Skip to main content

Device Independent Quantum Key Distribution Using Three-Party Pseudo-Telepathy

  • Conference paper
  • First Online:
Progress in Cryptology – INDOCRYPT 2019 (INDOCRYPT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11898))

Included in the following conference series:

Abstract

Removing trustworthiness from the devices is the motivation towards device independent quantum key distribution (DI-QKD). The only assumption in this case is that the devices obey the laws of quantum mechanics and are spatially isolated from each other. The security of the protocol can be achieved by certain tests based on various statistical analysis. Recently, Vidick and Vazirani (VV) proposed a DI-QKD scheme (Phys. Rev. Lett., 2014) exploiting the CHSH game. In a similar direction, here we present a simple proposal that exploits the idea of multi-party pseudo-telepathy game to certify device independent security. The relative advantages of our protocol are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acín, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)

    Article  MATH  Google Scholar 

  2. Acín, A., Massar, S., Pironio, S.: Efficient quantum key distribution secure against no-signalling eavesdroppers. New J. Phys. 8(8), 126 (2006)

    Article  Google Scholar 

  3. Acín, A., Brunner, N., Gisin, N., Masanes, L., Pino, S., Scarani, V.: Secrecy extraction from no-signalling correlations. Phys. Rev. A 74(4), 042339 (2006)

    Article  Google Scholar 

  4. Acín, A., Gisin, N., Ribordy, G., Scarani, V.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004)

    Article  Google Scholar 

  5. Acín, A., Baccari, F., Cavalcanti, D., Wittek, P.: Efficient device-independent entanglement detection for multipartite systems. Phys. Rev. X 7, 021042 (2017)

    Google Scholar 

  6. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, vol. 175, p. 8 (1984)

    Google Scholar 

  7. Bennett, C.H.: Quantum cryptography using any two non orthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79, 032341 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brassard, G., Broadbent, A., Tapp, A.: Multi-party pseudo-telepathy. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 1–11. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45078-8_1

    Chapter  Google Scholar 

  10. Brassard, G., Broadbent, A., Tapp, A.: Quantum pseudo-telepathy. Found. Phys. 35(11), 1877–1907 (2005). https://doi.org/10.1007/s10701-005-7353-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)

    Article  Google Scholar 

  12. Clauser, J.F., Holt, R.A., Horne, M.A., Shimony, A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  MATH  Google Scholar 

  13. Curty, M., Lo, H.K., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  Google Scholar 

  14. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tomamichel, M., Fehr, S., Kaniewski, J., Wehner, S.: One-sided device-independent QKD and position-based cryptography from monogamy games. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 609–625. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_36

    Chapter  Google Scholar 

  16. Jain, R., Miller, C.A., Shi, Y.: Parallel device-independent quantum key distribution (2017). https://arxiv.org/abs/1703.05426

  17. Jo, Y., Bae, K., Son, W.: Enhanced Bell state measurement for efficient measurement-device-independent quantum key distribution using 3-dimensional quantum states. Nat. Sci. Rep. 9, 687 (2019). https://www.nature.com/articles/s41598-018-36513-x

    Google Scholar 

  18. Konig, R., Renner, R., Schaffner, C.: The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 55(9), 4337–4347 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, Y., et al.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111, 130502 (2013)

    Article  Google Scholar 

  20. Mančinska, L.: Maximally entangled state in pseudo-telepathy games. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Computing with New Resources. LNCS, vol. 8808, pp. 200–207. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13350-8_15

    Chapter  Google Scholar 

  21. Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_8

    Chapter  Google Scholar 

  22. Mayers, D., Yao, A.: Quantum cryptography with imperfect apparatus. In: Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS 98), pp. 503–509. IEEE Computer Society, Washington 1998

    Google Scholar 

  23. Koblitz, N., Menezes, A.: Another look at provable security. http://cacr.uwaterloo.ca/~ajmeneze/anotherlook/index.shtml. Accessed 1 Oct 2019

  24. Tomamichel, M., Fehr, S., Kaniewski, J., Wehner, S.: A monogamy-of-entanglement game with applications to device-independent quantum cryptography. New J. Phys. 15, 103002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vazirani, U., Vidick, T.: Fully device-independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors like to thank the anonymous reviewers for their comments that improved the technical as well as editorial quality of the paper. The third author acknowledges the support from the project “Cryptography & Cryptanalysis: How far can we bridge the gap between Classical and Quantum Paradigm”, awarded under DAE-SRC, BRNS, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhamoy Maitra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Basak, J., Maitra, A., Maitra, S. (2019). Device Independent Quantum Key Distribution Using Three-Party Pseudo-Telepathy. In: Hao, F., Ruj, S., Sen Gupta, S. (eds) Progress in Cryptology – INDOCRYPT 2019. INDOCRYPT 2019. Lecture Notes in Computer Science(), vol 11898. Springer, Cham. https://doi.org/10.1007/978-3-030-35423-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35423-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35422-0

  • Online ISBN: 978-3-030-35423-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics