Skip to main content

Machine Learning Based Monitoring of the Pneumatic Actuators’ Behavior Through Signal Processing Using Real-World Data Set

  • Conference paper
  • First Online:
Book cover Future Data and Security Engineering (FDSE 2019)

Abstract

Application of machine learning in smart manufacturing could enrich condition-based maintenance, enabling to monitor more complex signals describing the behavior of an equipment. Predicting equipment malfunction or failure could not only reduce manufacturing cost but could also improve product quality and supply reliability, aspects equally important these days. This research describes a machine learning based method to diagnose the condition of pneumatic actuators by processing complex signals from this type of equipment. It is using real-world data from a Hungarian multinational manufacturer of electrical components. The “Manufacturing Data Life Cycle” conceptual framework by Tao et al. [1] was followed for data processing, including data cleaning, pre-processing and classification by hierarchical clustering. The method was able to identify those signal patterns that indicate abnormal behavior of the equipment. Data volume was a challenge for this work, overcome by using parallel and GPU execution of computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tao, F., Qi, Q., Liu, A., Kusiak, A.: Data-driven smart manufacturing. J. Manuf. Syst. 48, 157–169 (2018). https://doi.org/10.1016/j.jmsy.2018.01.006

    Article  Google Scholar 

  2. Helwig, N., Pignanelli, E., Schütze, A.: Detecting and compensating sensor faults in a hydraulic condition monitoring system. In: Proceedings Sensor, pp. 641–646 (2015). https://doi.org/10.5162/sensor2015/D8.1

  3. Sharma, A.B., Golubchik, L., Govindan, R.: Sensor faults: detection methods and prevalence in real-world datasets. ACM Trans. Sens. Netw. 6, 1–39 (2010). https://doi.org/10.1145/1754414.1754419

    Article  Google Scholar 

  4. Yin, S., Kaynak, O.: Big data for modern industry: challenges and trends. Proc. IEEE 103, 143–146 (2015). https://doi.org/10.1109/JPROC.2015.2388958

    Article  Google Scholar 

  5. O’Donovan, P., Leahy, K., Bruton, K., O’Sullivan, D.T.J.: An industrial big data pipeline for data-driven analytics maintenance applications in large-scale smart manufacturing facilities. J. Big Data 2, 1–26 (2015). https://doi.org/10.1186/s40537-015-0034-z

    Article  Google Scholar 

  6. Gandomi, A., Haider, M.: Beyond the hype: big data concepts, methods, and analytics. Int. J. Inf. Manage. 35, 137–144 (2015). https://doi.org/10.1016/j.ijinfomgt.2014.10.007

    Article  Google Scholar 

  7. Pham, D.T., Afify, A.A.: Machine-learning techniques and their applications in manufacturing. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 219, 395–412 (2005). https://doi.org/10.1243/095440505X32274

    Article  Google Scholar 

  8. Graham, J.W.: Missing Data. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-4018-5

    Book  MATH  Google Scholar 

  9. Kabacoff, R.I.: Advanced methods for missing data. In: R in Action Data Analysis and Graphics with R. Manning Publications Co., p. 472 (2011)

    Google Scholar 

  10. Piddington, C., Pegram, M.: An IMS test case - global manufacturing. In: Proceedings of the IFIP TC5/WG5.7 Fifth International Conference on Advances in Production Management Systems. North-Holland Publishing Co., Amsterdam, The Netherlands, pp. 11–20 (1993)

    Google Scholar 

  11. Samuel, A.L.: Some studies in machine learning using the game of checkers. II—recent progress. IBM J. Res. Dev. 11, 601–617 (1967). https://doi.org/10.1147/rd.116.0601

    Article  Google Scholar 

  12. Wuest, T., Weimer, D., Irgens, C., Thoben, K.-D.: Machine learning in manufacturing: advantages, challenges, and applications. Prod. Manuf. Res. 4, 23–45 (2016). https://doi.org/10.1080/21693277.2016.1192517

    Article  Google Scholar 

  13. Sammut, C., Webb, G.I.: Encyclopedia of Machine Learning. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-30164-8

    Book  MATH  Google Scholar 

  14. Schwabacher, M., Goebel, K.: A survey of artificial intelligence for prognostics. In: AAAI Fall Symposium, pp. 107–114 (2007)

    Google Scholar 

  15. Byington, C.S., Watson, M., Edwards, D., Dunkin, B.: In-line health monitoring system for hydraulic pumps and motors. In: 2003 IEEE Aerospace Conference Proceedings (Cat. No. 03TH8652). IEEE, pp. 3279–3287 (2003)

    Google Scholar 

  16. Hansson, K., Yella, S., Dougherty, M., Fleyeh, H.: Machine learning algorithms in heavy process manufacturing. Am. J. Intell. Syst. 6, 1–13 (2016). https://doi.org/10.5923/j.ajis.20160601.01

    Article  Google Scholar 

  17. Lin, W.-C., Tsai, C.-F., Hu, Y.-H., Jhang, J.-S.: Clustering-based undersampling in class-imbalanced data. Inf. Sci. 409–410, 17–26 (2017). https://doi.org/10.1016/j.ins.2017.05.008

    Article  Google Scholar 

  18. Lei, Y., Jia, F., Lin, J., et al.: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Trans. Industr. Electron. 63, 3137–3147 (2016)

    Article  Google Scholar 

  19. Worden, K., Staszewski, W.J., Hensman, J.J.: Natural computing for mechanical systems research: a tutorial overview. Mech. Syst. Signal Process. 25, 4–111 (2011)

    Article  Google Scholar 

  20. Shatnawi, Y., Al-Khassaweneh, M.: Fault diagnosis in internal combustion engines using extension neural network. IEEE Trans. Industr. Electron. 61, 1434–1443 (2013)

    Article  Google Scholar 

  21. You, D., Gao, X., Katayama, S.: WPD-PCA-based laser welding process monitoring and defects diagnosis by using FNN and SVM. IEEE Trans. Industr. Electron. 62, 628–636 (2014)

    Article  Google Scholar 

  22. Lei, Y., He, Z., Zi, Y., Chen, X.: New clustering algorithm-based fault diagnosis using compensation distance evaluation technique. Mech. Syst. Signal Process. 22, 419–435 (2008)

    Article  Google Scholar 

  23. Yin, S., Ding, S.X., Xie, X., Luo, H.: A review on basic data-driven approaches for industrial process monitoring. IEEE Trans. Industr. Electron. 61, 6418–6428 (2014)

    Article  Google Scholar 

  24. Fassois, S.D., Sakellariou, J.S.: Time-series methods for fault detection and identification in vibrating structures. Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sciences 365, 411–448 (2007). https://doi.org/10.1098/rsta.2006.1929

    Article  MathSciNet  Google Scholar 

  25. Munirathinam, S., Ramadoss, B.: Big data predictive analtyics for proactive semiconductor equipment maintenance. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 893–902 (2014)

    Google Scholar 

  26. Al Tobi, M.A.S., Bevan, G., Ramachandran, K.P., et al.: Experimental set-up for investigation of fault diagnosis of a centrifugal pump. World Acad. Sci. Eng. Technol. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 11, 470–474 (2017)

    Google Scholar 

  27. Bardou, O., Sidahmed, M.: Early detection of leakages in the exhaust and discharge systems of reciprocating machines by vibration analysis. Mech. Syst. Signal Process. 8, 551–570 (1994). https://doi.org/10.1006/mssp.1994.1039

    Article  Google Scholar 

  28. R Development Core Team R: A Language and Environment for Statistical Computing (2008)

    Google Scholar 

  29. Ulrich, J.M., Ryan, J.A., Bennett, R., Joy, C.: R package ‘xts’ (2018)

    Google Scholar 

  30. Cleveland, R.B., Cleveland, W.S., McRae, J.E., Terpenning, I.: STL: a seasonal-trend decomposition procedure based on loess. J. Official Stat. 6, 3–73 (1990)

    Google Scholar 

  31. Müllner, D.: Fastcluster: fast hierarchical, agglomerative clustering routines for R and Python. J. Stat. Softw. 53 (2015). https://doi.org/10.18637/jss.v053.i09

  32. Ward, J.H.J.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963). https://doi.org/10.1080/01621459.1963.10500845

    Article  MathSciNet  Google Scholar 

  33. Calaway, R., Tenenbaum, D., Microsoft, Weston S.: R package: doParallel (2018). https://cran.r-project.org/package=doParallel

  34. Calaway, R., Microsoft, Weston S.: R package: foreach (2017). https://cran.r-project.org/package=foreach

  35. Yau, C.: R package: rpud GPU computation in R (2018)

    Google Scholar 

  36. Weiss, G.M.: Imbalanced Learning: Foundations, Algorithms, and Applications: Foundations of Imbalanced Learning, pp. 13–41 (2012)

    Chapter  Google Scholar 

  37. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique nitesh. J. Artif. Intell. Res. 16, 321–357 (2002). https://doi.org/10.1613/jair.953

    Article  MATH  Google Scholar 

  38. He, H., Bai, Y., Garcia, E.A., Li, S. ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328 (2008)

    Google Scholar 

Download references

Acknowledgement

We would like to thank TE Connectivity Hungary to provide data and being able to participate in their research. Project no. NKFIH-869-10/2019 has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the Tématerületi Kiválósági Program funding scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Kovács .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kovács, T., Kő, A. (2019). Machine Learning Based Monitoring of the Pneumatic Actuators’ Behavior Through Signal Processing Using Real-World Data Set. In: Dang, T., Küng, J., Takizawa, M., Bui, S. (eds) Future Data and Security Engineering. FDSE 2019. Lecture Notes in Computer Science(), vol 11814. Springer, Cham. https://doi.org/10.1007/978-3-030-35653-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35653-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35652-1

  • Online ISBN: 978-3-030-35653-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics