Skip to main content

Revisiting Approximate Polynomial Common Divisor Problem and Noisy Multipolynomial Reconstruction

  • Conference paper
  • First Online:
Progress in Cryptology – INDOCRYPT 2019 (INDOCRYPT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11898))

Included in the following conference series:

  • 692 Accesses

Abstract

In this paper, we present a polynomial lattice method to solve the approximate polynomial common divisor problem. This problem is the polynomial version of the well known approximate integer common divisor problem introduced by Howgrave-Graham (Calc 2001). Our idea can be applied directly to solve the noisy multipolynomial reconstruction problem in the field of error-correcting codes. Compared to the method proposed by Devet, Goldberg and Heninger in USENIX 2012, our approach is faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bleichenbacher, D., Nguyen, P.Q.: Noisy polynomial interpolation and noisy Chinese remaindering. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 53–69. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_4

    Chapter  Google Scholar 

  2. Cheon, J.H., et al.: Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_20

    Chapter  Google Scholar 

  3. Cheon, J.H., Stehlé, D.: Fully homomorphic encryption over the integers revisited. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology - EUROCRYPT 2015. Lecture Notes in Computer Science, vol. 9056, pp. 513–536. Springer, Berlin Heidelberg (2015)

    Chapter  Google Scholar 

  4. Cheon, J.H., Hong, H., Lee, M.S., Ryu, H.: The polynomial approximate common divisor problem and its application to the fully homomorphic encryption. Inf. Sci. 326, 41–58 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohn, H., Heninger, N.: Approximate common divisors via lattices. Open Book Ser. 1(1), 271–293 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cohn, H., Heninger, N.: Ideal forms of Coppersmith’s theorem and Guruswami-Sudan list decoding. Adv. Math. Comm. 9(3), 311–339 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Corless, R.M., Gianni, P.M., Trager, B.M., Watt, S.M.: The singular value decomposition for polynomial systems. In: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, pp. 195–207. ACM (1995)

    Google Scholar 

  9. Corless, R.M., Watt, S.M., Zhi, L.: QR factoring to compute the GCD of univariate approximate polynomials. IEEE Trans. Sig. Process. 52(12), 3394–3402 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryption over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 311–328. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_18

    Chapter  Google Scholar 

  11. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryption over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_28

    Chapter  Google Scholar 

  12. Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus switching for fully homomorphic encryption over the integers. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_27

    Chapter  Google Scholar 

  13. Devet, C., Goldberg, I., Heninger, N.: Optimally robust private information retrieval. In: Proceedings of the 21st USENIX Conference on Security Symposium, Security 2012, Berkeley, CA, USA, p. 13. USENIX Association (2012)

    Google Scholar 

  14. Eliaš, J.: Approximate polynomial greatest common divisor. Ph.D. thesis, Master thesis, Charles University in Prague (2012)

    Google Scholar 

  15. Emiris, I.Z., Galligo, A., Lombardi, H.: Numerical univariate polynomial GCD. Lect. Appl. Math. Am. Math. Soc. 32, 323–344 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Giesbrecht, M., Haraldson, J., Kaltofen, E.: Computing approximate greatest common right divisors of differential polynomials (2017). CoRR, abs/1701.01994

    Google Scholar 

  17. Giorgi, P., Jeannerod, C.-P., Villard, G.: On the complexity of polynomial matrix computations. In: Proceedings of Symbolic and Algebraic Computation, International Symposium, ISSAC 2003, Drexel University, Philadelphia, Pennsylvania, USA, 3–6 August 2003, pp. 135–142 (2003)

    Google Scholar 

  18. Guruswami, V., Rudra, A.: Explicit codes achieving list decoding capacity: error-correction with optimal redundancy. IEEE Trans. Inf. Theory 54(1), 135–150 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-geometry codes. IEEE Trans. Inf. Theory 45(6), 1757–1767 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Halikias, G., Galanis, G., Karcanias, N., Milonidis, E.: Nearest common root of polynomials, approximate greatest common divisor and the structured singular value. IMA J. Math. Control Inf. 30(4), 423–442 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hough, D.G.: Explaining and ameliorating the ILL condition of zeros of polynomials. Ph.D. thesis (1977). AAI7731401

    Google Scholar 

  22. Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44670-2_6

    Chapter  Google Scholar 

  23. Hribernig, V., Stetter, H.J.: Detection and validation of clusters of polynomial zeros. J. Symb. Comput. 24(6), 667–681 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kailath, T.: Linear Systems, vol. 156. Prentice-Hall, Englewood Cliffs (1980)

    MATH  Google Scholar 

  25. Kaltofen, E., Yang, Z., Zhi, L.: Approximate greatest common divisors of several polynomials with linearly constrained coefficients and singular polynomials. In: Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation, pp. 169–176. ACM (2006)

    Google Scholar 

  26. Karmarkar, N.K., Lakshman, Y.N.: On approximate GCDs of univariate polynomials. J. Symb. Comput. 26(6), 653–666 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lenstra, A.K., Lenstra, H.W., Lovasz, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Morrison, K.E.: Random polynomials over finite fields. https://web.calpoly.edu/~kmorriso/Research/RPFF.pdf

  29. Mulders, T., Storjohann, A.: On lattice reduction for polynomial matrices. J. Symb. Comput. 35(4), 377–401 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, STOC 1999, New York, NY, USA, pp. 245–254. ACM (1999)

    Google Scholar 

  31. Nguyen, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44670-2_12

    Chapter  MATH  Google Scholar 

  32. Noda, M.-T., Sasaki, T.: Approximate GCD and its application to ill-conditioned equations. J. Comput. Appl. Math. 38(1–3), 335–351 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pan, V.Y.: Numerical computation of a polynomial GCD and extensions. Ph.D. thesis, Inria (1996)

    Google Scholar 

  34. Parvaresh, F., Vardy, A.: Correcting errors beyond the Guruswami-Sudan radius in polynomial time. In: Proceedings of 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23–25 October 2005, Pittsburgh, PA, USA, pp. 285–294 (2005)

    Google Scholar 

  35. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, STOC 2005, New York, NY, USA, pp. 84–93. ACM (2005)

    Google Scholar 

  36. Schönhage, A.: Quasi-GCD computations. J. Complex. 1(1), 118–137 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_2

    Chapter  Google Scholar 

  38. Winkler, J.R., Yang, N.: Resultant matrices and the computation of the degree of an approximate greatest common divisor of two inexact Bernstein basis polynomials. Comput. Aided Geom. Des. 30(4), 410–429 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful comments and suggestions. This work was supported by the National Natural Science Foundation of China (Grants 61732021, 61502488). J. Xu is supported by Introducing Excellent Young Talents of Institute of Information Engineering, Chinese Academy Sciences and China Scholarship Council (No. 201804910206). S. Sarkar thanks Department of Science & Technology, India for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, J., Sarkar, S., Hu, L. (2019). Revisiting Approximate Polynomial Common Divisor Problem and Noisy Multipolynomial Reconstruction. In: Hao, F., Ruj, S., Sen Gupta, S. (eds) Progress in Cryptology – INDOCRYPT 2019. INDOCRYPT 2019. Lecture Notes in Computer Science(), vol 11898. Springer, Cham. https://doi.org/10.1007/978-3-030-35423-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35423-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35422-0

  • Online ISBN: 978-3-030-35423-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics