Skip to main content

Analysis of the Strict Avalanche Criterion in Variants of Arbiter-Based Physically Unclonable Functions

  • Conference paper
  • First Online:
Book cover Progress in Cryptology – INDOCRYPT 2019 (INDOCRYPT 2019)

Abstract

Arbiter-based Physically Unclonable Functions (Arbiter PUF) were introduced to generate cryptographically secure secret keys during runtime, rather than storing it in Non-Volatile Memory (NVM) which are vulnerable to physical attacks. However, its construction was a target to several statistical and modeling attacks. One such statistical weakness of the Arbiter PUF is that it leaks information to the adversary, if some challenge-response pairs are known. The response is heavily biased towards the effect of flipping certain bits of the input, a widely studied property, known as the Strict Avalanche Criterion (SAC). Several variants of Arbiter PUFs have been proposed since then, with varying degrees of success against SAC. In this paper, we provide a generalized framework to analyze any Arbiter PUF variant against SAC. Building on this analysis, we propose a new Arbiter PUF variant which is not only highly resistant to SAC but also has very good reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becker, G.T.: The gap between promise and reality: on the insecurity of XOR arbiter PUFs. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 535–555. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_27

    Chapter  Google Scholar 

  2. Delvaux, J., Gu, D., Schellekens, D., Verbauwhede, I.: Secure lightweight entity authentication with strong PUFs: mission impossible? In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 451–475. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-3_25

    Chapter  Google Scholar 

  3. Devadas, S.: Physical unclonable functions and secure processors. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, p. 65. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9_5

    Chapter  Google Scholar 

  4. Gassend, B., Clarke, D., Van Dijk, M., Devadas, S.: Silicon physical random functions. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, pp. 148–160. ACM (2002). https://dl.acm.org/citation.cfm?id=586132

  5. Gu, C., Hanley, N., O’neill, M.: Improved reliability of FPGA-based PUF identification generator design. ACM Trans. Reconfigurable Technol. Syst. 10(3), 20:1–20:23 (2017)

    Article  Google Scholar 

  6. Hammouri, G., Sunar, B.: PUF-HB: a tamper-resilient HB based authentication protocol. In: Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 346–365. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-0_21

    Chapter  Google Scholar 

  7. Kömmerling, O., Kuhn, M.G.: Design principles for tamper-resistant smartcard processors. In: Smartcard 99, pp. 9–20 (1999). http://static.usenix.org/events/smartcard99/full_papers/kommerling/kommerling.pdf

  8. Lee, J.W., Lim, D., Gassend, B., Suh, G.E., Van Dijk, M., Devadas, S.: A technique to build a secret key in integrated circuits for identification and authentication applications. In: 2004 Symposium on VLSI Circuits, Digest of Technical Papers (IEEE Cat. No. 04CH37525), pp. 176–179. IEEE (2004). https://people.csail.mit.edu/devadas/pubs/vlsi-symp-puf.pdf

  9. Lim, D., Lee, J.W., Gassend, B., Suh, G.E., Van Dijk, M., Devadas, S.: Extracting secret keys from integrated circuits. IEEE Trans. Very Large Scale Integr. Syst. (VLSI) 13(10), 1200–1205 (2005)

    Article  Google Scholar 

  10. Machida, T., Yamamoto, D., Iwamoto, M., Sakiyama, K.: A new mode of operation for arbiter PUF to improve uniqueness on FPGA. In: 2014 Federated Conference on Computer Science and Information Systems, pp. 871–878. IEEE (2014)

    Google Scholar 

  11. Maiorana, J.A.: A class of bent functions. R41 Technical Paper, August 1970

    Google Scholar 

  12. Maiti, A., Gunreddy, V., Schaumont, P.: A systematic method to evaluate and compare the performance of physical unclonable functions. In: Athanas, P., Pnevmatikatos, D., Sklavos, N. (eds.) Embedded Systems Design with FPGAs, pp. 245–267. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-1362-2_11

    Chapter  Google Scholar 

  13. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996). ISBN: 0-8493-8523-7

    MATH  Google Scholar 

  14. Nguyen, P.H., Sahoo, D.P., Chakraborty, R.S., Mukhopadhyay, D.: Security analysis of arbiter PUF and its lightweight compositions under predictability test. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 22(2), 20 (2017)

    Google Scholar 

  15. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Modeling attacks on physical unclonable functions. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, pp. 237–249. ACM (2010). https://eprint.iacr.org/2010/251.pdf

  16. Sahoo, D.P., Mukhopadhyay, D., Chakraborty, R.S., Nguyen, P.H.: A multiplexer-based arbiter PUF composition with enhanced reliability and security. IEEE Trans. Comput. 67(3), 403–417 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Srinivasu, B., Vikramkumar, P., Chattopadhyay, A., Lam, K.-Y.: CoLPUF: a novel configurable LFSR-based PUF. In: IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp. 358–361 (2018)

    Google Scholar 

  18. Meng-Day, Y., Hiller, M., Delvaux, J., Sowell, R., Devadas, S., Verbauwhede, I.: A lockdown technique to prevent machine learning on PUFs for lightweight authentication. IEEE Trans. Multi-scale Comput. Syst. 2(3), 146–159 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers of Indocrypt 2019 for their valuable suggestions and comments, which considerably improved the quality of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibyendu Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siddhanti, A.A., Bodapati, S., Chattopadhyay, A., Maitra, S., Roy, D., Stănică, P. (2019). Analysis of the Strict Avalanche Criterion in Variants of Arbiter-Based Physically Unclonable Functions. In: Hao, F., Ruj, S., Sen Gupta, S. (eds) Progress in Cryptology – INDOCRYPT 2019. INDOCRYPT 2019. Lecture Notes in Computer Science(), vol 11898. Springer, Cham. https://doi.org/10.1007/978-3-030-35423-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35423-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35422-0

  • Online ISBN: 978-3-030-35423-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics