other building
blocks without reanalyzing security from scratch.

Keywords: Oblivious transfer, UC security, modular design

1 Introduction

Priced oblivious transfer (POT) [1] is a cryptographic protocol that can be used to pro-
tect privacy in e-commerce applications. POT is a protocol between a seller or vendor V
and a buyer B. V sells N items (represented as messages) 〈mn〉Nn=1 with prices 〈pn〉Nn=1

assigned to them. At any transfer phase, B chooses an index σ ∈ [1,N] and purchases
the message mσ . Security for B ensures that V does not learn the index σ or the price pσ

paid by B. Security for V ensures that B pays the correct price pσ for the message mσ

and that B does not learn any information about the messages that are not purchased.
Typically, POT schemes use a prepaid mechanism [1,6,23,24,22,2]. B makes an

initial deposit dep to V , revealing the amount dep to V . B and V can use an existing
payment mechanism of their choice to carry out this transaction. After the deposit phase,
when B purchases a message mσ , the price pσ is subtracted from the deposit, but the
POT protocol ensures that: (1) V does not learn the new value dep′ = dep − pσ of the
deposit and (2) dep′ ≥ 0.

Lack of Modular Design. POT schemes [1,6,23,24,22,2] have so far been built by ex-
tending an existing oblivious transfer (OT) scheme. OT is a protocol between a sender
E and a receiver R. E inputs N messages 〈mn〉Nn=1. At each transfer phase, R obtains
the message mσ for her choice σ ∈ [1,N]. E does not learn σ, while R does not learn
any information about other messages.

In OT schemes that have been used to build POT schemes, the interaction between
E and R consists of an initialization phase followed by several transfer phases. In the
initialization phase, E encrypts messages 〈mn〉Nn=1 and sends the list of ciphertexts to
R. In each transfer phase, R, on input σ, computes a blinded request for E . E sends a
response that allowsR to decrypt the ciphertext that encrypts mσ .

Roughly speaking, to construct a POT scheme from an OT scheme, typically the OT
scheme is extended as follows. First, in the initialization phase, the computation of the
ciphertexts is modified in order to bind them to the prices of the encrypted messages,
e.g. by using a signature scheme. Second, a deposit phase, where B sends an initial
deposit to V , is added. As a result of this deposit phase, V and B output a commitment
or encryption to the deposit dep. Third, in each transfer phase, the request computed in
the OT scheme is extended by B in order to send to V an encryption or commitment
to the new value dep′ of the deposit and to prove to V (e.g. by using a zero-knowledge
proof) that dep′ = dep − pσ and that dep′ ≥ 0.

The main drawback of the design of existing POT schemes is a lack of modularity.
Although each POT scheme is based on an underlying OT scheme, the latter is not used
as a black-box building block. Instead, every OT scheme is modified and extended ad-
hoc to create the POT scheme, blurring what components were present in the original
OT scheme and what components were added to create the POT scheme.

The lack of modularity has two disadvantages. First, existing POT schemes cannot
easily be modified to use another OT scheme as a building block, for example, a more
efficient one. Second, every time a new POT scheme is designed, the proofs need to be
done from scratch. This means that the security of the underlying OT scheme will be
reanalyzed instead of relying on its security guarantees. This is error-prone.

Lack of Purchase Statistics. POT schemes [1,6,23,24,22,2] effectively prevent V from
learning what messages are purchased by B. Although this is a nice privacy feature for
B, the customer and sales management becomes more difficult for V . For example, V is
not able to know which items are more demanded by buyers and which ones sell poorly.
As another example, V is not able to use marketing techniques like giving discounts that
depend on the previous purchases of a buyer. It is desirable that, while protecting privacy
of each individual purchase, V gets some aggregate statistics about B’s purchases.

2

Lack of Dynamic Pricing. In existing POT schemes [1,6,23,24,22,2], the price of a
message is static, i.e. each message is associated with a price in the initialization phase
and that price cannot change afterwards. In practical e-commerce settings, this is un-
desirable because sellers would like to be able to change the price of a product easily.
However, modifying existing POT schemes to allow sellers to change the prices of mes-
sages at any time throughout the protocol execution is not straightforward and would
require rerunning the initialization phase.

1.1 Our Contribution

Functionality FPOTS. We use the universal composability (UC) framework [12] and
we describe an ideal functionality FPOTS for priced oblivious transfer with purchase
statistics and dynamic pricing. We modify a standard POT functionality to enable ag-
gregate statistics and dynamic pricing.

Existing functionalities for POT [6,23] consist of three interfaces: an initialization
interface where V sends the messages 〈mn〉Nn=1 and the prices 〈pn〉Nn=1 to the function-
ality; a deposit interface where B sends a deposit dep to the functionality, which reveals
dep to V; and a transfer interface where B sends an index σ ∈ [1,N] to the functionality
and receives the message mσ from the functionality if the current deposit is higher than
the price of the message. The functionality stores the updated value of the deposit.

Our functionality FPOTS modifies the initialization interface so that V only in-
puts the messages 〈mn〉Nn=1. Additionally, this interface can be invoked multiple times
to send different tuples 〈mn〉Nn=1 of messages, where each tuple is associated with a
unique epoch identifier ep. The idea is that messages of different epochs but with the
same message index correspond to the same type or category of items. (This happens,
e.g. when using POT to construct a conditional access system for pay-TV [2].) FPOTS

also modifies the transfer interface in order to store the number of times that B pur-
chases items of each of the types or categories.

Moreover, FPOTS adds three new interfaces: a “setup price” interface where V in-
puts the prices, an “update price” interface where V modifies the price of a message,
and a “reveal statistic” interface where FPOTS reveals to V the value of a statistic about
the purchases of B.

We propose a scheme ΠPOTS that realizes FPOTS. ΠPOTS is designed modularly
and provides purchase statistics and dynamic pricing, as described below.

Modular Design. In the UC framework, protocols can be described modularly by using
a hybrid model where parties invoke the ideal functionalities of the building blocks
of a protocol. For example, consider a protocol that uses as building blocks a zero-
knowledge proof of knowledge and a signature scheme. In a modular description of this
protocol in the hybrid model, parties in the real world invoke the ideal functionalities
for zero-knowledge proofs and for signatures.

We describe ΠPOTS modularly in the hybrid model. Therefore, V and B in the real
world invoke only ideal functionalities for the building blocks of ΠPOTS. Interestingly,
one of the building blocks used inΠPOTS is the ideal functionality for oblivious transfer
FOT. Thanks to that, ΠPOTS separates the task that is carried out by the underlying OT
scheme from the additional tasks that are needed to create a POT scheme.

3

The advantages of a modular design are twofold. First, ΠPOTS can be instantiated
with any secure OT scheme, i.e., any scheme that realizes FOT. The remaining building
blocks can also be instantiated with any scheme that realizes their corresponding ideal
functionalities, leading to multiple possible instantiations of ΠPOTS. Second, the secu-
rity analysis in the hybrid model is simpler and does not need to reanalyze the security
of any of the building blocks.

One challenge when describing a UC protocol in the hybrid model is the need to
ensure that two or more ideal functionalities receive the same input. For example, in
ΠPOTS, it is necessary to enforce that B sends the same index σ ∈ [1,N] to the transfer
interface of FOT and to another functionality FNHCD (described below) that binds σ
to the price pσ . Otherwise, if an adversarial buyer sends different indexes σ and σ′ to
FOT and FNHCD, B could obtain the message mσ and pay an incorrect price pσ′ . To
address this issue, we use the method proposed in [9], which uses a functionality FNIC

for non-interactive commitments.

Purchase Statistics. In ΠPOTS, V can input multiple tuples 〈mn〉Nn=1 of messages. We
consider that messages associated with the same index σ belong to the same category.

ΠPOTS allows B to reveal to V information related to how many purchases were
made for each of the item categories. To do that, B stores a table Tblst of counters
of how many purchases were made for each category. Tblst contains position-value
entries [σ, vσ], where σ ∈ [1,N] is the category index and vσ is the counter. Any time
a message mσ is purchased, the counter for category σ is incremented in Tblst. At any
time throughout the execution of ΠPOTS, B can choose a statistic ST, evaluate it on
input Tblst and reveal to V the result.

Additionally, B must prove to V that the result is correct. To do that, we need a
mechanism that allows V to keep track of the purchases made B, without learning them.
For this purpose, ΠPOTS uses the functionality for a committed database FCD recently
proposed in [8].FCD stores the table Tblst of counters and allows B to read the counters
from Tblst and to write updated counters into Tblst each time a purchase is made. V
does not learn any information read or written but is guaranteed of the correctness of
that information. FCD allows B to hide from V not only the value of counters read or
written, but also the positions where they are read or written into Tblst. This is a crucial
property to construct ΠPOTS, because the position read or written is equal to the index
σ, which needs to be hidden from V in order to hide what message is purchased. The
method in [9] is used to ensure that the index σ is the same both for the counter vσ
incremented in FCD and for the message mσ obtained through FOT. In [8], an efficient
construction for FCD based on vector commitments (VC) [20,15] is provided, where a
VC commits to a vector x such that x[σ] = vσ for σ ∈ [1,N]. In this construction, after
setup, the efficiency of the read and write operations does not depend on the size of the
table, which yields efficient instantiations of ΠPOTS when N is large.

We note that V could be more interested in gathering aggregated statistics about
multiple buyers rather than a single buyer. Interestingly, ΠPOTS opens up that possibil-
ity. The functionalities FCD used between V and each of the buyers can be used in a
secure multiparty computation (MPC) protocol for the required statistic. In this MPC,
each buyer uses FCD to read and prove correctness of the information about her pur-
chases. With the instantiation of FCD based on a VC scheme, V and the buyers would

4

run a secure MPC protocol where V inputs one vector commitment for each buyer and
each buyer inputs the committed vector and the opening.

Dynamic Pricing. In existing POT schemes [1,6,23,24,22,2], when V encrypts the mes-
sages 〈mn〉Nn=1 in the initialization phase, the price of the encrypted message is some-
how bound to the corresponding ciphertext. This binding is done in such a way that,
when B computes a request to purchase a message mσ , V is guaranteed that the correct
price pσ is subtracted from the deposit while still not learning pσ . In some schemes,
V uses a signature scheme to sign the prices in the initialization phase, and B uses a
zero-knowledge proof of signature possession to compute the request.

It would be possible to modify the initialization phase of those schemes so that ci-
phertexts on the messages 〈mn〉Nn=1 are computed independently of the signatures on
the prices 〈pn〉Nn=1, yet enforcing that requests computed by B use the right price pσ
for the requested index σ. (For example, both the ciphertext and the signature could
embed the index σ, and B, as part of a request, would be required to prove in zero-
knowledge that the index in the ciphertext and in the signature are equal.) This would
allow V to modify the prices of messages by issuing new signatures, without needing
to re-encrypt the messages. However, this mechanism to update prices would also re-
quire some method to revoke the previous signatures, which would heavily affect the
efficiency to the ΠPOTS protocol.

Instead, we use the functionality FNHCD for a non-hiding committed database re-
cently proposed in [21]. FNHCD stores a table Tblnhcd with entries [σ, pσ], where
σ ∈ [1,N] is an index and pσ is a price. V sets the initial values of Tblnhcd and is also
able to modify Tblnhcd at any time. B knows the content of Tblnhcd but cannot modify
it. When purchasing a message of index σ, B reads from FNHCD the entry [σ, pσ]. V
does not learn any information about the entry read, yet V is guaranteed that a valid
entry is read. Similarly to the case of FCD, we stress that FNHCD reveals to V neither
the position σ nor the value pσ , and that the method in [9] is used to prove that the index
σ received by FNHCD and by FOT are the same. In [21], an efficient construction for
FNHCD based on a non-hiding VC scheme [20,15] is provided, where a non-hiding VC
commits to a vector x such that x[σ] = pσ for σ ∈ [1,N]. In this construction, after
setup, the efficiency of the read and write operations does not depend on the size of the
table, which yields efficient instantiations of ΠPOTS when N is large.

It could seem that dynamic pricing undermines buyer’s privacy in comparison to
existing POT schemes, e.g. when an adversarial V offers different prices to each of
the buyers and changes them dynamically in order to narrow down the messages that a
buyer could purchase. However, this is not the case. In existing POT, a seller is also able
to offer different prices to each buyer, and to change them dynamically by restarting the
protocol. The countermeasure, for both ΠPOTS and other POT, is to have lists of prices
available through a secure bulletin board where buyers can check that the prices they
are offered are equal to those for other buyers.

2 Related Work

POT was initially proposed in [1]. The POT scheme in [1] is secure in a half-simulation
model, where a simulation-based security definition is used to protect seller security,

5

while an indistinguishability-based security definition is used to protect buyer privacy.
Later, POT schemes in the full-simulation model [6] and UC-secure schemes [23] were
proposed. The scheme in [6] provides unlinkability between V and B, i.e., V cannot link
interactions with the same buyer.

We define security for POT in the UC model, like [23], and our protocol does not
provide unlinkability, unlike [6] or the PIR-based scheme in [18]. Although unlinkabil-
ity is important in some settings, an unlinkable POT scheme would require the use of
an anonymous communication network and, in the deposit phase, it would hinder the
use of widespread payment mechanisms that require authentication. Therefore, because
one of the goals of this work is to facilitate sellers’ deployment of POT schemes, we
chose to describe a scheme that does not provide unlinkability.

The use of POT as building block in e-commerce applications in order to protect
buyer privacy has been described, e.g. in the context of buyer-seller watermarking pro-
tocols for copyright protection [22] and conditional access systems for pay-TV [2]. Our
POT protocol is suitable to be used in any of the proposed settings and it provides ad-
ditional functionalities to V . In [24], a transformation that takes a POT scheme and
produces a POT scheme with optimistic fair exchange is proposed. This transformation
can also be used with our POT scheme.

Oblivious transfer with access control (OTAC) [16,5] is a generalization of obliv-
ious transfer where messages are associated with access control policies. In order to
obtain a message, a receiver must prove that she fulfils the requirements described in
the associated access control policy. In some schemes, access control policies are public
[16,5,25,19], while other schemes hide them from the receiver [7,4].

POT could be seen as a particular case of OTAC with public access control policies.
In POT, the public access control policy that B must fulfil to get a message is defined as
her current deposit being higher than the price of the message. However, existing OTAC
schemes cannot straightforwardly be converted into a POT scheme. The reason is that,
in adaptive POT, the fulfilment of a policy by B depends on the history of purchases and
deposits of B, i.e., whether or not the current deposit of B allows him to buy a message
depends on how much B deposited and spent before. Therefore, POT schemes need to
implement a mechanism that allows V to keep track of the current deposit of B without
learning it, such as a commitment or an encryption of the deposit that is updated by B at
each deposit or purchase phase. (Our POT protocol uses functionality FCD to store the
deposit, in addition to the counters of purchases.) In contrast, existing OTAC schemes
do not provide such a mechanism. In those schemes, usually a third party called issuer
certifies the attributes of a receiver, and after that the receiver can use those certifications
to prove the she fulfils an access control policy.

The oblivious language-based envelope (OLBE) framework in [3] generalizes POT,
OTAC and similar protocols like conditional OT. However, similar to the case of OTAC
schemes, the instantiation of POT in the OLBE framework is only straightforward for
non-adaptive POT schemes, where V does not need to keep track of the deposit of B.

Aside from solutions based on OT, privacy protection in e-commerce can also be
provided by protocols that offer anonymity/unlinkability. Here the goal is to protect the
identity of B rather than the identity of the items purchased. Most solutions involve
anonymous payment methods [10] and anonymous communication networks [17].

6

3 Universally Composable Security

We prove our protocol secure in the universal composability framework [12]. The UC
framework allows one to define and analyze the security of cryptographic protocols
so that security is retained under an arbitrary composition with other protocols. The
security of a protocol is defined by means of an ideal protocol that carries out the desired
task. In the ideal protocol, all parties send their inputs to an ideal functionality F for
the task. F locally computes the outputs of the parties and provides each party with its
prescribed output.

The security of a protocol ϕ is analyzed by comparing the view of an environmentZ
in a real execution of ϕ against that of Z in the ideal protocol defined in Fϕ. Z chooses
the inputs of the parties and collects their outputs. In the real world,Z can communicate
freely with an adversary A who controls both the network and any corrupt parties. In
the ideal world, Z interacts with dummy parties, who simply relay inputs and outputs
between Z and Fϕ, and a simulator S. We say that a protocol ϕ securely realizes Fϕ
if Z cannot distinguish the real world from the ideal world, i.e., Z cannot distinguish
whether it is interacting with A and parties running protocol ϕ or with S and dummy
parties relaying to Fϕ.

A protocol ϕG securely realizes F in the G-hybrid model when ϕ is allowed to
invoke the ideal functionality G. Therefore, for any protocol ψ that securely realizes
G, the composed protocol ϕψ , which is obtained by replacing each invocation of an
instance of G with an invocation of an instance of ψ, securely realizes F .

In the ideal functionalities described in this paper, we consider static corruptions.
When describing ideal functionalities, we use the following conventions as in [9].

Interface Naming Convention. An ideal functionality can be invoked by using one
or more interfaces. The name of a message in an interface consists of three fields
separated by dots, e.g., pot.init.ini in the priced oblivious transfer functionality de-
scribed in Section 4. The first field indicates the name of the functionality and is
the same in all interfaces of the functionality. This field is useful for distinguishing
between invocations of different functionalities in a hybrid protocol that uses two
or more different functionalities. The second field indicates the kind of action per-
formed by the functionality and is the same in all messages that the functionality
exchanges within the same interface. The third field distinguishes between the mes-
sages that belong to the same interface, and can take the following different values.
A message pot.init.ini is the incoming message received by the functionality, i.e.,
the message through which the interface is invoked. A message pot.init.end is the
outgoing message sent by the functionality, i.e., the message that ends the execu-
tion of the interface. The message pot.init.sim is used by the functionality to send
a message to S, and the message pot.init.rep is used to receive a message from
S. The message pot.init.req is used by the functionality to send a message to S to
request the description of algorithms from S, and the message pot.init.alg is used
by S to send the description of those algorithms to the functionality.

Network vs local communication. The identity of an interactive Turing machine in-
stance (ITI) consists of a party identifier pid and a session identifier sid . A set of
parties in an execution of a system of interactive Turing machines is a protocol

7

instance if they have the same session identifier sid . ITIs can pass direct inputs
to and outputs from “local” ITIs that have the same pid . An ideal functionality F
has pid = ⊥ and is considered local to all parties. An instance of F with the ses-
sion identifier sid only accepts inputs from and passes outputs to machines with
the same session identifier sid . Some functionalities require the session identifier
to have some structure. Those functionalities check whether the session identifier
possesses the required structure in the first message that invokes the functionality.
For the subsequent messages, the functionality implicitly checks that the session
identifier equals the session identifier used in the first message. Communication
between ITIs with different party identifiers must take place over the network. The
network is controlled by A, meaning that he can arbitrarily delay, modify, drop, or
insert messages.

Query identifiers. Some interfaces in a functionality can be invoked more than once.
When the functionality sends a message pot.init.sim to S in such an interface, a
query identifier qid is included in the message. The query identifier must also be
included in the response pot.init.rep sent by S. The query identifier is used to iden-
tify the message pot.init.sim to which S replies with a message pot.init.rep. We
note that, typically, S in the security proof may not be able to provide an immedi-
ate answer to the functionality after receiving a message pot.init.sim. The reason is
that S typically needs to interact with the copy of A it runs in order to produce the
message pot.init.rep, but A may not provide the desired answer or may provide a
delayed answer. In such cases, when the functionality sends more than one message
pot.init.sim to S, S may provide delayed replies, and the order of those replies may
not follow the order of the messages received.

Aborts. When an ideal functionality F aborts after being activated with a message
sent by a party, we mean that F halts the execution of its program and sends a
special abortion message to the party that invoked the functionality. When an ideal
functionality F aborts after being activated with a message sent by S, we mean that
F halts the execution of its program and sends a special abortion message to the
party that receives the outgoing message from F after F is activated by S.

Delayed outputs. We say that an ideal functionality F sends a public delayed output
v to a party P if it engages in the following interaction. F sends to S a note that it
is ready to generate an output to P . The note includes the value v, the identity P ,
and a unique identifier for this output. When S replies to the note by echoing the
unique identifier, F outputs the value v to P . A private delayed output is similar,
but the value v is not included in the note.

4 Ideal Functionality for POT with Statistics and Dynamic Pricing

We depict our functionality FPOTS for POT with purchase statistics and dynamic pric-
ing. FPOTS interacts with a seller V and with a buyer B and consists of the following
interfaces:

1. V uses the pot.init interface to send a list of messages 〈mn〉Nn=1 and an epoch
identifier ep to FPOTS. FPOTS stores 〈mn〉Nn=1 and ep, and sends N and ep to B.
In the first invocation of this interface, FPOTS also initializes a deposit dep′ and a

8

table Tblst with entries of the form [σ, vσ], where σ ∈ [1,Nmax] is a category and
vσ is a counter of the number of purchases made for that category.

2. V uses the pot.setupprices interface to send a list of prices 〈pn〉Nmaxn=1 to FPOTS,
where Nmax is the maximum number of messages in an epoch. FPOTS stores
〈pn〉Nmaxn=1 and sends 〈pn〉Nmaxn=1 to B.

3. V uses the pot.updateprice interface to send an index n and a price p to FPOTS.
FPOTS updates the stored list 〈pn〉Nmaxn=1 with p at position n , and sends n and p to
B.

4. B uses the pot.deposit interface to send a deposit dep to FPOTS. FPOTS updates
the stored deposit dep′ ← dep′ + dep and sends dep to V .

5. B uses the pot.transfer interface to send an epoch ep and an index σ to FPOTS. If
dep′ ≥ pσ , FPOTS increments the counter for category σ in Tblst and sends mσ

for the epoch ep to B.
6. B uses the pot.revealstatistic interface to send a function ST to FPOTS. FPOTS

evaluates ST on input table Tblst and sends the result v and ST to V . ST may be
any function from a universe Ψ .

In previous functionalities for POT [6,23], V sends the messages and prices through
the pot.init interface. In contrast, FPOTS uses the pot.setupprices and pot.updateprice
interfaces to send and update the prices. This change allows the design of a protocol
where V can update prices without rerunning the initialization phase. We also note that,
in FPOTS, all the messages mσ of the same category σ have the same price for any
epoch. The idea here is that messages of the same category represent the same type of
content, which is updated by V at each new epoch. Nevertheless, it is straightforward to
modify FPOTS so that V can send a new list of prices for each epoch. Our construction
in Section 6 can easily be modified to allow different prices for each epoch.
FPOTS initializes a counter ctv and a counter ctb in the pot.setupprices interface.

ctv is incremented each time V sends the update of a price, and ctb is incremented each
time B receives the update of a price. These counters are used by FPOTS to check that
V and B have the same list of prices. We note that the simulator S, when queried by
FPOTS, may not reply or may provide a delayed response, which could prevent price
updates sent by V to be received by B.

The session identifier sid has the structure (V,B, sid ′). This allows any vendor V
to create an instance of FPOTS with any buyer B. After the first invocation of FPOTS,
FPOTS implicitly checks that the session identifier in a message is equal to the one
received in the first invocation.

When invoked by V or B, FPOTS first checks the correctness of the input. Con-
cretely, FPOTS aborts if that input does not belong to the correct domain. FPOTS also
aborts if an interface is invoked at an incorrect moment in the protocol. For example, V
cannot invoke pot.updateprice before pot.setupprices. Similar abortion conditions are
listed when FPOTS receives a message from the simulator S.

Before FPOTS queries S, FPOTS saves its state, which is recovered when receiv-
ing a response from S. When an interface, e.g. pot.updateprice, can be invoked more
than once, FPOTS creates a query identifier qid , which allows FPOTS to match a
query to S to a response from S. Creating qid is not necessary if an interface, such
as pot.setupprices, can be invoked only once, or if it can be invoked only once with a
concrete input revealed to S, such as pot.init, which is invoked only once per epoch.

9

Compared to previous functionalities for POT, FPOTS looks more complex. The
reason is that we list all the conditions for abortion and that FPOTS saves state in-
formation before querying S and recovers it after receiving a response from S. These
operations are also required but have frequently been omitted in the description of ideal
functionalities in the literature. We describe FPOTS below.

Description of FPOTS. Functionality FPOTS runs with a seller V and a buyer B, and
is parameterised with a maximum number of messages Nmax, a message spaceM, a
maximum deposit value depmax, a maximum price Pmax, and a universe of statistics
Ψ that consists of ppt algorithms.

1. On input (pot.init.ini, sid , ep, 〈mn〉Nn=1) from V:
– Abort if sid /∈ (V,B, sid ′).
– Abort if (sid , ep′, 〈mn〉Nn=1, 0), where ep′ = ep, is already stored.
– Abort if N > Nmax, or if for n = 1 to N , mn /∈M.
– Store (sid , ep, 〈mn〉Nn=1, 0).
– Send (pot.init.sim, sid , ep,N) to S.

S. On input (pot.init.rep, sid , ep) from S:
– Abort if (sid , ep, 〈mn〉Nn=1, 0) is not stored, or if (sid , ep, 〈mn〉Nn=1, 1) is al-

ready stored.
– If a tuple (sid ,Tblst) is not stored, initialize dep′ ← 0 and a table Tblst with

entries [i, 0] for i = 1 to Nmax, and store (sid , dep′,Tblst).
– Store (sid , ep, 〈mn〉Nn=1, 1).
– Send (pot.init.end, sid , ep,N) to B.

2. On input (pot.setupprices.ini, sid , 〈pn〉Nmaxn=1) from V:
– Abort if sid /∈ (V,B, sid ′) or if (sid , 〈pn〉Nmaxn=1 , ctv) is already stored.
– Abort if, for n = 1 to Nmax, pn /∈ (0,Pmax].
– Initialize a counter ctv ← 0 and store (sid , 〈pn〉Nmaxn=1 , ctv).
– Send (pot.setupprices.sim, sid , 〈pn〉Nmaxn=1) to S.

S. On input (pot.setupprices.rep, sid) from S:
– Abort if (sid , 〈pn〉Nmaxn=1 , ctv) is not stored, or if (sid , 〈pn〉Nmaxn=1 , ctb) is already

stored.
– Initialize a counter ctb ← 0 and store (sid , 〈pn〉Nmaxn=1 , ctb).
– Send (pot.setupprices.end, sid , 〈pn〉Nmaxn=1) to B.

3. On input (pot.updateprice.ini, sid ,n, p) from V:
– Abort if (sid , 〈pn〉Nmaxn=1 , ctv) is not stored.
– Abort if n /∈ [1,Nmax], or if p /∈ (0,Pmax].
– Increment ctv , set pn ← p and store them into the tuple (sid , 〈pn〉Nmaxn=1 , ctv).
– Create a fresh qid and store (qid ,n, p, ctv).
– Send (pot.updateprice.sim, sid , qid ,n, p) to S.

S. On input (pot.updateprice.rep, sid , qid) from S:
– Abort if (qid ,n, p, ctv) is not stored, or if (sid , 〈pn〉Nmaxn=1 , ctb) is not stored,

or if ctv 6= ctb + 1.
– Increment ctb , set pn ← p, and store them into the tuple (sid , 〈pn〉Nmaxn=1 , ctb).
– Delete the record (qid ,n, p, ctv).

10

– Send (pot.updateprice.end, sid ,n, p) to B.

4. On input (pot.deposit.ini, sid , dep) from B:

– Abort if (sid , dep′,Tblst) is not stored, or if dep′ + dep /∈ [0, depmax].
– Create a fresh qid and store (qid , dep).
– Send (pot.deposit.sim, sid , qid) to S.

S. On input (pot.deposit.rep, sid , qid) from S:

– Abort if (qid , dep) is not stored.
– Set dep′ ← dep′ + dep and update (sid , dep′,Tblst).
– Delete the record (qid , dep).
– Send (pot.deposit.end, sid , dep) to V .

5. On input (pot.transfer.ini, sid , ep, σ) from B:

– Abort if (sid , ep′, 〈mn〉Nn=1, 1) for ep′ = ep is not stored.
– Abort if (sid , 〈pn〉Nmaxn=1 , ctb) and (sid , 〈pn〉Nmaxn=1 , ctv) are not stored, or if

ctb 6= ctv .
– Abort if σ /∈ [1,N], or if dep′ < pσ , where dep′ is stored in (sid , dep′,Tblst).
– Create a fresh qid and store (qid , ep, σ,mσ).
– Send (pot.transfer.sim, sid , qid , ep) to S.

S. On input (pot.transfer.rep, sid , qid) from S:

– Abort if (qid , ep, σ,mσ) is not stored.
– Set dep′ ← dep′ − pσ , increment vσ for the entry [σ, vσ] in Tblst, and update

(sid , dep′,Tblst).
– Delete the record (qid , ep, σ,mσ).
– Send (pot.transfer.end, sid ,mσ) to B.

6. On input (pot.revealstatistic.ini, sid ,ST) from B:

– Abort if (sid , dep′,Tblst) is not stored.
– Abort if ST /∈ Ψ .
– Set v ← ST(Tblst).
– Create a fresh qid and store (qid , v,ST).
– Send (pot.revealstatistic.sim, sid , qid) to S.

S. On input (pot.revealstatistic.rep, sid , qid) from S:

– Abort if (qid , v,ST) is not stored.
– Delete the record (qid , v,ST).
– Send (pot.revealstatistic.end, sid , v,ST) to V .

5 Building Blocks of Our Construction

Ideal Functionality FAUT. Our protocol uses the functionality FAUT for an authenti-
cated channel in [12]. FAUT interacts with a sender T and a receiver R, and consists
of one interface aut.send. T uses aut.send to send a message m to FAUT. FAUT leaks
m to the simulator S and, after receiving a response from S, FAUT sends m to R. S
cannot modify m . The session identifier sid contains the identities of T andR.

11

Ideal Functionality FSMT. Our protocol uses the functionality FSMT for secure mes-
sage transmission described in [12]. FSMT interacts with a sender T and a receiver R,
and consists of one interface smt.send. T uses the smt.send interface to send a message
m to FSMT. FSMT leaks l(m), where l :M→ N is a function that leaks the message
length, to the simulator S . After receiving a response from S , FSMT sends m to R. S
cannot modify m . The session identifier sid contains the identities of T andR.

Ideal Functionality FNIC. Our protocol uses the functionality FNIC for non-interactive
commitments in [9]. FNIC interacts with parties Pi and consists of the following inter-
faces:

1. Any party Pi uses the com.setup interface to set up the functionality.
2. Any party Pi uses the com.commit interface to send a message cm and obtain a

commitment ccom and an opening copen . A commitment ccom is a tuple (ccom ′,
cparcom,COM.Verify), where ccom ′ is the commitment, cparcom are the public
parameters, and COM.Verify is the verification algorithm.

3. Any party Pi uses the com.validate interface to send a commitment ccom to check
that ccom contains the correct public parameters and verification algorithm.

4. Any party Pi uses the com.verify interface to send (ccom, cm, copen) in order to
verify that ccom is a commitment to the message cm with the opening copen .

FNIC can be realized by a perfectly hiding commitment scheme, such as Pedersen com-
mitments [9]. In [9], a method is described to use FNIC in order to ensure that a party
sends the same input cm to several ideal functionalities. For this purpose, the party first
uses com.commit to get a commitment ccom to cm with opening copen . Then the party
sends (ccom, cm, copen) as input to each of the functionalities, and each functionality
runs COM.Verify to verify the commitment. Finally, other parties in the protocol re-
ceive the commitment ccom from each of the functionalities and use the com.validate
interface to validate ccom . Then, if ccom received from all the functionalities is the
same, the binding property provided by FNIC ensures that all the functionalities re-
ceived the same input cm . When using FNIC, it is needed to work in the FNIC||SNIC-
hybrid model, where SNIC is any simulator for a construction that realizes FNIC.

Ideal Functionality FR
ZK. Let R be a polynomial time computable binary relation. For

tuples (wit , ins) ∈ R we call wit the witness and ins the instance. Our protocol uses
the ideal functionality FR

ZK for zero-knowledge in [12]. FR
ZK is parameterized by a

description of a relation R, runs with a prover P and a verifier V , and consists of one
interface zk.prove. P uses zk.prove to send a witness wit and an instance ins to FR

ZK.
FR

ZK checks whether (wit , ins) ∈ R, and, in that case, sends the instance ins to V . The
simulator S learns ins but not wit . In our POT protocol, we use relations that include
commitments as part of the instance, while the committed value and the opening are part
of the witness. The relation uses the verification algorithm of the commitment scheme
to check correctness of the commitment. This allows us to use the method described
in [9] to ensure that an input to FR

ZK is equal to the input of other functionalities.

Ideal Functionality FOT. Our protocol uses the ideal functionality FOT for oblivious
transfer.FOT interacts with a sender E and a receiverR, and consists of three interfaces
ot.init, ot.request and ot.transfer.

12

1. E uses the ot.init interface to send the messages 〈mn〉Nn=1 to FOT. FOT stores
〈mn〉Nn=1 and sends N toR. The simulator S also learns N .

2. R uses the ot.request interface to send an index σ ∈ [1,N], a commitment ccomσ

and an opening copenσ to FOT. FOT parses the commitment ccomσ as (cparcom,
comσ,COM.Verify) and verifies the commitment by running COM.Verify. FOT

stores [σ, ccomσ] and sends ccomσ to E .
3. E uses the ot.transfer interface to send a commitment ccomσ to FOT. If a tuple

[σ, ccomσ] is stored, FOT sends the message mσ toR.

FOT is similar to existing functionalities for OT [11], except that it receives a commit-
ment ccomσ to the index σ and an opening copenσ for that commitment. In addition,
the transfer phase is split up into two interfaces ot.request and ot.transfer, so that E re-
ceives ccomσ in the request phase. These changes are needed to use in our POT protocol
the method in [9] to ensure that, when purchasing an item, the buyer sends the same in-
dex σ to FOT and to other functionalities. It is generally easy to modify existing UC
OT protocols so that they realize our functionality FOT.

Ideal Functionality FCD. Our protocol uses the ideal functionality FCD for a commit-
ted database in [8]. FCD interacts with a prover P and a verifier V , and consists of three
interfaces cd.setup, cd.read and cd.write.

1. V uses the cd.setup interface to initialize Tblcd. FCD stores Tblcd and sends Tblcd
to P and to the simulator S.

2. P uses cd.read to send a position i and a value vr to FCD, along with commitments
and openings (ccomi , copeni) and (ccomr , copenr) to the position and value re-
spectively. FCD verifies the commitments and checks that there is an entry [i, vr]
in the table Tblcd. In that case, FCD sends ccomi and ccomr to V . S also learns
ccomi and ccomr .

3. P uses cd.write to send a position i and a value vw to FCD, along with com-
mitments and openings (ccomi , copeni) and (ccomw , copenw) to the position and
value respectively. FCD verifies the commitments and updates Tblcd to store vw at
position i. FCD sends ccomi and ccomw to V . S also learns ccomi and ccomw .

Basically,FCD allows P to prove to V that two commitments ccomi and ccomr commit
to a position and value that are read from a table, and that two commitments ccomi and
ccomw commit to a position and value that are written into the table. In [8], an efficient
construction for FCD based on hiding vector commitments [20,15] is proposed. In our
POT protocol, FCD is used to store and update the deposit of the buyer and the counters
of the number of purchases for each of the item categories.

Ideal Functionality FNHCD. Our protocol uses the ideal functionality FNHCD for a
non-hiding committed database in [21]. FNHCD interacts with a party P0 and a party
P1, and consists of three interfaces nhcd.setup, nhcd.prove and nhcd.write.

1. P1 uses nhcd.setup to send a table Tblnhcd with N entries of the form [i, v] (for
i = 0 to N) to FNHCD. FNHCD stores Tblnhcd and sends Tblnhcd to P0. The
simulator S also learns Tblnhcd.

13

2. Pb (b ∈ [0, 1]) uses nhcd.prove to send a position i and a value vr to FNHCD,
along with commitments and openings (ccomi , copeni) and (ccomr , copenr) to
the position and value respectively. FNHCD verifies the commitments and checks
that there is an entry [i, vr] in the table Tblnhcd. In that case, FNHCD sends ccomi

and ccomr to P1−b. The simulator S also learns ccomi and ccomr .
3. P1 uses nhcd.write to send a position i and a value vw to FNHCD. FNHCD updates

Tblnhcd to contain value vw at position i and sends i and vw to P0. The simulator
S also learns i and vw .

FNHCD is similar to the functionality FCD described above. The main difference is that
the contents of the table Tblnhcd are known by both parties. For this reason, both parties
can invoke the nhcd.prove interface to prove that two commitments ccomi and ccomr

commit to a position and value stored in Tblnhcd. In addition, the interface nhcd.write
reveals the updates to Tblnhcd made by P1 to P0. In [21], an efficient construction for
FNHCD based on non-hiding vector commitments is proposed. In our POT protocol,
FNHCD will be used by the seller, acting as P1, to store and update the prices of items.
The buyer, acting as P0, uses the nhcd.prove interface to prove to the seller that the
correct price for the item purchased is used.

The full description of the ideal functionalities is given in Section A of the supple-
mentary material.

6 Construction ΠPOTS for FPOTS

Intuition. For each epoch ep, V and B use a new instance of FOT. In the pot.init inter-
face, V uses ot.init to create a new instance of FOT on input the messages 〈mn〉Nn=1.
In the pot.transfer interface, B uses ot.request on input an index σ and receives the
message mσ through the ot.transfer interface.

To construct a POT protocol based on FOT, V must set the prices, and B must make
deposits and pay for the messages obtained. Additionally, our POT protocol allows V
to receive aggregate statistics about the purchases.

Prices. To set prices, V uses FNHCD. In the pot.setupprices interface, the seller V uses
nhcd.setup to create an instance of FNHCD on input a list of prices 〈pn〉Nmaxn=1 ,
which are stored in the table Tblnhcd in FNHCD. In the pot.updateprice interface,
V uses nhcd.write to update a price in the table Tblnhcd.

Deposits. FCD is used to store the current funds dep′ of B. In the pot.init interface, V
uses cd.setup to create an instance of FCD on input a table Tblcd that contains a 0
at every position. The position 0 of Tblcd is used to store dep′. In the pot.deposit
interface, B makes deposits dep to V , which are added to the existing funds dep′.
(To carry out the payment of dep, V and B use a payment mechanism outside the
POT protocol.) B uses FRdep

ZK to prove in zero-knowledge to V that the deposit is
updated correctly as dep′ ← dep′ + dep. The interfaces cd.read and cd.write are
used to read dep′ and to write the updated value of dep′ into Tblcd.

Payments. In the pot.transfer interface, B must subtract the price pσ for the purchased
message mσ from the current funds dep′. B uses nhcd.prove to read the correct
price pσ from Tblnhcd. ThenB usesFRtrans

ZK to prove in zero-knowledge that dep′ ←

14

dep′ − pσ . The interfaces cd.read and cd.write of FCD are used to read dep′ and
to write the updated value of dep′ into Tblcd.

Statistics. FCD is used to store counters on the number of purchases of each item
category in the positions [1,Nmax] of table Tblcd. In the pot.transfer interface, B
uses cd.read to read the table entry [σ, count1] in Tblcd, where σ is the index of
the message purchased mσ and count1 is the counter for that category. B computes
count2 ← count1+1 and usesFRcount

ZK to prove in zero-knowledge that the counter
is correctly incremented. Then B uses cd.write to write the entry [σ, count2] in
Tblcd. In the pot.revealstatistic interface, B uses FRST

ZK to prove in zero-knowledge
to V that a statistic v is the result of evaluating a function ST on input Tblcd. For
this purpose, B uses cd.read to read the required table entries in Tblcd.

Construction ΠPOTS. ΠPOTS is parameterised with a maximum number of messages
Nmax, a message space M, a maximum deposit value depmax, a maximum price
Pmax, and a universe of statistics Ψ that consists of ppt algorithms. ΠPOTS uses the
ideal functionalities FAUT, FSMT, FNIC, FR

ZK, FOT, FCD and FNHCD. We omit some
abortion conditions or some of the messages used to invoke functionalities, which are
depicted in Section B of the supplementary material.

1. On input (pot.init.ini, sid , ep, 〈mn〉Nn=1), V and B do the following:
– If this is the first execution of this interface, V and B set up FCD as follows:
• V sets a table Tblcd of Nmax entries of the form [i, 0] for i = 0 to Nmax.
V uses cd.setup to send Tblcd to a new instance of FCD.
• B receives Tblcd from FCD and stores (sid ,Tblcd). Then B sends the mes-

sage setup to V via FAUT, so that V continues the protocol execution.
– V uses ot.init to send the messages 〈mn〉Nn=1 to a new instance of FOT with

session identifier sidOT ← (sid , ep).
– B receives the messages from FOT, stores (sid , ep,N), and outputs the mes-

sage (pot.init.end, sid , ep,N).
2. On input (pot.setupprices.ini, sid , 〈pn〉Nmaxn=1), V and B do the following:

– For n = 1 to Nmax, V sets a table Tblnhcd with entries [n, pn] and uses
nhcd.setup to send Tblnhcd to a new instance of FNHCD.

– B receives Tblnhcd fromFNHCD, parses Tblnhcd as [n, pn], for n = 1 toNmax,
stores (sid , 〈pn〉Nmaxn=1) and outputs (pot.setupprices.end, sid , 〈pn〉Nmaxn=1).

3. On input (pot.updateprice.ini, sid ,n, p), V and B do the following:
– V uses nhcd.write to send the index n and the price p to FNHCD.
– B receives n and p from FNHCD, updates the stored tuple (sid , 〈pn〉Nmaxn=1) and

outputs (pot.updateprice.end, sid ,n, p).
4. On input (pot.deposit.ini, sid , dep), V and B do the following:

– If this is the first execution of the deposit interface, B uses com.setup to create
a new instance of FNIC, sets dep1 ← 0 and uses com.commit to get a com-
mitment ccomdep1

to dep1 with opening copendep1
from FNIC. Otherwise, B

takes the stored commitment to the deposit (sid , ccomdep2
, copendep2

), sets
ccomdep1

← ccomdep2
and copendep1

← copendep2
, and sets dep1 ← v

where [0, v] is the deposit stored in the table (sid ,Tblcd).

15

– B sets dep2 ← dep1 + dep and uses com.commit to get commitments and
openings (ccomdep , copendep) and (ccomdep2

, copendep2
) to dep and dep2.

– B sets a witness witdep as (dep, copendep , dep1, copendep1
, dep2, copendep2

)
and an instance insdep as (cparcom, ccomdep , ccomdep1

, ccomdep2
), stores

(sid ,witdep , insdep), and uses zk.prove to send witdep and insdep to FRdep

ZK ,
where relation Rdep is

Rdep ={(witdep , insdep) :

1 = COM.Verify(cparcom, ccomdep , dep, copendep) ∧
1 = COM.Verify(cparcom, ccomdep1

, dep1, copendep1
) ∧

1 = COM.Verify(cparcom, ccomdep2
, dep2, copendep2

) ∧
dep2 = dep + dep1 ∧ dep2 ∈ [0, depmax]}

– V receives insdep = (cparcom, ccomdep , ccomdep1
, ccomdep2

) from FRdep

ZK .
If this is the first execution of the deposit interface, V invokes com.setup of
FNIC and then uses com.validate to validate ccomdep1

. Otherwise, V takes
the stored commitment (sid , ccom ′dep2

) (which commits to the old value of
the deposit) and aborts if ccom ′dep2

6= ccomdep1
, because this means that the

buyer used an incorrect commitment ccomdep1
to the old value of the deposit.

– V uses com.validate to validate ccomdep2
and ccomdep and stores the tuple

(sid , insdep).
– V uses aut.send to send writedeposit to B, so that B continues the protocol.
– If this is the first execution of the deposit interface, B uses com.commit to get

a commitment and opening (ccom0, copen0) to 0, which is the position where
the deposit is stored in the table of FCD.

– B stores (sid , ccomdep2
, copendep2

) and uses the cd.write interface to send
(ccom0, 0, copen0) and (ccomdep2

, dep2, copendep2
) in order to write an entry

[0, dep2] into the table of FCD.
– V receives (cd.write.end, sid , ccom0, ccomdep2

) from FCD.
– V aborts if the commitment ccomdep2

stored in (sid , insdep) is not the same as
that received fromFCD. If this is not the first execution of the deposit interface,
V aborts if (sid , ccom0) is not the same as the commitment received fromFCD.

– V uses aut.send to send a message revealdeposit to B.
– B updates (sid ,Tblcd) with [0, dep2].
– If this is the first execution of the deposit interface, B uses smt.send to send
〈dep, copendep , 0, copen0, dep1, copendep1

〉 to V , and V uses com.verify to
verify (ccom0, 0, copen0) and (ccomdep1

, dep1, copendep1
). Else the buyer B

uses the smt.send interface to send 〈dep, copendep〉 to V .
– V uses com.verify to verify (ccomdep , dep, copendep).
– V outputs (pot.deposit.end, sid , dep).

5. On input (pot.transfer.ini, sid , ep, σ), V and B do the following:
– B retrieves the entry [0, dep1] from the table (sid ,Tblcd) and the price pσ from

(sid , 〈pn〉Nmaxn=1), and sets dep2 ← dep1 − pσ .
– B retrieves the stored tuple (sid , ccomdep2

, copendep2
) and sets ccomdep1

←
ccomdep2

and copendep1
← copendep2

.

16

– B uses com.commit to obtain from functionality FNIC the commitments and
openings (ccomdep2

, copendep2
) to dep2, (ccomσ, copenσ) to σ and (ccompσ ,

copenpσ) to pσ .

– B sets wit trans as (pσ, copenpσ , dep1, copendep1
, dep2, copendep2

) and the in-
stance instrans as (cparcom, ccompσ , ccomdep1

, ccomdep2
), stores the tuple

(sid ,wit trans , instrans), and uses zk.prove to send wit trans and instrans to
FRtrans

ZK , where Rtrans is defined as follows

Rtrans ={(wit trans , instrans) :

1 = COM.Verify(cparcom, ccompσ , pσ, copenpσ) ∧
1 = COM.Verify(cparcom, ccomdep1

, dep1, copendep1
) ∧

1 = COM.Verify(cparcom, ccomdep2
, dep2, copendep2

) ∧
dep2 = dep1 − pσ ∧ dep2 ∈ [0, depmax]}

– V receives instrans = (cparcom, ccompσ , ccomdep1
, ccomdep2

) from FRtrans

ZK ,
uses com.validate to validate the commitments ccompσ and ccomdep2

, and
aborts if ccomdep1

is not equal to the stored commitment (sid , ccomdep2
).

– V stores (sid , instrans) and uses aut.send to send a message readprice to B,
so that B continues the protocol execution.

– B uses nhcd.prove to send the position σ and the price pσ toFNHCD, along with
their respective commitments and openings (ccomσ, copenσ) and (ccompσ ,
copenpσ).

– V receives ccomσ and ccompσ from FNHCD, aborts if ccompσ is not equal to
the commitment stored in (sid , instrans), uses com.validate to validate ccomσ

and adds ccomσ to (sid , instrans).

– V uses aut.send to send the message commitdeposit to B.

– B uses cd.write to send the position 0 and the deposit dep2 into FCD, along
with (ccom0, copen0) and (ccomdep2

, copendep2
).

– V receives ccom0 and ccomdep2
fromFCD, and aborts if the ccomdep2

in (sid ,
instrans) is not the same as that received from FCD, or if ccom0 received from
FCD is not the same as (sid , ccom0) stored during the first execution of the
deposit interface.

– V uses aut.send to send the message commitcounter to B.

– B stores (sid , ccomdep2
, copendep2

), updates (sid ,Tblcd) with [0, dep2], then
deletes (sid ,wit trans , instrans) and stores (sid ,witcount , inscount).

– B retrieves [σ, v] from Tblcd, sets count1 ← v and count2 ← count1 + 1, and
uses com.commit to get from FNIC commitments and openings (ccomcount1 ,
copencount1) to count1 and (ccomcount2 , copencount2) to count2.

– B sets witcount as (σ, copenσ, count1, copencount1 , count2, copencount2) and
inscount as (cparcom, ccomσ, ccomcount1 , ccomcount2), and uses zk.prove to

17

send witcount and inscount to FRcount

ZK , where Rcount is

Rcount ={(witcount , inscount) :

1 = COM.Verify(cparcom, ccomσ, σ, copenσ) ∧
1 = COM.Verify(cparcom, ccomcount1 , count1, copencount1) ∧
1 = COM.Verify(cparcom, ccomcount2 , count2, copencount2) ∧
count2 = count1 + 1}

– V receives inscount from FRcount

ZK , aborts if the commitment ccomσ in (sid ,
instrans) is not equal to the one in inscount , uses com.validate to validate the
commitments ccomcount1 and ccomcount2 , and stores (sid , inscount).

– V uses aut.send to send the message readcounter to B.
– B uses cd.read to send the position σ and the counter count1 to FCD, along

with (ccomσ, copenσ) and (ccomcount1 , copencount1).
– V receives ccomσ and ccomcount1 from FCD and aborts if those commitments

are not equal to the ones stored in (sid , inscount).
– V uses aut.send to send the message writecounter to B.
– B uses cd.write to send the position σ and the value count2 to FCD, along with

(ccomσ, copenσ) and (ccomcount2 , copencount2).
– V receives ccomσ and ccomcount2 from FCD and aborts if those commitments

are not equal to the ones stored in (sid , inscount).
– V uses aut.send to send the message transfer to B.
– B updates (sid ,Tblcd) with [σ, count2] and uses ot.request to send the index
σ along with (ccomσ, copenσ) to the instance of FOT with session identifier
sidOT = (sid , ep).

– V receives ccomσ from FOT and aborts if it is not equal to the one contained
in inscount .

– V uses ot.transfer to send ccomσ to the instance of FOT with session identifier
sidOT = (sid , ep).

– B receives mσ from FOT and outputs (pot.transfer.end, sid ,mσ).

6. On input (pot.revealstatistic.ini, sid ,ST), B and V do the following:
– B takes the stored (sid ,Tblcd) and computes result← ST(Tblcd).
– For all i ∈ P, where P is the subset of positions i such that the entry [i, vi] in

Tblcd was used by B to compute result, B and V do the following:
• B uses com.commit to get the commitments and openings (ccomi, copeni)

to i and (ccomvi , copenvi) to vi and stores (sid , ccomi, ccomvi). Then
B uses cd.read to read (ccomi, i, copeni) and (ccomvi , vi, copenvi) from
FCD.
• V receives (ccomi, ccomvi) from FCD, uses com.validate to validate the

commitments ccomi and ccomvi , and uses aut.send to send the following
message 〈OK, ccomi, ccomvi〉 to B.

– B sets witST ← (〈i, copeni, vi, copenvi〉∀i) and insST ← (result, cparcom,

〈ccomi, ccomvi〉∀i), and uses zk.prove to send witST and insST toFRST

ZK , where

18

the relation RST is

RST ={(witST, insST) :

[1 = COM.Verify(cparcom, ccomi, i, copeni) ∧
1 = COM.Verify(cparcom, ccomvi , vi, copenvi)]∀i∈P ∧
result = ST(〈i, vi〉∀i∈P) }

– V receives insST fromFRST

ZK and aborts if the commitments received fromFCD

are not the same as those in insST.
– V outputs (pot.revealstatistic.end, sid , result,ST).

Theorem 1. Construction ΠPOTS realizes functionality FPOTS in the (FAUT,FSMT,
FNIC||SNIC,FR

ZK,FOT,FCD,FNHCD)-hybrid model.

We prove this theorem in Section C of the supplementary material.

Instantiation and efficiency analysis. In previous work [1,6,23,24,22,2], the computa-
tion and communication cost of POT protocols is dominated by the cost of the underly-
ing OT scheme. This is also the case for ΠPOTS. However, ΠPOTS has the advantage
that it can be instantiated with any OT protocol that realizes FOT. The OT schemes
used to construct UC-secure POT schemes [23], and other UC-secure OT schemes are
suitable. Moreover, when new more efficient OT schemes are available, they can also
be used to instantiate ΠPOTS.

We also note that the overhead introduced by FNIC to allow the modular design of
ΠPOTS is small. FNIC can be instantiated with a perfectly hiding commitment scheme,
such as Pedersen commitments [9]. Therefore, the overhead consists in computing a
commitment to each of the values that need to be sent to more than one functionality,
and ZK proofs of the opening of those commitments.

As discussed above, to construct POT from an OT scheme, V must set the prices, and
B must make deposits and pay for the messages obtained. Additionally, our POT proto-
col allows V to receive aggregate statistics about the purchases. For these tasks,ΠPOTS

uses FNHCD and FCD. These functionalities can be instantiated with a non-hiding and
hiding VC scheme respectively [8,21], equipped with ZK proofs of an opening for a
position of the vector. In [8,21], concrete instantiations based on the Diffie-Hellman
Exponent (DHE) assumption are provided. These instantiations involve a common ref-
erence string that grows linearly with the length of the committed vector, which in
ΠPOTS is the number N of messages. A non-hiding VC and a hiding VC commit to
the tables Tblnhcd and Tblcd respectively. The vector commitments, as well as openings
for each position of the vector, are of size independent of N . The computation of a
commitment and of an opening grows linearly with N . However, when the committed
vector changes, both the vector commitment and the openings can be updated with cost
independent of N . Therefore, they can be updated and reused throughout the protocol,
yielding amortized cost independent of N . The ZK proofs of VC openings offer com-
putation and communication cost independent of N . Therefore, with this instantiation,
ΠPOTS remains efficient when the number N of messages is large.

19

We compare below ΠPOTS to the UC-secure scheme in [23], but we note that this
comparison would be similar for other full-simulation secure POT protocols. We can
conclude that ΠPOTS provides additional functionalities like dynamic pricing and ag-
gregated statistics with cost similar to POT protocols that do not provide them.

Prices. In [23], in the initialization phase, V encrypts the messages and, for each mes-
sage, V computes a signature that binds a ciphertext to the price of the encrypted
message. This implies that one signature per message is sent from V to B, and
thus the cost grows linearly with N . In ΠPOTS, FNHCD is used, which can be
instantiated with a non-hiding VC scheme. In this instantiation, only one vector
commitment, which commits to a vector that contains the list of prices, needs to be
sent from V to B. Nevertheless, adding the size of the common reference string, the
cost also grows linearly with N .
However, non-hiding VC schemes provide dynamic pricing at no extra cost. The
vector commitment can be updated with cost independent of N . With a signature
scheme, V could also provide a new signature on the price with cost independent
of N . However, V needs to revoke the signature on the old price. The need of a
signature revocation mechanism makes dynamic pricing costly in this case.

Deposit. In [23], in the deposit phase, B sends a commitment to the new value of the
deposit and a ZK proof that the deposit is updated. In ΠPOTS, FCD is used, which
can be instantiated with a hiding VC that stores the deposit at position 0. The size of
commitments, as well as the cost of a ZK proof of deposit updated, does not depend
on N in both cases. However, the common reference string (crs) of the VC scheme
grows linearly with N . (We recall that FCD not only stores the deposit but also
the N counters of purchases.) By applying the UC with joint state theorem [14],
it could be possible to share crs for the DHE instantiations of the non-hiding and
hiding VC schemes, but this affects the modularity of ΠPOTS.

Payment. In [23], B proves in ZK that the price of the purchased message is subtracted
from her current funds. This involves a ZK proof of signature possession, to prove
that the correct price is used, and a ZK proof of commitment opening, to prove
that the correct value of the deposit is used. The cost of these proofs is independent
of N . In ΠPOTS, when using non-hiding and hiding VC schemes to instantiate
FNHCD and FCD, we need two ZK proofs of a vector commitment opening, one
for the non-hiding VC scheme (for the price) and one for the hiding VC scheme
(for the deposit). The amortized cost of those ZK proofs is also independent of N .
The cost of a ZK proof of commitment opening for the DHE instantiation is similar
to the ZK proof of signature possession in [23].

Statistics. Unlike [23],ΠPOTS allows V to get aggregate statistics about the purchases
of B. FCD stores the counters of the number of purchases for each category. With
the instantiation based on a hiding VC scheme, updating the counters and reading
them to compute a statistic involves again ZK proofs of the opening of positions of
a VC, whose amortized computation and communication cost is independent of N .

Aggregate statistics about multiple buyers. ΠPOTS allows V to gather statistics about
the purchases of each buyer separately. Nonetheless, V is possibly more interested in
gathering aggregate statistics about multiple buyers. This is also appealing to better

20

protect buyer’s privacy. Fortunately,ΠPOTS enables this possibility. The functionalities
FCD used in the execution of ΠPOTS between V and each of the buyers can be used to
run a secure multiparty computation (MPC) protocol for the required statistic. In this
protocol, each buyer reads from FCD the counters needed for the statistic. We note that
FCD provides commitments to the counters read. These commitments can easily be
plugged into existing commit-and-prove MPC protocols [13] to run an MPC between
the seller and the buyers. We note the previous POT protocols do not provide this possi-
bility because there buyers do not have any means to prove what they purchased before.
FCD acts as a ZK data structure that stores information about what buyers have proven
in zero-knowledge, so that this information can be reused in subsequent ZK proofs.

Acknowledgements. This research is supported by the Luxembourg National Research
Fund (FNR) CORE project “Stateful Zero-Knowledge” (Project code: C17/11650748).

References

1. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital goods. In:
International Conference on the Theory and Applications of Cryptographic Techniques. pp.
119–135. Springer (2001)

2. Biesmans, W., Balasch, J., Rial, A., Preneel, B., Verbauwhede, I.: Private mobile pay-tv from
priced oblivious transfer. IEEE Transactions on Information Forensics and Security 13(2),
280–291 (2018)

3. Blazy, O., Chevalier, C., Germouty, P.: Adaptive oblivious transfer and generalization. In:
International Conference on the Theory and Application of Cryptology and Information Se-
curity. pp. 217–247. Springer (2016)

4. Camenisch, J., Dubovitskaya, M., Enderlein, R.R., Neven, G.: Oblivious transfer with hidden
access control from attribute-based encryption. In: International Conference on Security and
Cryptography for Networks. pp. 559–579. Springer (2012)

5. Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control. In: Pro-
ceedings of the 16th ACM conference on Computer and communications security. pp. 131–
140. ACM (2009)

6. Camenisch, J., Dubovitskaya, M., Neven, G.: Unlinkable priced oblivious transfer with
rechargeable wallets. In: International Conference on Financial Cryptography and Data Se-
curity. pp. 66–81. Springer (2010)

7. Camenisch, J., Dubovitskaya, M., Neven, G., Zaverucha, G.M.: Oblivious transfer with hid-
den access control policies. In: International Workshop on Public Key Cryptography. pp.
192–209. Springer (2011)

8. Camenisch, J., Dubovitskaya, M., Rial, A.: Concise UC zero-knowledge proofs for oblivious
updatable databases , http://hdl.handle.net/10993/39423

9. Camenisch, J., Dubovitskaya, M., Rial, A.: Uc commitments for modular protocol design and
applications to revocation and attribute tokens. In: Annual International Cryptology Confer-
ence. pp. 208–239. Springer (2016)

10. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 302–321.
Springer (2005)

11. Camenisch, J., Neven, G., et al.: Simulatable adaptive oblivious transfer. In: Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques. pp. 573–
590. Springer (2007)

21

http://hdl.handle.net/10993/39423

12. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science. pp. 136–145.
IEEE (2001)

13. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and
multi-party secure computation. In: Proceedings of the thiry-fourth annual ACM symposium
on Theory of computing. pp. 494–503. ACM (2002)

14. Canetti, R., Rabin, T.: Universal composition with joint state. In: Annual International Cryp-
tology Conference. pp. 265–281. Springer (2003)

15. Catalano, D., Fiore, D.: Vector commitments and their applications. In: International Work-
shop on Public Key Cryptography. pp. 55–72. Springer (2013)

16. Coull, S., Green, M., Hohenberger, S.: Controlling access to an oblivious database using
stateful anonymous credentials. In: International Workshop on Public Key Cryptography.
pp. 501–520. Springer (2009)

17. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion router. Tech.
rep., Naval Research Lab Washington DC (2004)

18. Henry, R., Olumofin, F., Goldberg, I.: Practical pir for electronic commerce. In: Proceedings
of the 18th ACM conference on Computer and communications security. pp. 677–690. ACM
(2011)

19. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Adaptive oblivious transfer with
access control from lattice assumptions. In: International Conference on the Theory and Ap-
plication of Cryptology and Information Security. pp. 533–563. Springer (2017)

20. Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-
knowledge sets with short proofs. In: Theory of Cryptography Conference. pp. 499–517.
Springer (2010)

21. Rial, A.: UC updatable non-hiding committed database with efficient zero-knowledge proofs
, http://hdl.handle.net/10993/39421

22. Rial, A., Balasch, J., Preneel, B.: A privacy-preserving buyer–seller watermarking protocol
based on priced oblivious transfer. IEEE Transactions on Information Forensics and Security
6(1), 202–212 (2011)

23. Rial, A., Kohlweiss, M., Preneel, B.: Universally composable adaptive priced oblivious trans-
fer. In: International Conference on Pairing-Based Cryptography. pp. 231–247. Springer
(2009)

24. Rial, A., Preneel, B.: Optimistic fair priced oblivious transfer. In: International Conference
on Cryptology in Africa. pp. 131–147. Springer (2010)

25. Zhang, Y., Au, M.H., Wong, D.S., Huang, Q., Mamoulis, N., Cheung, D.W., Yiu, S.M.:
Oblivious transfer with access control: realizing disjunction without duplication. In: Interna-
tional Conference on Pairing-Based Cryptography. pp. 96–115. Springer (2010)

22

http://hdl.handle.net/10993/39421

A Full Description of the Building Blocks of Our Construction

A.1 Ideal Functionality FAUT

Our protocol uses the functionality FAUT for an authenticated channel in [12]. FAUT

interacts with a sender T and a receiver R, and consists of one interface aut.send.
T uses the aut.send interface to send a message m to FAUT. FAUT leaks m to the
simulator S and, after receiving a response from S, FAUT sends m to R. S cannot
modify m . The session identifier sid contains the identities of T andR.

Description of FAUT. FAUT is parameterized by a message spaceM.

1. On input (aut.send.ini, sid ,m) from a party T :

– Abort if sid 6= (T ,R, sid ′) or if m /∈M.
– Create a fresh qid and store (qid ,R,m).
– Send (aut.send.sim, sid , qid ,m) to S.

S. On input (aut.send.rep, sid , qid) from S:

– Abort if (qid ,R,m) is not stored.
– Delete the record (qid ,R,m).
– Send (aut.send.end, sid ,m) toR.

A.2 Ideal Functionality FSMT

Our protocol uses the functionality FSMT for secure message transmission described
in [12]. FSMT interacts with a sender T and a receiverR, and consists of one interface
smt.send. T uses the smt.send interface to send a message m to FSMT. FSMT leaks
l(m), where l : M → N is a function that leaks the message length, to the simulator
S. After receiving a response from S, FSMT sends m to R. S cannot modify m . The
session identifier sid contains the identities of T andR.

Description of FSMT. FSMT is parameterized by a message spaceM and by a leakage
function l :M→ N, which leaks the message length.

1. On input (smt.send.ini, sid ,m) from a party T :

– Abort if sid 6= (T ,R, sid ′) or if m /∈M.
– Create a fresh qid and store (qid ,R,m).
– Send (smt.send.sim, sid , qid , l(m)) to S.

S. On input (smt.send.rep, sid , qid) from S:

– Abort if (qid ,R,m) is not stored.
– Delete the record (qid ,R,m).
– Send (smt.send.end, sid ,m) toR.

23

A.3 Ideal Functionality FNIC for Non-Interactive Commitments

Our protocol uses the functionality FNIC for non-interactive commitments in [9]. FNIC

interacts with parties Pi and consists of the following interfaces:

1. Any party Pi uses the com.setup interface to set up the functionality.
2. Any party Pi uses the com.commit interface to send a message cm and obtain

a commitment ccom and an opening copen . A commitment ccom = (ccom ′,
cparcom,COM.Verify), where ccom ′ is the commitment, cparcom are the public
parameters, and COM.Verify is the verification algorithm.

3. Any party Pi uses the com.validate interface to send a commitment ccom in order
to check that ccom contains the correct public parameters and verification algo-
rithm.

4. Any party Pi uses the com.verify interface to send (ccom, cm, copen) in order to
verify that ccom is a commitment to the message cm with the opening copen .

FNIC can be realized by a perfectly hiding commitment scheme, such as Pedersen com-
mitments [9]. In [9], a method is described to use FNIC in order to ensure that a party
sends the same input cm to several ideal functionalities. For this purpose, the party first
uses com.commit to get a commitment ccom to cm with opening copen . Then the party
sends (ccom, cm, copen) as input to each of the functionalities, and each functionality
runs COM.Verify to verify the commitment. Finally, other parties in the protocol re-
ceive the commitment ccom from each of the functionalities and use the com.validate
interface to validate ccom . Then, if ccom received from all the functionalities is the
same, the binding property provided by FNIC ensures that all the functionalities re-
ceived the same input cm . When using FNIC, it is needed to work in the FNIC||SNIC-
hybrid model, where SNIC is any simulator for a construction that realizes FNIC.

Description of FNIC. COM.TrapCom, COM.TrapOpen and COM.Verify are ppt algo-
rithms.

1. On input (com.setup.ini, sid) from a party Pi:
– If (sid , cparcom,COM.TrapCom,COM.TrapOpen,COM.Verify, ctdcom) is

already stored, include Pi in the set P, and send (com.setup.end, sid ,OK)
as a public delayed output to Pi.

– Otherwise proceed to generate a random qid , store (qid ,Pi) and send the mes-
sage (com.setup.req, sid , qid) to S.

S. On input (com.setup.alg, sid , qid ,m) from S:
– Abort if no pair (qid ,Pi) for some Pi is stored.
– Delete record (qid ,Pi).
– If (sid , cparcom,COM.TrapCom,COM.TrapOpen,COM.Verify, ctdcom) is

already stored, include Pi in the set P and send (com.setup.end, sid ,OK) to
Pi.

– Otherwise proceed as follows.
• m is (cparcom,COM.TrapCom,COM.TrapOpen,COM.Verify, ctdcom).
• Initialize both an empty table Tblcom and an empty set P, and store (sid ,

cparcom,COM.TrapCom,COM.TrapOpen,COM.Verify, ctdcom).

24

• Include Pi in the set P and send (com.setup.end, sid ,OK) to Pi.
2. On input (com.validate.ini, sid , ccom) from any party Pi:

– Abort if Pi /∈ P.
– Parse ccom as (ccom ′, cparcom ′,COM.Verify′).
– Set v ← 1 if cparcom ′ = cparcom and COM.Verify′ = COM.Verify. Other-

wise, set v ← 0.
– Send (com.validate.end, sid , v) to Pi.

3. On input (com.commit.ini, sid , cm) from any party Pi:
– Abort if Pi /∈ P or if cm /∈M, whereM is defined in cparcom .
– Compute (ccom, cinfo)← COM.TrapCom(sid , cparcom, ctdcom).
– Abort if there is an entry [ccom, cm ′, copen ′, 1] in Tblcom such that cm 6= cm ′.
– Run copen ← COM.TrapOpen(sid , cm, cinfo).
– Abort if 1 6= COM.Verify(sid , cparcom, ccom, cm, copen).
– Append [ccom, cm, copen, 1] to Tblcom.
– Set ccom ← (ccom, cparcom,COM.Verify).
– Send (com.commit.end, sid , ccom, copen) to Pi.

4. On input (com.verify.ini, sid , ccom, cm, copen) from any party Pi:
– Abort if Pi /∈ P or if cm /∈ M or if copen /∈ R, whereM and R are defined

in cparcom .
– Parse ccom as the tuple (ccom ′, cparcom ′,COM.Verify′). Abort if the param-

eters cparcom ′ 6= cparcom or COM.Verify′ 6= COM.Verify.
– If there is an entry [ccom ′, cm, copen, u] in Tblcom, set v ← u.
– Else, proceed as follows:
• If there is an entry [ccom ′, cm ′, copen ′, 1] in Tblcom such that cm 6= cm ′,

set v ← 0.
• Else, proceed as follows:
∗ Set v ← COM.Verify(sid , cparcom, ccom ′, cm, copen).
∗ Append [ccom ′, cm, copen, v] to Tblcom.

– Send (com.verify.end, sid , v) to Pi.

A.4 Ideal Functionality FR
ZK for Zero-Knowledge

Let R be a polynomial time computable binary relation. For tuples (wit , ins) ∈ R
we call wit the witness and ins the instance. Our protocol uses the ideal functionality
FR

ZK for zero-knowledge in [12]. FR
ZK is parameterized by a description of a relation

R, runs with a prover P and a verifier V , and consists of one interface zk.prove. P uses
zk.prove to send a witness wit and an instance ins to FR

ZK. FR
ZK checks whether (wit ,

ins) ∈ R, and, in that case, sends the instance ins to V . The simulator S learns ins
but not wit . In our POT protocol, we use relations that include commitments as part of
the instance, while the committed value and the opening are part of the witness. The
relation uses the verification algorithm of the commitment scheme to check correctness
of the commitment. This allows us to use the method described in [9] to ensure that an
input FR

ZK is equal to the input of other functionalities in our protocol.

25

Description of FR
ZK. FR

ZK is parameterized by a description of a relation R. FR
ZK inter-

acts with a prover P and a verifier V .

1. On input (zk.prove.ini, sid ,wit , ins) from P:
– Abort if sid 6= (P,V, sid ′) or if (wit , ins) /∈ R.
– Create a fresh qid and store (qid , ins).
– Send (zk.prove.sim, sid , qid , ins) to S.

S. On input (zk.prove.rep, sid , qid) from S:
– Abort if (qid , ins) is not stored.
– Parse sid as (P,V, sid ′).
– Delete the record (qid , ins).
– Send (zk.prove.end, sid , ins) to V .

A.5 Ideal Functionality FOT for Oblivious Transfer

Our protocol uses the ideal functionality FOT for oblivious transfer. FOT interacts with
a sender E and a receiver R, and consists of three interfaces ot.init, ot.request and
ot.transfer.

1. E uses the ot.init interface to send the messages 〈mn〉Nn=1 to FOT. FOT stores
〈mn〉Nn=1 and sends the number N of messages to R. The simulator S also learns
N .

2. R uses the ot.request interface to send an index σ ∈ [1,N], a commitment ccomσ

and an opening copenσ to FOT. FOT parses the commitment ccomσ as (cparcom,
comσ,COM.Verify) and verifies the commitment by running COM.Verify. FOT

stores [σ, ccomσ] and sends ccomσ to E .
3. E uses the ot.transfer interface to send a commitment ccomσ to FOT. If a tuple

[σ, ccomσ] is stored, FOT sends the message mσ toR.

FOT is similar to existing functionalities for OT [11], except that it receives a commit-
ment ccomσ to the index σ and an opening copenσ for that commitment. In addition,
the transfer phase is split up into two interfaces ot.request and ot.transfer, so that E re-
ceives ccomσ in the request phase. These changes are needed to use in our POT protocol
the method in [9] to ensure that, when purchasing an item, the buyer sends the same in-
dex σ to FOT and to other functionalities. It is generally easy to modify existing UC
OT protocols so that they realize our functionality FOT.

Description of FOT. Functionality FOT runs with a sender E and a receiver R, and is
parameterised with a maximum number of messages Nmax and a message spaceM.

1. On input (ot.init.ini, sid , 〈mn〉Nn=1) from E :
(a) Abort if sid /∈ (E ,R, sid ′), or if (sid , 〈mn〉Nn=1, 0) is already stored, or if N >
Nmax.

(b) Abort if for n = 1 to N , mn /∈M.
(c) Store (sid , 〈mn〉Nn=1, 0).
(d) Send (ot.init.sim, sid ,N) to S.

S. On input (ot.init.rep, sid) from S:

26

(a) Abort if (sid , 〈mn〉Nn=1, 0) is not stored, or if (sid , 〈mn〉Nn=1, 1) is already
stored.

(b) Store (sid , 〈mn〉Nn=1, 1) and initialize an empty table Tblot.
(c) Send (ot.init.end, sid ,N) toR.

2. On input (ot.request.ini, sid , σ, ccomσ, copenσ) fromR:
(a) Abort if (sid , 〈mn〉Nn=1, 1) is not stored.
(b) Abort if σ /∈ [1,N].
(c) Parse ccomσ as (cparcom, comσ, COM.Verify).
(d) Abort if COM.Verify is not a ppt algorithm, or if 1 6= COM.Verify(cparcom,

comσ, copenσ, σ).
(e) Create a fresh qid and store (qid , σ, ccomσ).
(f) Send (ot.request.sim, sid , qid , ccomσ) to S.

S. On input (ot.request.rep, sid , qid) from S:
(a) Abort if (qid , σ, ccomσ) is not stored.
(b) Append [σ, ccomσ] to Tblot.
(c) Delete the record (qid , σ, ccomσ).
(d) Send (ot.request.end, sid , ccomσ) to E .

3. On input (ot.transfer.ini, sid , ccomσ) from E :
(a) Abort if there is no entry [σ, ccomσ] in Tblot.
(b) Create a fresh qid and store (qid , ccomσ).
(c) Send (ot.transfer.sim, sid , qid) to S.

S. On input (ot.transfer.rep, sid , qid , b), if E is corrupt, or (ot.transfer.rep, sid , qid),
if E is honest, from S:
(a) Abort if (qid , ccomσ) is not stored.
(b) If E is corrupt and b = 0, set v ←⊥.
(c) Else, set v ← mσ .
(d) Delete the record (qid , ccomσ).
(e) Send (ot.transfer.end, sid , v) toR.

A.6 Ideal Functionality FCD for a Committed Database

Our protocol uses the ideal functionality FCD for a committed database in [8]. FCD

interacts with a prover P and a verifier V , and consists of three interfaces cd.setup,
cd.read and cd.write.

1. V uses the cd.setup interface to initialize Tblcd. FCD stores Tblcd and sends Tblcd
to P and to the simulator S.

2. P uses cd.read to send a position i and a value vr to FCD, along with commitments
and openings (ccomi , copeni) and (ccomr , copenr) to the position and value re-
spectively. FCD verifies the commitments and checks that there is an entry [i, vr]
in the table Tblcd. In that case, FCD sends ccomi and ccomr to V . S also learns
ccomi and ccomr .

3. P uses cd.write to send a position i and a value vw to FCD, along with com-
mitments and openings (ccomi , copeni) and (ccomw , copenw) to the position and
value respectively. FCD verifies the commitments and then updates Tblcd to store
vw at position i. FCD sends ccomi and ccomw to V . S also learns ccomi and
ccomw .

27

Basically, FCD allows a prover P to prove to a verifier V that two commitments ccomi

and ccomr commit to a position and value that are read from a table, and that two
commitments ccomi and ccomw commit to a position and value that are written into
the table. In [8], an efficient construction for FCD based on hiding vector commit-
ments [20,15] is proposed. In our POT protocol, FCD is used to store and update the
deposit of the buyer and the counters of the number of purchases for each of the item
categories.

Description of FCD. Functionality FCD is parameterized by a universe of values Uv
and by a maximum table size Nmax . FCD interacts with a prover P and a verifier V .

1. On input (cd.setup.ini, sid ,Tblcd) from V:
– Abort if sid /∈ (P,V, sid ′) or if (sid ,Tblcd) is already stored.
– Abort if Tblcd does not consist of entries of the form [i, v], or if the number of

entries in Tblcd is not Nmax .
– Abort if for i = 1 to Nmax , v /∈ Uv for any entry [i, v] in Tblcd.
– Initialize a counter cv ← 0 for the verifier and store (sid , cv) and (sid ,Tblcd).
– Send (cd.setup.sim, sid ,Tblcd) to S.

S. On input (cd.setup.rep, sid) from S:
– Abort if (sid ,Tblcd) is not stored, or if (sid ,Tblcd, cp) is already stored.
– Initialize a counter cp ← 0 for the prover and store (sid ,Tblcd, cp).
– Send (cd.setup.end, sid ,Tblcd) to P .

2. On input (cd.read.ini, sid , ccomi , i, copeni , ccomr , vr , copenr) from P:
– Abort if (sid ,Tblcd, cp) is not stored.
– Abort if i /∈ [1,Nmax], or if vr /∈ Uv , or if [i, vr] is not stored in Tblcd.
– Parse the commitment ccomi as (ccom ′i, cparcomi ,COM.Verifyi).
– Parse the commitment ccomr as (ccom ′r, cparcomr ,COM.Verifyr).
– Abort if COM.Verifyi or COM.Verifyr are not ppt algorithms.
– Abort if 1 6= COM.Verifyi(cparcomi , ccomi , i, copeni).
– Abort if 1 6= COM.Verifyr(cparcomr , ccomr , vr , copenr).
– Create a fresh qid and store (qid , ccomi , ccomr , cp).
– Send (cd.read.sim, sid , qid , ccomi , ccomr) to S.

S. On input (cd.read.rep, sid , qid) from S:
– Abort if (qid , ccomi , ccomr , cp′) is not stored.
– Abort if cp′ 6= cv , where cv is stored in (sid , cv).
– Delete the record (qid , ccomi , ccomr , cp′).
– Send (cd.read.end, sid , ccomi , ccomr) to V .

3. On input (cd.write.ini, sid , ccomi , i, copeni , ccomw , vw , copenw) from P:
– Abort if (sid ,Tblcd, cp) is not stored.
– Abort if i /∈ [1,Nmax], or if vw /∈ Uv .
– Parse the commitment ccomi as (ccom ′i, cparcomi ,COM.Verifyi).
– Parse the commitment ccomw as (ccom ′w, cparcomw ,COM.Verifyw).
– Abort if COM.Verifyi or COM.Verifyw are not ppt algorithms.
– Abort if 1 6= COM.Verifyi(cparcomi , ccomi , i, copeni).
– Abort if 1 6= COM.Verifyw(cparcomw , ccomw , vw , copenw).
– Increment the counter cp in (sid ,Tblcd, cp) and store [i, vw] in Tblcd.

28

– Create a fresh qid and store (qid , ccomi , ccomw , cp).
– Send (cd.write.sim, sid , qid , ccomi , ccomw) to S.

S. On input (cd.write.rep, sid , qid) from S:
– Abort if (qid , ccomi , ccomw , cp′) is not stored.
– Abort if cp′ 6= cv + 1, where cv is stored in (sid , cv).
– Increment the counter cv in (sid , cv).
– Delete the record (qid , ccomi , ccomw , cp′).
– Send (cd.write.end, sid , ccomi , ccomw) to V .

A.7 Ideal Functionality FNHCD for a Non-Hiding Committed Database

Our protocol uses the ideal functionality FNHCD for a non-hiding committed database
in [21].FNHCD interacts with a party P0 and a party P1, and consists of three interfaces
nhcd.setup, nhcd.prove and nhcd.write.

1. P1 uses nhcd.setup to send a table Tblnhcd with N entries of the form [i, v] (for
i = 0 to N) to FNHCD. FNHCD stores Tblnhcd and sends Tblnhcd to P0. The
simulator S also learns Tblnhcd.

2. Pb (b ∈ [0, 1]) uses nhcd.prove to send a position i and a value vr to FNHCD, along
with commitments and openings along with commitments and openings (ccomi ,
copeni) and (ccomr , copenr) to the position and value respectively. FNHCD veri-
fies the commitments and checks that there is an entry [i, vr] in the table Tblnhcd.
In that case, FNHCD sends ccomi and ccomr to P1−b. The simulator S also learns
ccomi and ccomr .

3. P1 uses nhcd.write to send a position i and a value vw to FNHCD. FNHCD updates
Tblnhcd to contain value vw at position i and sends i and vw to P0. The simulator
S also learns i and vw .

FNHCD is similar to the functionality FCD described above. The main difference is that
the contents of the table Tblnhcd are known by both parties. For this reason, both parties
can invoke the nhcd.prove interface to prove that two commitments ccomi and ccomr

commit to a position and value stored in Tblnhcd. In addition, the interface nhcd.write
reveals the updates to Tblnhcd made by P1 to P0. In [21], an efficient construction for
FNHCD based on non-hiding vector commitments is proposed. In our POT protocol,
FNHCD will be used by the seller, acting as P1, to store and update the prices of items.
The buyer, acting as P0, uses the nhcd.prove interface to prove to the seller that the
correct price for the item purchased is used.

Description of FNHCD. Functionality FNHCD is parameterised by a universe of values
Uv and by a maximum table size N . FNHCD interacts with a party P0 and a party P1.
In the following, b ∈ [0, 1].

1. On input (nhcd.setup.ini, sid ,Tblnhcd) from P1:
– Abort if sid /∈ (P0,P1, sid ′) or if (sid ,Tbl′nhcd, c1) is already stored.
– Abort if Tblnhcd does not consist of N entries of the form [i, v].
– Abort if for i = 1 to N , v /∈ Uv for any entry [i, v] in Tblnhcd.
– Initialize a counter c1 ← 0 for P1 and store (sid ,Tblnhcd, c1).

29

– Send (nhcd.setup.sim, sid ,Tblnhcd) to S.
S. On input (nhcd.setup.rep, sid) from S:

– Abort if (sid ,Tblnhcd, c1) is not stored, or if (sid ,Tblnhcd, c0) is stored.
– Initialize a counter c0 ← 0 for P0 and store (sid ,Tblnhcd, c0).
– Send (nhcd.setup.end, sid ,Tblnhcd) to P0.

2. On input (nhcd.write.ini, sid , i, vw) from P1:
– Abort if (sid ,Tblnhcd, c1) is not stored.
– Abort if i /∈ [1,N], or if vw /∈ Uv .
– Increment c1 and update c1 and the table entry [i, vw] in (sid ,Tblnhcd, c1).
– Create a fresh qid and store (qid , i, vw , c1).
– Send (nhcd.write.sim, sid , qid , i, vw) to S.

S. On input (nhcd.write.rep, sid , qid) from S:
– Abort if (qid , i, vw , c

′
1) or (sid ,Tblnhcd, c0) are not stored, or if c′1 6= c0 + 1.

– Increment c0 and update c0 and the table entry [i, vw] in (sid ,Tblnhcd, c0).
– Delete the record (qid , i, vw , c

′
1).

– Send (nhcd.write.end, sid , i, vw) to P0.
3. On input (nhcd.prove.ini, sid , ccomi , i, copeni , ccomr , vr , copenr) from Pb:

– Abort if (sid ,Tblnhcd, cb) is not stored.
– Abort if i /∈ [1,N], or if vr /∈ Uv , or if [i, vr] is not stored in Tblnhcd.
– Parse ccomi as (ccom ′i, cparcomi ,COM.Verifyi).
– Parse ccomr as (ccom ′r, cparcomr ,COM.Verifyr).
– Abort if cparcomi 6= cparcomr , or if COM.Verifyi 6= COM.Verifyr, or if
COM.Verifyi is not a ppt algorithm.

– Abort if 1 6= COM.Verifyi(cparcomi , ccomi , i, copeni).
– Abort if 1 6= COM.Verifyr(cparcomr , ccomr , vr , copenr).
– Create a fresh qid and store (qid , ccomi , ccomr ,Pb, cb).
– Send (nhcd.prove.sim, sid , qid , ccomi , ccomr) to S.

S. On input (nhcd.prove.rep, sid , qid) from S:
– Abort if (qid , ccomi , ccomr ,Pb, c′b) or (sid ,Tblnhcd, c1−b) are not stored, or

if c′b 6= c1−b.
– Delete the record (qid , ccomi , ccomr ,Pb, c′b).
– Send (nhcd.prove.end, sid , ccomi , ccomr) to P1−b.

B Full Description of Construction ΠPOTS

ΠPOTS uses FAUT, FSMT, FNIC, FR
ZK, FOT, FCD and FNHCD. ΠPOTS is parame-

terised with a maximum number of messages Nmax, a message spaceM, a maximum
deposit value depmax, a maximum pricePmax, and a universe of statistics Ψ consisting
of ppt algorithms.

1. On input (pot.init.ini, sid , ep, 〈mn〉Nn=1), V and B do the following:
– V aborts if sid /∈ (V,B, sid ′).
– V aborts if (sid , ep′,N) is already stored for ep′ = ep, else stores (sid , ep,N).
– V aborts if N > Nmax, or if for n = 1 to N , mn /∈M.

30

– If this is the first execution of this interface, V and B do the following:
• V sets a table Tblcd of Nmax entries where each entry is of the form [i, 0]

for i = 0 to Nmax.
• V sends (cd.setup.ini, sid ,Tblcd) to a new instance of FCD.
• B receives (cd.setup.end, sid ,Tblcd) from FCD.
• If (sid ,Tblcd) is already stored or if, for i = 0 to Nmax, there exists an

entry [i, v] in Tblcd such that v 6= 0, B aborts, else B stores (sid ,Tblcd).
• B sets sidAUT ← (B,V, sid ′) and sends (aut.send.ini, sidAUT, 〈setup〉)

to FAUT.
• V receives (aut.send.end, sidAUT, 〈setup〉) from FAUT.

– V sets sidOT ← (sid , ep).
– V sends (ot.init.ini, sidOT, 〈mn〉Nn=1) to a new instance of FOT.
– B receives (ot.init.end, sidOT,N) from the instance of FOT.
– B takes ep from sidOT and stores (sid , ep,N).
– B outputs (pot.init.end, sid , ep,N).

2. On input (pot.setupprices.ini, sid , 〈pn〉Nmaxn=1), V and B do the following:
– V aborts if sid /∈ (V,B, sid ′) or if (sid , 〈pn〉Nmaxn=1) is already stored.
– V aborts if, for n = 1 to Nmax, pn /∈ (0,Pmax].
– V stores (sid , 〈pn〉Nmaxn=1).
– For n = 1 to Nmax, V sets a table Tblnhcd with entries [n, pn].
– V sends (nhcd.setup.ini, sid ,Tblnhcd) to a new instance of FNHCD.
– B receives (nhcd.setup.end, sid ,Tblnhcd) from FNHCD.
– B parses Tblnhcd as [n, pn], for n = 1 to Nmax, and stores (sid , 〈pn〉Nmaxn=1).
– B outputs (pot.setupprices.end, sid , 〈pn〉Nmaxn=1).

3. On input (pot.updateprice.ini, sid ,n, p), V and B do the following:
– V aborts if (sid , 〈pn〉Nmaxn=1) is not stored.
– V aborts if n /∈ [1,Nmax], or if p /∈ (0,Pmax].
– V sends (nhcd.write.ini, sid ,n, p) to FNHCD.
– B receives (nhcd.write.end, sid ,n, p) from FNHCD.
– B sets pn ← p) and updates the stored tuple (sid , 〈pn〉Nmaxn=1).
– B outputs (pot.updateprice.end, sid ,n, p).

4. On input (pot.deposit.ini, sid , dep), V and B do the following:
– B aborts if sid /∈ (V,B, sid ′).
– B aborts if (sid , ep,N) is not stored for any ep.
– B retrieves [0, v] from Tblcd and sets dep1 ← v.
– B aborts if dep1 + dep /∈ [0, depmax].
– If this is the first execution of the deposit interface, B does the following:
• B sends (com.setup.ini, sid) to FNIC.
• B receives (com.setup.end, sid , OK) from FNIC.

– If (sid , ccomdep2
, copendep2

) is already stored, B sets ccomdep1
← ccomdep2

and copendep1
← copendep2

. Otherwise, B does the following:
• B sends (com.commit.ini, sid , dep1) to FNIC.
• B receives (com.commit.end, sid , ccomdep1

, copendep1
) from FNIC.

– B sets dep2← dep1 + dep.
– B sends (com.commit.ini, sid , dep) to FNIC.

31

– B receives (com.commit.end, sid , ccomdep , copendep) from FNIC.
– B sends (com.commit.ini, sid , dep2) to FNIC.
– B receives (com.commit.end, sid , ccomdep2

, copendep2
) from FNIC.

– B sets witdep ← (dep, copendep , dep1, copendep1
, dep2, copendep2

).
– B parses the commitment ccomdep as (ccom ′dep , cparcom,COM.Verify), the

commitment ccomdep1
as (ccom ′dep1

, cparcom,COM.Verify), and the com-
mitment ccomdep2

as (ccom ′dep2
, cparcom,COM.Verify).

– B sets insdep ← (cparcom, ccom ′dep , ccom ′dep1
, ccom ′dep2

).
– B stores (sid ,witdep , insdep ,writedeposit).
– B sets sidZK ← (B,V, sid ′), and sends (zk.prove.ini, sidZK,witdep , insdep)

to a new instance of FRdep

ZK . The Rdep is defined as follows.

Rdep ={(witdep , insdep) :

1 = COM.Verify(cparcom, ccomdep , dep, copendep) ∧
1 = COM.Verify(cparcom, ccomdep1

, dep1, copendep1
) ∧

1 = COM.Verify(cparcom, ccomdep2
, dep2, copendep2

) ∧
dep2 = dep + dep1 ∧ dep2 ∈ [0, depmax]}

– V receives (zk.prove.end, sidZK, insdep) from FRdep

ZK .
– If this is the first execution of the deposit interface, V does the following:
• V sends (com.setup.ini, sid) to FNIC.
• V receives (com.setup.end, sid , OK) from FNIC.

– V parses insdep as (cparcom, ccom ′dep , ccom ′dep1
, ccom ′dep2

).
– V sets the commitment ccomdep ← (ccom ′dep , cparcom,COM.Verify), the

commitment ccomdep1
← (ccom ′dep1

, cparcom,COM.Verify), and the com-
mitment ccomdep2

← (ccom ′dep2
, cparcom,COM.Verify).

– V aborts if (sid , ccom ′dep2
) is stored and ccom ′dep2

6= ccomdep1
.

– If (sid , ccom ′dep2
) is not stored, V does the following:

• V sends (com.validate.ini, sid , ccomdep1
) to FNIC.

• V receives (com.validate.end, sid , bdep1
) from FNIC.

• V aborts if bdep1
6= 1.

– V sends (com.validate.ini, sid , ccomdep2
) to FNIC.

– V receives (com.validate.end, sid , bdep2
) from FNIC.

– V sends (com.validate.ini, sid , ccomdep) to FNIC.
– V receives (com.validate.end, sid , bdep) from FNIC.
– V aborts if bdep2

= bdep = 1 does not hold.
– V stores (sid , insdep).
– V sets sid ′AUT ← (sid) and sends (aut.send.ini, sid ′AUT, 〈writedeposit〉) to
FAUT.

– B receives (aut.send.end, sid ′AUT, 〈writedeposit〉) from FAUT.
– B aborts if (sid ,witdep , insdep ,writedeposit) is not stored.
– B parses insdep as (cparcom, ccomdep , ccomdep1

, ccomdep2
).

– B parses witdep as (dep, copendep , dep1, copendep1
, dep2, copendep2

).

32

– B deletes (sid ,witdep , insdep ,writedeposit) and stores (sid ,witdep , insdep ,
revealdeposit).

– If this is the first execution of this interface, B does the following:
• B sends (com.commit.ini, sid , 0) to FNIC.
• B receives (com.commit.end, sid , ccom0, copen0) from FNIC.
• B stores (sid , ccom0, copen0).

– B stores (sid , ccomdep2
, copendep2

).
– B sends to FCD the message (cd.write.ini, sid , ccom0, 0, copen0, ccomdep2

,
dep2, copendep2

).
– V receives (cd.write.end, sid , ccom0, ccomdep2

) from FCD.
– V aborts if (sid , insdep) is not stored.
– V aborts if the commitment ccomdep2

in insdep is not the same as that re-
ceived from FCD, or if ccom0 stored in (sid , ccom0) is not the same as the
commitment received from FCD.

– V sends the message (aut.send.ini, sidAUT, 〈revealdeposit〉) to FAUT.
– B receives (aut.send.end, sidAUT, 〈revealdeposit〉) from FAUT.
– B aborts if (sid ,witdep , insdep , revealdeposit) is not stored.
– B deletes the record (sid ,witdep , insdep , revealdeposit).
– B updates Tblcd with [0, dep2].
– B sets sidSMT ← (B,V, sid ′).
– If this is the first execution of this interface, B and V do the following:
• B sends the following message (smt.send.ini, sidSMT, 〈dep, copendep , 0,

copen0, dep1, copendep1
〉) to functionality FSMT.

• V receives from functionalityFSMT the following message (smt.send.end,
sidSMT, 〈dep, copendep , 0, copen0, dep1, copendep1

〉) .
• V sends (com.verify.ini, sid , ccom0, 0, copen0) to FNIC.
• V receives (com.verify.end, sid , v0) from FNIC and aborts if v0 6= 1.
• V sends (com.verify.ini, sid , ccomdep1

, dep1, copendep1
) to FNIC.

• V receives (com.verify.end, sid , vdep1
) from FNIC and aborts if vdep1

6=
1.
• V aborts if dep1 = 0 does not hold.

– Otherwise, B and V do the following:
• B sends the message (smt.send.ini, sidSMT, 〈dep, copendep〉) to FSMT.
• V receives (smt.send.end, sidSMT, 〈dep, copendep〉) from FSMT.

– V sends (com.verify.ini, sid , ccomdep , dep, copendep) to FNIC.
– V receives (com.verify.end, sid , v) from FNIC and aborts if v 6= 1.
– V aborts if dep /∈ [0, depmax].
– V outputs (pot.deposit.end, sid , dep).

5. On input (pot.transfer.ini, sid , ep, σ), V and B do the following:
– B aborts if sid /∈ (V,B, sid ′).
– B aborts if (sid , ep,N) is not stored, or if (sid , 〈pn〉Nmaxn=1) is not stored, or if
σ /∈ [1,N].

– B retrieves [0, v] from Tblcd, and sets dep1 ← v.
– B aborts if dep1 < pσ .
– B sets ccomdep1

← ccomdep2
and copendep1

← copendep2
.

33

– B sets dep2← dep1 − pσ .
– B sends (com.commit.ini, sid , dep2) to FNIC.
– B receives (com.commit.end, sid , ccomdep2

, copendep2
) from FNIC.

– B sends (com.commit.ini, sid , σ) to FNIC.
– B receives (com.commit.end, sid , ccomσ, copenσ) from FNIC.
– B sends (com.commit.ini, sid , pσ) to FNIC.
– B receives (com.commit.end, sid , ccompσ , copenpσ) from FNIC.
– B sets wittrans ← (pσ, copenpσ , dep1, copendep1

, dep2, copendep2
).

– B parses the commitment ccompσ as (ccom ′pσ , cparcom,COM.Verify), the
commitment ccomdep1

as (ccom ′dep1
, cparcom,COM.Verify), and the com-

mitment ccomdep2
as (ccom ′dep2

, cparcom,COM.Verify).
– B sets instrans ← (cparcom, ccom ′pσ , ccom ′dep1

, ccom ′dep2
).

– B stores (sid ,wit trans , instrans , readprice).
– B sets sidZK ← (B,V, sid ′), and sends the message (zk.prove.ini, sidZK,

wit trans , instrans) to a new instance of FRtrans

ZK . The relation Rtrans is defined
as follows:

Rtrans ={(wit trans , instrans) :

1 = COM.Verify(cparcom, ccompσ , pσ, copenpσ) ∧
1 = COM.Verify(cparcom, ccomdep1

, dep1, copendep1
) ∧

1 = COM.Verify(cparcom, ccomdep2
, dep2, copendep2

) ∧
dep2 = dep1 − pσ ∧ dep2 ∈ [0, depmax]}

– V receives (zk.prove.end, sidZK, instrans) from FRtrans

ZK .
– V parses instrans as (cparcom, ccom ′pσ , ccom ′dep1

, ccom ′dep2
, pk).

– V sets the commitment ccompσ ← (ccom ′pσ , cparcom,COM.Verify), the com-
mitment ccomdep1

← (ccom ′dep1
, cparcom,COM.Verify), and the commit-

ment ccomdep2
← (ccom ′dep2

, cparcom,COM.Verify).
– V sends (com.validate.ini, sid , ccompσ) to FNIC.
– V receives (com.validate.end, sid , bpσ) from FNIC.
– V aborts if bpσ 6= 1.
– V sends (com.validate.ini, sid , ccomdep2

) to FNIC.
– V receives (com.validate.end, sid , bdep2

) from FNIC.
– V aborts if bdep2

6= 1.
– V aborts if ccomdep2

stored in (sid , ccomdep2
) is not the same as ccomdep1

in
instrans .

– V stores (sid , instrans).
– V sets sid ′AUT ← (sid) and sends to functionality FAUT the following mes-

sage (aut.send.ini, sid ′AUT, 〈readprice〉).
– B receives (aut.send.end, sidAUT, 〈readprice〉) from FAUT.
– B aborts if (sid ,wit trans , instrans , readprice) is not stored.
– B deletes the tuple (sid ,wit trans , instrans , readprice) and stores (sid ,wit trans ,

instrans , commitdeposit).
– B sends to functionality FNHCD the following message (nhcd.prove.ini, sid ,

ccomσ, σ, copenσ, ccompσ , pσ, copenpσ).

34

– B receives (nhcd.prove.end, sid , ccomσ, ccompσ) from FNHCD.
– V aborts if (sid , instrans) is not stored.
– V aborts if the ccompσ in instrans is not the same as that received fromFNHCD.
– V sends (com.validate.ini, sid , ccomσ) to FNIC.
– V receives (com.validate.end, sid , bσ) from FNIC.
– V aborts if bσ 6= 1.
– V adds ccomσ to instrans and stores (sid , instrans).
– V sends the message (aut.send.ini, sid ′AUT, 〈commitdeposit〉) to FAUT.
– B receives (aut.send.end, sid ′AUT, 〈commitdeposit〉) from FAUT.
– B deletes the tuple (sid ,wit trans , instrans , commitdeposit) and stores (sid ,

wit trans , instrans , commitcounter).
– B sends to FCD the message (cd.write.ini, sid , ccom0, 0, copen0, ccomdep2

,
dep2, copendep2

) .
– V receives (cd.write.end, sid , ccom0, ccomdep2

) from FCD.
– V aborts if (sid , instrans) is not stored.
– V aborts if the ccomdep2

in instrans is not the same as that received from FCD,
or if ccom0 received from FCD is not the same as ccom0 stored by V during
the first execution of the deposit interface.

– V sends the message (aut.send.ini, sid ′AUT, 〈commitcounter〉) to FAUT.
– B receives (aut.send.end, sid ′AUT, 〈commitcounter〉) from FAUT.
– B aborts if (sid ,wit trans , instrans , commitcounter) is not stored.
– B stores (sid , ccomdep2

).
– B updates Tblcd with [0, dep2].
– B retrieves [σ, v] from Tblcd and sets count1 ← v.
– B sets count2 ← count1 + 1.
– B sends (com.commit.ini, sid , count1) to FNIC.
– B receives (com.commit.end, sid , ccomcount1 , copencount1) from FNIC.
– B sends (com.commit.ini, sid , count2) to FNIC.
– B receives (com.commit.end, sid , ccomcount2 , copencount2) from FNIC.
– B sets witcount ← (σ, copenσ, count1, copencount1 , count2, copencount2).
– B parses the commitment ccomσ as (ccom ′σ, cparcom,COM.Verify), the com-

mitment ccomcount1 as (ccom ′count1 , cparcom,COM.Verify), and the commit-
ment ccomcount2 as (ccom ′count2 , cparcom,COM.Verify).

– B sets inscount ← (cparcom, ccom ′σ, ccom ′count1 , ccom ′count2).
– B deletes the tuple (sid ,wit trans , instrans , commitcounter) and stores the tuple

(sid ,witcount , inscount , readcounter).
– B sends (zk.prove.ini, sidZK,witcount , inscount) to a new instance of FRcount

ZK .
The relation Rcount is defined as follows:

Rcount ={(witcount , inscount) :

1 = COM.Verify(cparcom, ccomσ, σ, copenσ) ∧
1 = COM.Verify(cparcom, ccomcount1 , count1, copencount1) ∧
1 = COM.Verify(cparcom, ccomcount2 , count2, copencount2) ∧
count2 = count1 + 1}

– V receives (zk.prove.end, sidZK, inscount) from FRcount

ZK .

35

– V parses inscount as (cparcom, ccom ′σ, ccom ′count1 , ccom ′count2).
– V sets the commitment ccomσ ← (ccom ′σ, cparcom,COM.Verify), the com-

mitment ccomcount1 ← (ccom ′count1 , cparcom,COM.Verify), and the com-
mitment ccomcount2 ← (ccom ′count2 , cparcom,COM.Verify).

– V sends (com.validate.ini, sid , ccomcount1) to FNIC.
– V receives (com.validate.end, sid , bcount1) from FNIC.
– V aborts if bcount1 6= 1.
– V sends (com.validate.ini, sid , ccomcount2) to FNIC.
– V receives (com.validate.end, sid , bcount2) from FNIC.
– V aborts if bcount2 6= 1.
– V aborts if the commitment ccomσ in instrans is not the same as the commit-

ment ccomσ in inscount .
– V stores (sid , inscount).
– V sends the message (aut.send.ini, sid ′AUT, 〈readcounter〉) to FAUT.
– B receives (aut.send.end, sid ′AUT, 〈readcounter〉) from FAUT.
– B aborts if (sid ,witcount , inscount , readcounter) is not stored.
– B parses inscount as (cparcom, ccomσ, ccomcount1 , ccomcount2).
– B parses witcount as (σ, copenσ, count1, copencount1 , count2, copencount2).
– B deletes the tuple (sid ,witcount , inscount , readcounter) and stores the tuple

(sid ,witcount , inscount ,writecounter).
– B sends the message (cd.read.ini, sid , ccomσ, σ, copenσ, ccomcount1 , count1,

copencount1) to FCD.
– V receives (cd.read.end, sid , ccomσ, ccomcount1) from FCD.
– V aborts if inscount is not stored.
– V aborts if the commitments in inscount are not the same as those received

from FCD.
– V sends the message (aut.send.ini, sid ′AUT, 〈writecounter〉) to FAUT.
– B receives (aut.send.end, sid ′AUT, 〈writecounter〉) from FAUT.
– B aborts if (sid ,witcount , inscount ,writecounter) is not stored.
– B deletes the record (sid ,witcount , inscount ,writecounter) and stores the tuple

(sid ,witcount , inscount , transfer).
– B sends to functionality FCDthe following message (cd.write.ini, sid , ccomσ,
σ, copenσ, ccomcount2 , count2, copencount2).

– V receives (cd.write.end, sid , ccomσ, ccomcount2) from FCD.
– V aborts if inscount is not stored.
– V aborts if the commitments in inscount are not the same as those received

from FCD.
– V sends the message (aut.send.ini, sid ′AUT, 〈transfer〉) to FAUT.
– B receives (aut.send.end, sid ′AUT, 〈transfer〉) from FAUT.
– B aborts if (sid ,witcount , inscount , transfer) is not stored.
– B updates Tblcd with [σ, count2].
– B sets sidOT ← (sid , ep), and sends the message (ot.request.ini, sidOT, σ,

ccomσ, copenσ) to FOT.
– V receives (ot.request.end, sidOT, ccomσ) from FOT.
– V aborts if ccomσ received from FOT is not the same as that contained in

inscount .

36

– V sends the message (ot.transfer.ini, sidOT, ccomσ) to FOT.
– B receives (ot.transfer.end, sidOT,mσ) from FOT.
– B outputs (pot.transfer.end, sid ,mσ).

6. On input (pot.revealstatistic.ini, sid ,ST), B and V do the following:

– B aborts if sid /∈ (V,B, sid ′).
– B aborts if (sid , ep,N) is not stored for any ep.
– B aborts if ST /∈ ψ.
– B computes result← ST(Tblcd).
– For each entry [i, vi] in Tblcd, where vi represents a value that was used by B

to compute result, B and V do the following:
• B sends the message (com.commit.ini, sid , i) to FNIC.
• B receives (com.commit.end, sid , ccomi, copeni).
• B sends the message (com.commit.ini, sid , vi) to FNIC.
• B receives (com.commit.end, sid , ccomvi , copenvi).
• B stores (sid , ccomi, ccomvi).
• B sends (cd.read.ini, sid , ccomi, i, copeni, ccomvi , vi, copenvi) to FCD.
• V receives (cd.read.end, sid , ccomi, ccomvi) from FCD.
• V sends the message (com.validate.ini, sid , ccomi) to FNIC.
• V receives (com.validate.end, sid , bi) from FNIC.
• V sends the message (com.validate.ini, sid , ccomvi) to FNIC.
• V receives (com.validate.end, sid , bvi) from FNIC.
• V aborts if bi = bvi = 1 does not hold.
• V sets sidAUT ← (sid) and sends (aut.send.ini, sidAUT, 〈OK, ccomi,

ccomvi〉) to FAUT.
• B receives (aut.send.end, sidAUT, 〈OK, ccomi, ccomvi〉) from FAUT.
• B aborts if (sid , ccomi, ccomvi) is not stored.

– B sets witST ← (〈i, copeni, vi, copenvi〉∀i).
– B parses the commitment ccomi as (ccom ′i, cparcom,COM.Verify) and the

commitment ccomvi as (ccom ′vi , cparcom,COM.Verify) for all i.
– B sets insST ← (result, cparcom, 〈ccom ′i, ccom ′vi〉∀i).
– B sets sidZK ← (B,V, sid ′) and sends (zk.prove.ini, sidZK,witST, insST) to

a new instance of FRST

ZK . The relation RST is defined as follows:

RST ={(witST, insST) :

[∀i 1 = COM.Verify(cparcom, ccomi, i, copeni) ∧
1 = COM.Verify(cparcom, ccomvi , vi, copenvi)] ∧
result = ST(〈i, vi〉∀i) }

– V receives (zk.prove.end, sidZK, insST) from FRST

ZK .
– V aborts if the commitments received from FCD are not the same as those in

insST.
– V outputs (pot.revealstatistic.end, sid , result, ST).

37

C Security Analysis of Construction ΠPOTS

To prove that our construction ΠPOTS securely realizes the ideal functionality FPOTS,
we have to show that for any environment Z and any adversary A there exists a simu-
lator S such that Z cannot distinguish between whether it is interacting with A and the
protocol in the real world or with S and FPOTS. The simulator thereby plays the role
of all honest parties in the real world and interacts with FPOTS for all corrupt parties in
the ideal world.

Our simulator S runs copies of the functionalities FAUT, FSMT, FNIC, FRZK, FOT,
FCD, and FNHCD. When any of the copies of these functionalities abort, S implicitly
forwards the abortion message to the adversary if the functionality sends the abortion
message to a corrupt party.

In Section C.1, we analyze the security of construction ΠPOTS when the buyer B is
corrupt. In Section C.2, we analyze the security of construction ΠPOTS when the seller
V is corrupt.

C.1 Security Analysis of ΠPOTS when B is corrupt

We first describe the simulator S for the case in which the buyer B is corrupt. S simu-
lates the protocol by running the seller’s side of protocol ΠPOTS and copies of the ideal
functionalities involved.

– Upon receiving a message fromA, S uses the first field of that message to associate
the message with one of the ideal functionalities FAUT, FSMT, FNIC, FRZK, FOT,
FCD, or FNHCD, and runs a copy of the corresponding functionality on input that
message.

– When a copy of any of the functionalities FAUT, FSMT, FNIC, FRZK, FOT, FCD,
or FNHCD sends a message to B or to S, S forwards the output of the functionality
to A.

– When a copy of any of the functionalities FAUT, FSMT, FNIC, FRZK, FOT, FCD,
orFNHCD sends a message to V , S runs protocolΠPOTS for the seller on input that
message, except when FNIC sends a delayed output (com.setup.end, sid , OK) to
V .

– When FPOTS sends the message (pot.init.sim, sid , ep,N) to S, S sends the mes-
sage (pot.init.rep, sid , ep) to FPOTS.

– WhenFPOTS sends the message (pot.setupprices.sim, sid , 〈p〉Nmaxn=1) to S, S sends
the message (pot.setupprices.rep, sid) to FPOTS.

– When FPOTS sends the message (pot.updateprice.sim, sid , qid ,n, p) to the simu-
lator S, the simulator S sends the message (pot.updateprice.rep, sid , qid) to func-
tionality FPOTS.

– When FPOTS outputs the message (pot.init.end, sid , ep,N), S runs the protocol
ΠPOTS for the seller on input (pot.init.ini, sid , ep, 〈mn〉Nn=1), where 〈mn〉Nn=1 are
selected at random.

– When FPOTS outputs the message (pot.setupprices.end, sid , 〈pn〉Nmaxn=1), S runs
protocol ΠPOTS for the seller on input (pot.setupprices.ini, sid , 〈pn〉Nmaxn=1).

38

– When FPOTS outputs the message (pot.updateprice.end, sid ,n, p), S runs proto-
col ΠPOTS for the seller on input (pot.updateprice.ini, sid ,n, p).

– When protocol ΠPOTS for the seller outputs the message (pot.deposit.end, sid ,
dep), S sends the message (pot.deposit.ini, sid , dep) to FPOTS. When FPOTS

sends the message (pot.deposit.sim, sid , qid) to S, S sends (pot.deposit.rep, sid ,
qid) to FPOTS.

– When protocol ΠPOTS outputs the message (pot.transfer.end, sid ,mσ), the sim-
ulator S retrieves the message (ot.request.ini, sid , σ, ccomσ, copenσ) sent by the
adversary A to the ideal functionality FOT. The simulator S sets m ′σ ← mσ for
the copy of FOT associated with sid ′OT, such that sid ′OT ∈ (sid , ep). The simu-
lator S sends the message (pot.transfer.ini, sid , ep, σ) to the functionality FPOTS.
When FPOTS sends the message (pot.transfer.sim, sid , qid , ep) to S, S sends
(pot.transfer.rep, sid , qid) to FPOTS.

– When protocol ΠPOTS for the seller outputs (pot.revealstatistic.end, sid , v,ST),
S sends the message (pot.revealstatistic.ini, sid ,ST) to FPOTS. When FPOTS

sends the message (pot.revealstatistic.sim, sid , qid) to S, S sends the message
(pot.revealstatistic.rep, sid , qid) to FPOTS.

– S outputs failure if A produces two openings for a commitment.

Theorem 2. When the buyer B is corrupt, the construction ΠPOTS described in Sec-
tion C.1 securely realizes FPOTS in the (FAUT,FSMT,FNIC||SNIC,FR

ZK,FOT,FCD,
FNHCD)-hybrid model.

Proof of Theorem 2. We show by means of a series of hybrid games that the environ-
ment Z cannot distinguish between the ensemble REALΠPOTS,A,Z and the ensemble
IDEALFPOTS,S,Z with non-negligible probability. We denote by Pr [Game i] the prob-
ability that the environment distinguishes Game i from the real-world protocol.

Game 0: This game corresponds to the execution of the real-world protocol. Therefore,
Pr [Game 0] = 0.

Game 1: This game proceeds as Game 0, except that Game 1 replaces the messages
〈m〉Nmaxn=1 that are sent as input to the ot.init interface by random messages. This
change does not alter the view of the environment because, in the ot.init interface,
FOT does not send the messages to the simulator or to the buyer. Moreover, Game 1
copies the correct messagemσ to the copy ofFOT before the ot.transfer interface is
executed, so the corrupt buyer receives the correct message. Hence, [Pr [Game 1]−
Pr [Game 0]] = 0.

Game 2: This game proceeds as Game 1, except for the fact that Game 2 outputs
failure when the adversary produces two openings for the same commitment. How-
ever, the probability that the adversary may produce two such openings is negligi-
ble, thanks to the binding property enforced by FNIC. Therefore, [Pr [Game 2] −
Pr [Game 1]] = 0.

S is indistinguishable from the real world protocol because it runs as the real-world
protocol, except when it outputs failure. The probability that S outputs failure is neg-
ligible thanks to the security properties ensured by the functionalities FAUT, FSMT,
FNIC, FRZK, FOT, FCD, and FNHCD. FNIC serves to ensure that all commitments used

39

in the protocol are binding, while FRZK guarantees that the witness and instance values
provided by the buyer for the deposit, transfer, and revealstatistic phases of the proto-
col satisfy the relations Rdep ,Rtrans and Rcount , and RST respectively. Rdep is used to
check whether the buyer is updating deposit values correctly during the deposit phase,
while also ensuring that the commitments ccomdep , ccomdep1

, and ccomdep2
commit

to the deposit value dep, the initial deposit dep1, and the final deposit value dep2. The
protocol relies on Rtrans to ensure that the buyer updates deposit and counter values
consistently after a purchase, while also ensuring that the commitments to the message
price pσ , initial and final deposit values dep1 and dep2, counter index σ, and initial and
final counter values count1 and count2 are valid. RST is used to make sure that the
result of the evaluation of function ST on Tblcd is accurate, and that the commitments
to all the indices and values of the counters in Tblcd used to determine the result of
ST(Tblcd) are valid. FCD ensures that the buyer’s deposit value dep and all counter
values 〈countn〉Nmaxn=1 read from positions in TblS are equal to the values previously
written to those positions. FNHCD is used to ensure that the buyer can prove that she is
using the right prices for the right messages (pσ is used for mσ). Finally, FOT ensures
sender security (the buyer does not learn any information about messages that have not
been purchased).

The distribution of Game 2 is identical to that of our simulation. This concludes the
proof of theorem 2.

C.2 Security Analysis of ΠPOTS when V is corrupt

In this section, we describe the simulator S for the case in which the seller V is corrupt.
S simulates the protocol by running copies of the ideal functionalities and protocol
ΠPOTS for the buyer.

– Upon receiving a message fromA, S uses the first field of that message to associate
the message with one of the ideal functionalities FAUT, FSMT, FNIC, FRZK, FOT,
FCD, or FNHCD, and runs a copy of the corresponding functionality on input that
message.

– When a copy of any of the functionalities FAUT, FSMT, FNIC, FRZK, FOT, FCD,
or FNHCD sends a message to V or to S, S forwards the output of the functionality
to A, except when FNIC outputs a delayed message (com.setup.end, sid , OK).

– When a copy of any of the functionalities FAUT, FSMT, FNIC, FRZK, FOT, FCD,
or FNHCD sends a message to B, S runs protocol ΠPOTS for the buyer on input
that message.

– When protocol ΠPOTS for the buyer sends a message to any of the functionalities
FAUT,FSMT,FNIC,FRZK,FOT,FCD, orFNHCD, S runs the copy of the respective
functionality on input that message.

– WhenFPOTS sends the message (pot.deposit.sim, sid , qid) to S, S sends the mes-
sage (pot.deposit.rep, sid , qid) to FPOTS.

– When FPOTS sends the message (pot.revealstatistic.sim, sid , qid) to S, S sends
the message (pot.revealstatistic.rep, sid , qid) to FPOTS.

– When FNIC outputs the message (com.setup.req, sid , qid), S runs a copy of SNIC

on input that message. When SNIC replies with (com.setup.alg, sid , qid ,m), S
runs FNIC on input that message.

40

– When protocol ΠPOTS for the buyer outputs the message (pot.init.end, sid , ep,
N), S sets sid ′OT ← (sid , ep), and retrieves (ot.init.ini, sidOT, 〈mn〉Nn=1) sent
by A to FOT such that sid ′OT = sidOT, and sends the message (pot.init.ini,
sid , ep, 〈mn〉Nn=1) to FPOTS. When FPOTS sends the message (pot.init.sim, sid ,
ep,N) to S, S sends the message (pot.init.rep, sid , ep) to FPOTS.

– When protocol ΠPOTS for the buyer outputs the message (pot.setupprices.end,
sid , 〈pn〉Nmaxn=1), S sends the message (pot.setupprices.ini, sid , 〈pn〉Nmaxn=1) to the
functionality FPOTS. When FPOTS sends the message (pot.setupprices.sim, sid ,
〈pn〉Nmaxn=1) to S, S sends the message (pot.setupprices.rep, sid) to FPOTS.

– When protocol ΠPOTS for the buyer outputs the message (pot.updateprice.end,
sid ,n, p), S sends the message (pot.updateprice.ini, sid ,n, p) to FPOTS.

– When FPOTS sends (pot.updateprice.sim, sid , qid ,n, p) to S, S sends the mes-
sage (pot.updateprice.rep, sid , qid) to FPOTS.

– When FPOTS outputs the message (pot.deposit.end, sid , dep), S sends the mes-
sage (pot.deposit.ini, sid , dep) to protocol ΠPOTS for the buyer.

– S selects σ such that σ is associated with the message with the lowest price pσ and
sends the message (pot.transfer.ini, sid , ep, σ) to ΠPOTS for the buyer.

– When FPOTS outputs the message (pot.revealstatistic.end, sid , v,ST), S sends
the message (pot.revealstatistic.ini, sid ,ST) to protocol ΠPOTS for the buyer.

Theorem 3. When the seller V is corrupt, the construction ΠPOTS described in Sec-
tion C.1 securely realizes FPOTS in the (FAUT,FSMT,FNIC||SNIC,FR

ZK,FOT,FCD,
FNHCD)-hybrid model.

Proof of Theorem 3. We show by means of a series of hybrid games that the environ-
ment Z cannot distinguish between the ensemble REALΠPOTS,A,Z and the ensemble
IDEALFPOTS,S,Z with non-negligible probability. We denote by Pr [Game i] the prob-
ability that the environment distinguishes Game i from the real-world protocol.

Game 0: This game corresponds to the execution of the real-world protocol. Therefore,
Pr [Game 0] = 0.

Game 1: This game proceeds as Game 0, except that in Game 1, the simulator sim-
ulates the buyer’s side of the protocol by selecting σ associated with the message
with the lowest price. This does not alter the view of the environment. Therefore,
[Pr[Game 1]− Pr[Game 0] = 0].

Our simulator S is indistinguishable from the real world protocol because it runs as the
real-world protocol, except when it outputs failure. The probability that S outputs fail-
ure is negligible thanks to the security properties ensured by the functionalities FAUT,
FSMT, FNIC, FRZK, FOT, FCD, and FNHCD. Concretely, FNIC ensures that commit-
ments are binding, and A does not learn any information on σ, thanks to FOT. The
obliviousness property provided by FCD also ensures that A does not learn any infor-
mation on the counter values countn and deposit value dep stored in Tblcd.

The distribution of Game 1 is identical to that of our simulation. This concludes the
proof of theorem 3.

41

	UC Priced Oblivious Transfer with Purchase Statistics and Dynamic Pricing

