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Abstract

Contact representations of graphs have a long history. Most research
has focused on problems in 2D, but 3D contact representations have also
been investigated, mostly concerning fully-dimensional geometric objects
such as spheres or cubes. In this paper we study contact representations
with convex polygons in 3D. We show that every graph admits such a rep-
resentation. Since our representations use super-polynomial coordinates,
we also construct representations on grids of polynomial size for specific
graph classes (bipartite, subcubic). For hypergraphs, we represent their
duals, that is, each vertex is represented by a point and each edge by a
polygon. We show that even regular and quite small hypergraphs do not
admit such representations. On the other hand, the two smallest Steiner
triple systems can be represented.
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1 Introduction

Representing graphs as the contact of geometric objects has been an area of
active research for many years (see Hliněný and Kratochvíl’s survey [16] and
Alam’s thesis [1]). Most of this work concerns representations in 2D, though
there has been some interest in three-dimensional representation as well [2, 3,
5, 14, 26]. Representations in 3D typically use 3D geometric objects that touch
properly, i.e., their intersection is a positive area 2D face. In contrast, our
main focus is on contact representation of graphs and hypergraphs using non-
intersecting (open, “filled”) planar polygons in 3D. Two polygons are in contact
if they share a corner point. Note that two triangles that share two corner
points do not intersect and a triangle and rectangle that share two corners, even
diagonally opposite ones, also do not intersect. However, no polygon contains a
corner of another except at its own corner. A contact representation of a graph
in 3D is a set of non-intersecting polygons in 3D that represent vertices. Two
polygons share a corner point if and only if they represent adjacent vertices
and each corner point corresponds to a distinct edge. We can see a contact
representation of a graph G = (V,E) as a certain drawing of its dual hypergraph
HG = (E, {E(v) | v ∈ V }) which has a vertex for every edge of G, and a
hyperedge for every vertex v of G, namely the set E(v) of edges incident to v.
We extend this idea to arbitrary hypergraphs: A non-crossing drawing of a
hypergraph in 3D is a set of non-intersecting polygons in 3D that represent
edges. Two polygons share a corner point if and only if they represent edges
that contain the same vertex and each corner point corresponds to a distinct
vertex. It is straightforward to observe that the set of contact representations
of a graph G is the same as the set of non-crossing drawings of HG.

Many people have studied ways to represent hypergraphs geometrically [4,
6,18], perhaps starting with Zykov [31]. A natural motivation of this line of re-
search was to find a nice way to represent combinatorial configurations [15] such
as Steiner systems (for an example, see Fig. 15). The main focus in represent-
ing hypergraphs, however, was on drawings in the plane. By using polygons to
represent hyperedges in 3D, we gain some additional flexibility though still not
all hypergraphs can be realized. Our work is related to Carmesin’s work [9] on
a Kuratowski-type characterization of 2D simplicial complexes (sets composed
of points, line segments, and triangles) that have an embedding in 3-space. Our
representations are sets of planar polygons (not just triangles) that arise from
hypergraphs. Thus they are less expressive than Carmesin’s topological 2D sim-
plicial complexes and are more restricted. In particular, if two hyperedges share
three vertices, the hyperedges must be coplanar in our representation.

Our work is also related to that of Ossona de Mendez [22]. He showed that a
hypergraph whose vertex–hyperedge inclusion order has poset dimension d can
be embedded into Rd−1 such that every vertex corresponds to a unique point
in Rd−1 and every hyperedge corresponds to the convex hull of its vertices. The
embedding ensures that the image of a hyperedge does not contain the image of
a vertex and, for any two hyperedges e and e′, the convex hulls of e \ e′ and of
e′\e don’t intersect. In particular, the images of disjoint hyperedges are disjoint.
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Table 1: Required grid volume and running times of our algorithms for drawing
n-vertex graphs of certain graph classes in 3D

Graph general bipartite 1-plane 2-edge-conn. subcubic
class cubic cubic

Volume super-poly O(n4) O(n2) O(n2) O(n3)

Runtime O(n2) linear linear O(n log2 n) O(n log2 n)
Reference Thm. 2.3 Thm. 2.6 Thm. 2.8 Lem. 2.9 Thm. 2.10

Note that both Ossona de Mendez and we use triangles to represent hyperedges
of size 3, but for larger hyperedges, he uses higher-dimensional convex sub-
spaces. Note also that the method of Ossona de Mendez may insist on a higher
dimension than actually needed. For example, every graph (seen as a 2-uniform
hypergraph) can be drawn with non-intersecting straight-line segments in 3D,
but the vertex–hyperedge inclusion order of K13 has poset dimension 5 [17], so
the method of Ossona de Mendez needs 4D for a straight-line drawing of K13.

Our contribution. All of our representations in this paper use convex poly-
gons while our proofs of non-representability hold even permitting non-convex
polygons. We first show that recognizing segment graphs in 3D is ∃R-complete.

We show that every graph on n vertices with minimum vertex-degree 3 has
a contact representation by convex polygons in 3D, though the volume of the
drawing using integer coordinates is at least exponential in n; see Section 2.

For some graph classes, we give 3D drawing algorithms which require poly-
nomial volume. Table 1 summarizes our results. When we specify the volume of
the drawing, we take the product of the number of grid lines in each dimension
(rather than the volume of a bounding box), so that a drawing in the xy-plane
has non-zero volume. Some graphs, such as the squares of even cycles, have
particularly nice representations using only unit squares; see Fig. 14(a).

For hypergraphs our results are more preliminary. There are examples as
simple as the hypergraph on six vertices with all triples of vertices as hyperedges
that cannot be drawn using non-intersecting triangles; see Section 3. We show
that hypergraphs with too many edges of cardinality 4 such as Steiner quadruple
systems do not admit non-crossing drawings using convex quadrilaterals (they in
fact do not admit non-crossing drawings with any quadrilaterals if the number of
vertices is sufficiently large). On the other hand, we show that the two smallest
Steiner triple systems can be drawn using triangles. (We define these two classes
of hypergraphs in Section 3.)

2 Graphs

It is easy to draw graphs in 3D using points as vertices and non-crossing line
segments as edges – any set of points in general position (no three collinear and
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no four coplanar) will support any set of edge segments without crossings. A
more difficult problem is to represent a graph in 3D using polygons as vertices
where two polygons intersect to indicate an edge (note that here we do not insist
on a contact representation, i.e., polygons are allowed to intersect arbitrarily).
Intersection graphs of convex polygons in 2D have been studied extensively [27].
Recognition is ∃R-complete [24] (and thus in PSPACE since ∃R ⊆ PSPACE [7])
even for segments (polygons with only two vertices).

Every complete graph trivially admits an intersection representation by line
segments in 2D. Not every graph, however, can be represented in this way,
see e.g., Kratochvíl and Matoušek [20]. Moreover, they show that recogniz-
ing intersection graphs of line segments in the plane, called segment graphs, is
∃R-complete. It turns out that a similar hardness result holds for recognizing
intersection graphs of straight-line segments in 3D (and actually in any dimen-
sion). The proof modifies the corresponding proof for 2D by Schaefer [24]. See
also the excellent exposition of the proof by Matoušek [21].

Theorem 2.1 Recognizing segment graphs in 3D is ∃R-complete.

Proof: Clearly the problem is in ∃R, so we immediately turn to hardness. The
proof is a reduction from Stretchability, where we are given a combinatorial
description of a collection of pseudolines, and we ask whether there is a collection
of straight lines with the same description.

We start with a brief description of the original reduction, in the 2-dimensional
case [21, 24]. Following Schaefer and Matoušek, we will describe the construc-
tion geometrically. This is a convenient way to describe how to obtain a graph
G from the combinatorial description of the collection of pseudolines so that
G is a segment intersection graph if and only if the collection of pseudolines
is stretchable. More specifically, we will assume that the input combinatorial
description can be arranged by straight lines, and will describe a corresponding
arrangement of straight-line segments, which forms an intersection representa-
tion of the constructed graph G. Formally, the input of the recognition problem
is the purely combinatorial description of the graph G, not the representation.
The construction ensures that if G is a segment intersection graph, then every
intersection representation by segments must be equivalent to the intended one.

In his reduction, Schaeffer [21, 24] constructs an arrangement of segments
with the desired combinatorial description. We call the segments in this ar-
rangement original segments. He introduces three new, pairwise intersecting
segments a, b, and c, called frame segments. They are placed in such a way that
every original segment intersects at least two frame segments, and all intersec-
tions of original segments take place inside the triangle bounded by a, b, and
c; see Fig. 1. Next, for every original segment, he adds many new segments,
called order segments. Their purpose is to ensure that every representation of
the constructed graph G with intersecting segments has the desired ordering of
crossings of original segments; see Fig. 2 (left).

In order to show recognition hardness in 3D, we introduce some new segments
(new vertices to G), obtaining a new graph G′. For each original segment s, we
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a

c

b

Figure 1: Original segments and frame segments.

Figure 2: Left: Placement of order segments (thin lines). Original segments
and frame segments are drawn with thick lines. Right: Twins force all segments
to be coplanar. Each segment drawn red intersects two original or twin seg-
ments. Each segment drawn blue intersects two red segments. Finally, each
green segment intersects a blue and a red segment.

introduce its twin s′, i.e., a parallel non-overlapping segment with exactly the
same neighbors as s. This completes the construction of G′.

Now we argue that in every representation of G′, all segments from the
representation are coplanar. First, note that the frame segments define a plane,
let us call it the base plane. Moreover, recall that each original segment intersects
at least two frame segments, so it also lies in the base plane. By the same
argument, also twins of original segments lie in the base plane. Next, note that
each order segment that intersects an original segment of G now intersects an
original segment and its twin, which forces it to lie in the base plane. It is
straightforward to verify that all other order segments are forced to lie in the
base plane too; see Fig. 2 (right).

It is easy to verify (see, e.g., [8] for a similar argument) that G′ can be
represented by intersecting segments in 3D if and only if G′ (and also G) can
be represented by intersecting segments in 2D, and consequently, if and only if
the initial instance of Stretchability is a yes-instance. �

We consider contact representations of graphs in 3D where no polygons are
allowed to intersect except at their corners, and two polygons share a corner
if and only if they represent adjacent vertices. We start by describing how to
construct a contact representation for any graph using convex polygons, which
requires at least exponential volume, and then describe constructions for graph
families that use only polynomial volume.
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Figure 3: Construction of `4 in the
proof of Lemma 2.2.

pi,1

pi,i−2

pi,i−1

pi,i+1 pi,n

1

i− 1

i

i− 2

Figure 4: The polygon Pi that represents
vertex i of Kn.

2.1 General Graphs

Lemma 2.2 For every positive integer n ≥ 3, there exists an arrangement of n
lines `1, `2, . . . , `n with the following two properties:

(A1) line `i intersects lines `1, `2, . . . , `i−1, `i+1, . . . `n in this order, and

(A2) distances between the intersection points on line `i decrease exponentially,
i.e., for every i it holds that

di(j + 2, j + 1) ≤ di(j + 1, j)/2 for j ∈ {1, . . . , i− 3} (1)
di(i+ 1, i− 1) ≤ di(i− 1, i− 2)/2 (2)
di(i+ 2, i+ 1) ≤ di(i+ 1, i− 1)/2 (3)
di(j + 2, j + 1) ≤ di(j + 1, j)/2 for j ∈ {i+ 1, . . . , n− 2}, (4)

where di(j, k) is the xy-plane distance between pi,j and pi,k and pi,j = pj,i
is the intersection point of `i and `j.

Proof: We construct the grid incrementally. We start with the x-axis as `1,
the y-axis as `2, and the line through (1, 0) and (0,−1) as `3; see Fig. 3. Now
suppose that i > 3, we have constructed lines `1, `2, . . . , `i−1, and we want to
construct `i. We fix pi−1,i to satisfy di−1(i, i−2) = di−1(i−2, i−3)/2 then rotate
a copy of line `i−1 clockwise around pi−1,i until it (as `i) satisfies another of the
inequalities in (1) with equality. Note that during this rotation, all inequalities
in (A2) are satisfied and we do not move any previously constructed lines, so
the claim of the lemma follows. �

Theorem 2.3 For every n ≥ 3, the complete graph Kn admits a contact rep-
resentation by non-degenerate convex polygons in 3D, each with at most n − 1
vertices. Such a representation can be computed in O(n2) time (assuming unit
cost for arithmetic operations on coordinates).
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Proof: Take a grid according to Lemma 2.2 (thus, each line `i is in the xy-
plane). We lift each intersection point pi,j so that the z-coordinate of pi,j
becomes min{i, j}. We represent vertex i by polygon Pi, which we define to
be the convex hull of {pi,1, pi,2, . . . , pi,i−1, pi,i+1, . . . , pi,n}. Note that Pi is con-
tained in the vertical plane that contains line `i; see Fig. 4. To avoid that P1 is
degenerate, we reduce the z-coordinate of p1,2 slightly.

We claim that the counterclockwise order of vertices around Pi, for i =
2, . . . , n− 1 is

pi,1, pi,2, . . . , pi,i−1, pi,n, pi,n−1, . . . , pi,i+1, pi,1.

Similarly, we claim that the counterclockwise order of vertices around P1 is
p1,2, p1,n, . . . , p1,3, p1,2, and the order around Pn is pn,1, pn,2, . . . , pn,n−1, pn,1.
Note that a polygon with such an ordering is simple (i.e., it does not self-
intersect). We prove these claims by showing that the angle formed by any three
consecutive points in these orders is bounded by π. We can easily verify this
for P1 and Pn. In the following we assume that i ∈ {2, . . . , n− 1}. Clearly the
angles ∠pi,i+1pi,1pi,2 and ∠pi,i−1pi,npi,n−1 are at most π. For j = 2, . . . , i − 2,
we have ∠pi,j−1pi,jpi,j+1 < π, which is due to the fact that the z-coordinates
increase in each step by 1, while the distances decrease (property (A2)). Note
that ∠pi,i+1, pi,i+2, pi,i+3 = · · · = ∠pi,n−2, pi,n−1, pi,n = π. Finally, we claim
that ∠pi,i−2, pi,i−1, pi,n < π. Clearly, z(pi,i−1) − z(pi,i−2) = 1 = z(pi,n) −
z(pi,i−1), where z(p) denotes the z-coordinate of point p. The claim follows by
observing that, due to property (A2) and the geometric series formed by the
distances,

di(i−1, n) = di(i−1, i+1)+

n−1∑
k=i+1

di(k, k+1) < 2di(i−1, i+1) ≤ di(i−2, i−1).

It remains to show that, for 1 ≤ i < j ≤ n, polygons Pi and Pj do not intersect
other than in pi,j . This is simply due to the fact that Pj is above Pi in pi,j , and
lines `i and `j only intersect in (the projection of) this point. �

Corollary 2.4 Every graph with minimum vertex-degree 3 admits a contact
representation by convex polygons in 3D.

Proof: Let n be the number of vertices of the given graph G = (V,E). We
use the contact representation of Kn and modify it as follows. For every pair
{i, j} 6∈ E, just remove the point pi,j before defining the convex hulls.

In the above construction forKn, we had to make sure that polygon P1 is not
degenerate. For general graphs, we have the same problem for any polygon Pi

with the property that every polygon Pj that is adjacent to Pi has index j > i.
Let k be the smallest index such that Pk is incident to Pi. Now if k > i then
we slightly reduce the z-coordinate of pi,k. (In the construction for Kn, we did
this only to p1,2.) �

We can make the convex polygons of our construction strictly convex if we
slightly change the z-coordinates. For example, decrease the z-coordinate of pi,j
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by δ/dmin{i,j}(1,max{i, j}), where δ > 0 is such that moving every point by at
most δ does not change the orientation of any three non-collinear points.

Let us point out that Erickson and Kim [12] describe a construction of pair-
wise face-touching 3-polytopes in 3D that may provide the basis for a different
representation in our model of a complete graph.

While we have shown that all graphs admit a 3D contact representation,
these representations may be very non-symmetric and can have very large co-
ordinates. This motivates the following question and specialized 3D drawing
algorithms for certain classes of (non-planar) graphs; see the following subsec-
tions.

Open Problem 2.5 Is there a polynomial p such that any n-vertex graph has
a 3D contact representation with convex polygons on a grid of size p(n)?

2.2 Bipartite Graphs
Theorem 2.6 Every bipartite graph G = (A ∪ B,E) admits a contact repre-
sentation by convex polygons whose vertices are restricted to

(a) a toroidal grid of size |B| × (2|A| − 2) or

(b) a 3D integer grid of size |A| × 2
⌈
|B|
4

⌉
× (
⌈
|A|
2

⌉2
+
⌈
|B|
4

⌉2
).

Such representations can be computed in O(|E|) time.

Proof: We first prove the result for complete bipartite graphs K|A|,|B|. As
in the other costructions in this paper, our representation for K|A|,|B| is such
that each polygon representing a vertex v of the graph is the convex hull of
the touching points with adjacent polygons. (The touching points represent the
edges of the graph.) If the given bipartite graph G is not complete, we simply
remove from our representation of K|A|,|B| the touching points that correspond
to the non-edges in G.

In our construction for K|A|,|B|, the polygons representing the vertices in A
(called A-polygons) are all horizontal |B|-gons and the polygons representing
the vertices in B (called B-polygons) are all vertical |A|-gons; see Fig. 5 for an
example with |A| = |B| = 8.

We start with a uni-monotone convex polygon with respect to the z-axis
(that is, a z-monotone convex polygon with a single segment as one of its two
chains) as our lead for generating a realization. For a uni-monotone polygon,
we call the single edge monotone chain the base edge and the other chain the
mountain chain. Our lead polygon represents a B-polygon (hence, is an |A|-
gon) and has the following two properties: (i) it is coplanar with the z-axis,
and (ii) its mountain chain lies between the base segment and the z-axis. The
remaining B-polygons are all rotated copies of the lead polygon around the z-
axis (each with a distinct rotation angle). The A-polygons are horizontal and
each at a different height, and hence they are interior-disjoint. B-polygons are
also trivially interior-disjoint. The A- and B-polygons are interior-disjoint due
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(a) projection on the xy-plane (b) side view

Figure 5: A contact representation of K8,8 using a toroidal grid.

to property (ii) of our lead polygon. Using evenly spaced vertices on a half circle
as our lead, we get a representation on a toroidal grid1 of size |B| × (2|A| − 2)
(note that our representation uses the inner half of the grid points of a toroidal
grid because the lead polygon needs to be uni-monotone).

For representations on integer grids, we distort the representation above
to some degree. A core A-polygon (innermost polygon in Fig. 6) is a convex
|B|-gon on the xy-plane using a grid of size

2

⌈
|B|
4

⌉
×


⌈
|B|
2

⌉
2

(⌈ |B|
4

⌉
− 1

)
+ 2

 .

Recall that the grid size is the product of the number of grid lines in each
dimension. Here, we use both a core A-polygon, and a lead B-polygon (with
additional properties), to generate a realization.

Our lead B-polygon has the following properties. It lies on the xz-plane and
is to the right of the z-axis. It has an axis of symmetry parallel to the x-axis (this
helps getting a more compact representation). The z-coordinates of consecutive
vertices on its mountain chain are all one unit apart. The distance between
the x-coordinates of consecutive pairs of vertices along the boundary and in the
direction towards the base segment increments by 1, 2, 3, . . . , d|A|/2e−1. These
properties guarantee that the lead polygon is uni-monotone, convex, and has
integer coordinates. The lead B-polygon is incident to the leftmost vertex of
the core A-polygon at its vertex with the minimum x-coordinate (i.e., closest to
the z-axis).

The remaining B-polygons are again congruent, however, this time their
planes are all parallel to the lead B-polygon (rather than being placed around
the z-axis). This helps us maintain integer coordinates for all vertices. Figure 6
shows the projection of such representations on the xy-plane. Note that the
core A-polygon can be split into two y-monotone chains of about the same size.
The B-polygons that are incident to the vertices on the same y-monotone chain
of the core are identical (only translated by a vector in the xy-plane). They

1A toroidal grid of size m× n is the Cartesian product of two cycle graphs Cm and Cn.
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3 2 1

⌈
|A|
2

⌉
− 1

1 2 3

⌈
|B|
4

⌉
− 1

1 3


⌈

|B|
2

⌉
2

− 1

2 1


⌈

|B|
2

⌉
2

(⌈ |B|
4

⌉
− 1
)
+ 1

2
⌈ |B

|
4

⌉ −
1

z x

y

Figure 6: Top view of a contact representation of K8,16 on the integer grid.

z

Figure 7: Side view of a contact representation of K8,8 on the integer grid.

are mirrored if they are incident to vertices on different monotone chains of the
core. See Fig. 7 for a 3D view of an example. Our construction requires a grid
of size

|A| × 2

⌈
|B|
4

⌉
×

⌈ |A|
2

⌉(⌈
|A|
2

⌉
− 1

)
+


⌈
|B|
2

⌉
2

(⌈ |B|
4

⌉
− 1

)
+ 2

 .

�

Proposition 2.7 The graph K3,3 admits a contact representation in 3D using
unit equilateral triangles.

Proof: Our contact representation consists of three horizontal and three vertical
unit equilateral triangles; see Fig. 8(a). The three horizontal triangles have z-



Evans et al. 11

β α

(a) 3D view (b) projection on the xy-plane

Figure 8: A contact representation of K3,3 with unit equilateral triangles.

coordinates 0, 1/2, 1, and are centered at the z-axis. The topmost triangle is
right above the bottommost one, whereas the middle triangle is rotated by an
angle β. In the projection on the xy-plane, all their vertices lie on a circle of
of radius tan(30◦); see the small gray circle in Fig. 8(b). The figure also shows
three big gray circles of radius sin(60◦) (which is the height of a unit equilateral
triangle) centered on the vertices of the top- and bottommost triangles. Each
big circle intersects the small circle in two distinct points; in Fig. 8(b), the left
one is marked with a small circle, the right one with a bigger circle. Connecting
the right intersection points (bigger circles) yields the vertices of the middle
horizontal triangle. The side lengths of the black dotted triangle are tan(30◦),
tan(30◦), and sin(60◦). By the law of cosines, α = 120◦ − β = arccos(−1/8).
Hence, β ≈ 22.82◦. �

2.3 1-Planar Cubic Graphs

A simple consequence of the circle-packing theorem [19] is that every planar
graph (of minimum degree 3) is the contact graph of convex polygons in the
plane. In this section, we consider a generalization of planar graphs called 1-
planar graphs that have a drawing in 2D in which every edge (Jordan curve) is
crossed at most once.

Our approach to realizing these graphs will use the medial graph Gmed as-
sociated with a plane graph G (or, to be more general, with any graph that has
an edge ordering). The vertices of Gmed are the edges of G, and two vertices
of Gmed are adjacent if the corresponding edges of G are incident to the same
vertex of G and consecutive in the circular ordering around that vertex. The
medial graph is always 4-regular. If G has no degree-1 vertices, Gmed has no
loops. If G has minimum degree 3, Gmed is simple. Also note that Gmed is
connected if and only if G is connected.

Theorem 2.8 Every 1-plane cubic graph with n vertices can be realized as a
contact graph of triangles with vertices on a grid of size (3n/2−1)×(3n/2−1)×3.
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1
1

1
1

1
1

0

0

0

0

0

0

(a) a 1-plane cubic graph G and
its (modified) medial graphG′

med

(b) representation of G with triangles; the num-
bers indicate the z-coordinates of the triangle
corners (unlabeled vertices lie in the xy-plane)

Figure 9: 1-plane cubic graphs admit compact triangle contact representations.

Given a 1-planar embedding of the graph, it takes linear time to construct such
a realization.

Proof: Let G be the given 1-plane graph. Let G′med be the medial graph of G
with the slight modification that, for each pair {e, f} of crossing edges, G′med

has only one vertex vef , which is incident to all (up to eight) edges that imme-
diately precede or succeed e and f in the circular order around their endpoints;
see Fig. 9(a). The order of the edges around vef is the obvious one. Using
Schnyder’s linear-time algorithm [25] for drawing 3-connected graphs2 straight-
line, we draw G′med on a planar grid of size (3n/2 − 1) × (3n/2 − 1). Note
that this is nearly a contact representation of G except that, in each crossing
point, all triangles of the respective four vertices touch. Figure 9(b) is a sketch
of the resulting drawing (without using Schnyder’s algorithm) for the graph in
Fig. 9(a).

We add, for each crossing {e, f}, a copy v′ef of the crossing point vef one unit
above. Then we select an arbitrary one of the two edges, say e = uv. Finally
we make the two triangles corresponding to u and v incident to v′ef without
modifying the coordinates of their other vertices. The labels in Fig. 9(b) are
the resulting z-coordinates for our example; all unlabeled triangle vertices lie in
the xy-plane.

If a crossing is on the outer face of G, it can happen that a vertex of G
incident to the crossing becomes the outer face of G′med; see Fig. 10 where
this vertex is called a and the crossing edges are ac and bd. Consider the
triangle ∆a that represents a in G′med. It covers the whole drawing of G′med. To
avoid intersections with triangles that participate in other crossings, we put the
vertex of ∆a that represents the crossing to z = −1, together with the vertex
of the triangle ∆c that represents c.

Our 3D drawing projects vertically back to the planar drawing, so all trian-
gles are interior disjoint (with the possible exception of a triangle that represents

2If G′
med is not 3-connected, we add dummy edges to fully triangulate it and then remove

these edges to obtain a drawing of G′
med.
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Figure 10: left: graphs G (with a crossing on the outer face) and G′med; center:
straight-line drawing of G′med; right: resulting 3D representation of G (numbers
are z-coordinates).

the outer face of G′med). Triangles that share an edge in the projection are in-
cident to the same crossing – but this means that at least one of the endpoints
of the shared edge has a different z-coordinate. Hence, all triangle contacts
are vertex–vertex contacts. Note that some triangles may touch each other
at z = 1/2 (as the two central triangles in Fig. 9(b)), but our contact model
tolerates this. �

2.4 Cubic Graphs

We first solve a restricted case and then show how this helps us to solve the
general case of cubic graphs.

Lemma 2.9 Every 2-edge-connected cubic graph with n vertices can be realized
as a contact graph of triangles with vertices on a grid of size 3× n/2× n/2. It
takes O(n log2 n) time to construct such a realization.

Proof: By Petersen’s theorem [23], any given 2-edge-connected cubic graph G
has a perfect matching. Note that removing this matching leaves a 2-regular
graph, i.e., a set of vertex-disjoint cycles C1, . . . , Ck; see Fig. 11(a). Such
a partition can be computed in O(n log2 n) time [11]. Let n = |V (G)| and
n1 = |V (C1)|, . . . , nk = |V (Ck)|. Note that n = n1 + · · · + nk. We now con-
struct a planar graph H = (V,E) with n+1 vertices that will be the “floorplan”
for our drawing of G. The graph H consists of an n-wheel with outer cycle
v1,1, . . . , v1,n1 , . . . , vk,1, . . . , vk,nk

, n spokes and a hub h, with additional chords
v1,1v1,n1 , v2,1v2,n2 , . . . , vk,1vk,nk

. We call the edges v1,n1v2,1, . . . , vk,nk
v1,1 dummy

edges (thin gray in Fig. 11(b) and (c)) and the other edges on the outer face of
the wheel cycle edges.

The chords and cycle edges form triangles with apex h. More precisely, for
every i ∈ {1, . . . , k}, the chord-based triangle ∆vi,1vi,ni

h and the ni − 1 cycle-
based triangles ∆vi,1vi,2h, . . . ,∆vi,ni−1vi,ni

h together represent the ni vertices
in the cycle Ci of G. For each Ci, we still have the freedom to choose which
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Figure 11: Representing a 2-edge-connected cubic graph G by touching triangles
in 3D: (a) partition of the edge set into disjoint cycles and a perfect matching
(the numbers denote a permutation of the matching edges); (b) the graph H;
(c) 3D contact representation of G; the numbers inside the triangles indicate
the z-coordinates of the triangle apexes (above h), the small numbers denote
the non-zero z-coordinates of the vertices.

vertex of G will be mapped to the chord-based triangle of H. This will depend
on the perfect matching in G. The cycle edges will be drawn in the xy-plane
(except for those incident to a chord edge); their apexes will be placed at various
grid points above h such that matching triangles touch each other. The chord-
based triangles will be drawn horizontally, but not in the xy-plane.

In order to determine the height of the triangle apexes, we go through
the edges of the perfect matching in an arbitrary order; see the numbers in
Fig. 11(a). Whenever an endpoint v of the current edge e is the last vertex
of a cycle, we represent v by a triangle with chord base. We place the apexes
of the two triangles that represent e at the lowest free grid point above h; see
the numbers in Fig. 11(c). Our placement ensures that, in every cycle (except
possibly one, to be determined later), the chord-based triangle is the topmost
horizontal triangle; all cycle-based triangles are below it. This guarantees that
the interiors of no two triangles intersect (and the triangles of adjacent vertices
touch).

Now we remove the chords from H. The resulting graph is a wheel; we can
simply draw the outer cycle using grid points on the boundary of a (3 × n/2)-
rectangle and the hub on any grid point in the interior. (For the smallest cubic
graph, K4, we would actually need a (3 × 3)-rectangle, counting grid lines, in
order to have a grid point in the interior, but it’s not hard to see that K4 can
be realized on a grid of size 3 × 2 × 2.) If one of the k cycles encloses h in the
drawing (as C1 in Fig. 11(c)), we move its chord-based triangle from z = z? > 0
to the plane z = −1, that is, below all other triangles. Let i? be the index
of this cycle (if it exists). Note that this also moves the apex of the triangle
that is matched to the chord-based triangle from z = z? to z = −1. In order
to keep the drawing compact, we move each apex with z-coordinate z′ > z? to
z′ − 1. Then the height of our drawing equals exactly the number of edges in
the perfect matching, that is, n/2.
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The correctness of our representation follows from the fact that, in the or-
thogonal projection onto the xy-plane, the only pairs of triangles that overlap
are the pairs formed by a chord-based triangle with each of the triangles in
its cycle and, if it exists, the chord-based triangle of Ci? with all triangles of
the other cycles. Also note that two triangles ∆vi,j−1vi,jh and ∆vi,jvi,j+1h (the
second indices are modulo ni) that represent consecutive vertices in Ci (for some
i ∈ {1, . . . , k} and j ∈ {1, . . . , ni}) touch only in a single point, namely in the
image of vi,j . This is due to the fact that vertices of G that are adjacent on Ci

are not adjacent in the matching, and for each matched pair its two triangle
apexes receive the same, unique z-coordinate.

We do not use all edges of H for our 3D contact representation of G. The
spokes of the wheel are the projections of the triangle edges incident to h. The
k dummy edges don’t appear in the representation (but play a role in the proof
of Theorem 2.10 ahead). �

In order to generalize Lemma 2.9 to any cubic graph G, we use the bridge-
block tree of G. This tree has a vertex for each 2-edge-connected component and
an edge for each bridge of G. The bridge-block tree of a graph can be computed
in time linear in the size of the graph [30]. The general idea of the construc-
tion is the following. First, remove all bridges from G and, using some local
replacements, transform each connected component of the obtained graph into
a 2-edge-connected cubic graph. Then, use Lemma 2.9 to construct a represen-
tation of each of these graphs. Finally, modify the obtained representations to
undo the local replacements and use the bridge-block tree structure to connect
the constructed subgraphs, restoring the bridges of G.

Theorem 2.10 Every cubic graph with n vertices can be realized as a contact
graph of triangles with vertices on a grid of size 3n/2 × 3n/2 × n/2. It takes
O(n log2 n) time to construct such a realization.

Proof: We can assume that the given graph G is connected, otherwise we
draw each connected component separately and place the drawings side-by-side.
Then the bridge-block tree of G yields a partition of G into 2-edge-connected
components G1, . . . , Gk, which are connected to each other by bridges.

We go through G1, . . . , Gk and construct floorplan graphs H1, . . . ,Hk as
follows. If Gi is a single vertex, let Hi be a triangle. For an example, see H6

in Fig. 12. If a component Gi with ni > 1 doesn’t contain any matching edge,
that is, if all its vertices are endpoints of bridges, then let Hi be (an internally
triangulated) ni-cycle. The vertices in Gi will be represented by triangles whose
bases are the edges of the cycle and whose apexes lie outside the cycle. Each
apex vb corresponds to a bridge b and will later be connected to a triangle
representing the other endpoint of the bridge.

Otherwise, we remove each vertex in Gi that is incident to a bridge and
connect its two neighbors, so that we can apply Petersen’s theorem [23] to Gi.
We call the new edge the foot of the bridge. This yields a collection of cycles
and a perfect matching in Gi. As in the proof of Lemma 2.9, Hi is a wheel with
|V (Gi)|+ 1 vertices, and we compute, for each component Gi, the heights of all
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Figure 12: Constructing the floorplan H of a general cubic graph

triangle apexes. This also determines which vertices of Gi are represented by
chord-based triangles. If applying Petersen’s theorem to Gi gives rise to a single
cycle, we consider the chord (which will be drawn at z = −1) to simultaneously
be a dummy edge (which will be “drawn” at z = 0), so that every graph Hi has
a dummy edge. (For examples, see H3 or H5 in Fig. 12.)

Let H be the disjoint union of H1, . . . ,Hk. Now we reintroduce the bridges.
For every bridge b, we add a new vertex vb to H. Each foot of b is either a cycle
edge or a matching edge in some Gi, which we treat differently; see Fig. 12.

If the foot uw of b is a cycle edge, consider the two adjacent triangles in Hi

that share the vertex representing the foot uw. These triangles share the hub hi
of Hi and a vertex vuw on the outer face of Hi. We take the two triangles apart
by duplicating vuw. We connect each copy of vuw to the other copy, to vb, to hi,
and to a different neighbor along the cycle. The new edges between the two
copies and between them and vb form a triangle that represents one of the two
endpoints of the bridge b; see Fig. 13 (right).

If the foot uw of b is a matching edge, we pick a dummy edge xy on the
outer face of Hi. Recall that dummy edges are the edges that connect the cycles
in Hi (thin gray in Figs. 11(b) and (c)). Due to our construction, Hi contains
at least one dummy edge. We remove the dummy edge xy and connect x, hi,
and y to vb in this order. Note that several bridge feet can be placed into the
space reserved by a single dummy edge (see the bridges that connect H4 and H5

to H1 in Fig. 12 (right)).
Then we drawH in the xy-plane, using Schnyder’s linear-time algorithm [25].

(In order to make H 3-connected, we add edges in the outer face of H that
connect the components that are leaves of the bridge-block tree.) Finally, as in
the proof of Lemma 2.9, we insert the chord edges (at the correct heights) and
extend all cycle and chord edges into triangles by placing their apexes at the
locations above or below hi that we’ve computed before. Whenever we place two
apexes that correspond to a matching edge that is the foot of a bridge b, we use
two consecutive grid points, one for each apex. (If one of the apexes belongs to
the chord-based triangle at z = −1, we place the other apex at z = 0.) Together
with vb (which remains on the xy-plane), the two apexes form a vertical triangle;
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Figure 13: Representation of a bridge b = ac depending on the types of its feet

see Fig. 13 (left). The projection of the triangle to the xy-plane is an edge of H;
the vertical (closed) slab above that edge is used exclusively by the new triangle.

To bound the grid size of the drawing, we show that |V (H)| ≤ |E(G)|
(= 3n/2), by establishing an injective map from V (H) to E(G): we map every
cycle vertex inH to the ccw next cycle edge inH, which corresponds to a specific
cycle edge in G. Further, we map every bridge vertex vb to the corresponding
bridge b in G. It remains to map the hubs. If a component Hi of H does not
contain any matching edge (that is, all vertices in Hi are incident to bridges),
Hi does not contain a hub. Otherwise, there is at least one matching edge in Hi

and we map the hub hi to that edge.
Now it is clear that the straight-line drawing of H computed by Schnyder’s

algorithm has size at most (3n/2 − 1) × (3n/2 − 1). In order to bound the
height of the drawing, consider any component Hi of H. Clearly, Hi contains
at most n/2 matching edges. Each of these uses a grid point on the vertical line
through hi. Any matching edge can, however, be the foot of a bridge. For each
bridge triangle that we insert between the apexes of two matching triangles, the
height of the representation of Hi increases by one unit. On the other hand, the
bridges form a matching that is independent from the matching edges. Thus,
the height of Hi is at most n/2. �

Corollary 2.11 Every graph with n vertices and maximum degree 3 can be
realized as a contact graph of triangles, line segments, and points whose vertices
lie on a grid of size 3dn/2e × 3dn/2e × dn/2e. It takes O(n log2 n) time to
construct such a realization.

Proof: If n is odd, add a dummy vertex to the given graph. Then add dummy
edges until the graph is cubic. Apply Theorem 2.10. From the resulting rep-
resentation, remove the triangle that corresponds to the dummy vertex, if any.
Disconnect the pairs of triangles that correspond to dummy edges. �

2.5 Squares of Cycles
Recall that, for an undirected graph G and an integer k ≥ 2, the k-th power
Gk of G is the graph with the same vertex set where two vertices are adjacent
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when their distance in G is at most k. Note that C2
4 = K4 is 3-regular (and

can be represented by four unit equilateral triangles that pairwise touch and
form an octahedron with four empty faces). For n ≥ 5, C2

n is 4-regular. Recall
that Corollary 2.4 yields contact representations using convex polygons for any
graph, but in these representations the ratio between the length of the longest
edge and the length of the shortest edge can be huge. For squares of cycles, we
can do better.

Theorem 2.12 For n ≥ 5, C2
n admits a contact representation using convex

quadrilaterals in 3D such that the ratio between the length of the longest edge and
the length of the shortest edge over all quadrilateral edges in the representation
is constant. For even n, the quadrilaterals can be unit squares.

Proof: For even n ≥ 6, C2
n is planar, so it is easy to find a contact representation

with convex quadrilaterals in the plane. In 3D, however, we can restrict the
quadrilaterals to unit squares; see Fig. 14(a). Note that the vertices on the
middle plane form a regular n-gon and the vertices on the top and bottom
planes form regular (n/2)-gons, all centered at the z-axis. Additionally, each
vertex of the top or bottom plane lies on the bisector of the (empty) triangular
face incident to it.

Finding a representation of C2
5 = K5 we leave as an exercise to the reader.

Now we obtain a representation of C2
n+1 from that of C2

n for even n ≥ 6 (see
Fig. 14 for an illustration of our construction for n = 6). Every vertex vi in
C2

n+1 is represented by a quadrilateral Qi. For two touching quadrilaterals Qi

and Qj , let Pi,j be their contact point (which represents the edge vivj in the
graph C2

n+1). Note that all edges of C2
n except for two, namely v1vn−1 and v2vn,

are also edges in C2
n+1. Moreover, the endpoints of these two non-edges of C2

n+1

are all incident to vn+1. Therefore, we can easily extend a contact representation
of C2

n into one of C2
n+1 as follows. Starting with a contact representation of C2

n,
we duplicate the vertices T = P1,n−1 and B = P2,n (red in Fig. 14(a)) to
separate the pairs (Q1, Qn−1) and (Q2, Qn) of touching quadrilaterals such that
the four new vertices form the new quadrilateral Qn+1.

In the following, we detail how we place the new vertices. We place Pn−1,n+1

and P2,n+1 at the position of T and B respectively (thus Qn−1 and Q2 do not
change). Consider the four points T , B, and the centers of Q1 and Qn. Due to
the symmetry of our representation for C2

n, these four points span a plane H.
Starting in T , we move P1,n+1 along the line H ∩ Q1. We stop just before we
reach the center of Q1. Symmetrically, we define the position of Pn,n+1 along
the line H ∩Qn near the center of Qn. Stopping the movement before reaching
the centers of Q1 and Qn makes sure that these faces remain strictly convex.
In the resulting representation of C2

n+1, every quadrilateral edge has length at
most |TB| < 2 and at least (nearly)

√
2/2, which implies that the ratio of the

longest edge length and the shortest edge length is constant. �
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Figure 14: Representing squares of cycles: we build a contact representation
of C2

7 from that of C2
6 . To this end, we split the two big (red) vertices to expand

the segment connecting them into a rectangle.

3 Hypergraphs

We start with a negative result. Hypergraphs that give rise to simplicial 2-
complexes that are not embeddable in 3-space also do not have a realization
using touching polygons. Carmesin’s example of the cone over the complete
graph K5 is such a 2-complex3, which arises from the 3-uniform hypergraph
on six vertices whose edges are {{i, j, 6} : {i, j} ∈ [5]2}. Recall that d-uniform
means that all hyperedges have cardinality d. Any 3-uniform hypergraph that
contains these edges also cannot be drawn. For example, Kd

n, the complete d-
uniform hypergraph on n ≥ 6 vertices for d = 3 does not have a non-crossing
drawing in 3D. Note that in complete hypergraphs many pairs of hyperedges
share two vertices. This motivates us to consider 3-uniform linear hypergraphs,
i.e., hypergraphs where pairs of edges intersect in at most one vertex. Very
symmetric examples of such hypergraphs are Steiner systems (definition below).

3.1 Representing Steiner Systems by Touching Polygons

A Steiner system S(t, k, n) is an n-element set S together with a set of k-element
subsets of S (called blocks) such that each t-element subset of S is contained in
exactly one block. In particular, Steiner triple systems S(2, 3, n) are examples
of 3-uniform hypergraphs on n vertices; see Table 2 [29]. They exist for any
n ∈ {6k + 1, 6k + 3: k ∈ N}. The corresponding 3-uniform hypergraph has
n(n− 1)/6 hyperedges and is ((n− 1)/2)-regular.

First we show that the two smallest triple systems, i.e., S(2, 3, 7) (also called
the Fano plane) and S(2, 3, 9), admit non-crossing drawings in 3D. The exis-
tence of such representations also follows from Ossona de Mendez’ work [22]
(see introduction) since both hypergraphs have incidence orders of dimension 4

3Carmesin [9] credits John Pardon with the observation that the link graph at a vertex v,
which contains a node for every edge at v and an arc connecting two such nodes if they share
a face at v, must be planar for the 2-complex to be embeddable.
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Table 2: The two smallest Steiner triple and quadruple systems

S(2, 3, 7)

1 2 3
1 4 7
1 5 6
2 4 6
2 5 7
3 4 5
3 6 7

S(2, 3, 9)

1 2 3 1 5 9
4 5 6 2 6 7
7 8 9 3 4 8
1 4 7 1 6 8
2 5 8 2 4 9
3 6 9 3 5 7

S(3, 4, 8)

1 2 4 8 3 5 6 7
2 3 5 8 1 4 6 7
3 4 6 8 1 2 5 7
4 5 7 8 1 2 3 6
1 5 6 8 2 3 4 7
2 6 7 8 1 3 4 5
1 3 7 8 2 4 5 6

S(3, 4, 10)

1 2 4 5 1 2 3 7 1 3 5 8
2 3 5 6 2 3 4 8 2 4 6 9
3 4 6 7 3 4 5 9 3 5 7 0
4 5 7 8 4 5 6 0 1 4 6 8
5 6 8 9 1 5 6 7 2 5 7 9
6 7 9 0 2 6 7 8 3 6 8 0
1 7 8 0 3 7 8 9 1 4 7 9
1 2 8 9 4 8 9 0 2 5 8 0
2 3 9 0 1 5 9 0 1 3 6 9
1 3 4 0 1 2 6 0 2 4 7 0

(which can be checked by using an integer linear program). While our draw-
ings have good vertex resolution (ratio between the smallest and the longest
vertex–vertex distance) and show symmetries, Ossona de Mendez uses coordi-
nates 1, d + 1, (d + 1)2, . . . , (d + 1)n−1 in each of d = 4 dimensions and then
projects this 4D contact representation centrally onto a 3D hyperspace. The
resulting 3D contact representation does not lie on a grid.

Proposition 3.1 The Fano plane S(2, 3, 7) and the Steiner triple system S(2, 3, 9)
admit non-crossing drawings using triangles in 3D.

Proof: We first describe our construction for the Fano plane, which has seven
vertices and seven hyperedges; see Table 2 and Fig. 15. We start with a unit
equilateral triangle on the xy-plane centered at the z-axis representing hyperedge
642 (with vertices in ccw-order). We make a copy of this triangle, lift it by one
unit, and rotate it by an angle of α counterclockwise around the z-axis, where
0◦ < α < 120◦ and α 6= 60◦ (Fig. 15 uses α = 85◦). The copied triangle is
not a hyperedge but determines the position of vertices 3, 5, and 7 (i.e., after
the transformation, vertices 6, 4, and 2 are mapped to vertices 3, 5, and 7,
respectively). We place vertex 1 at (0, 0, 1/2).

The three (green) triangles sharing vertex 1 are interior-disjoint for any α
and are non-degenerate for α 6= 60◦. For 0◦ < α < 120◦, the four (blue) triangles
that are not incident to 1 are interior-disjoint and intersect no other triangles.

Now we turn to S(2, 3, 9); see Table 2 and Fig. 17. We start with a unit
equilateral triangle on the xy-plane centered at the z-axis representing hyperedge
852 (with vertices in ccw-order). We make a copy of this triangle, lift it up by
one unit, rotate it by an angle β counterclockwise around the z-axis, and scale
it from its center by the factor 1/5. This gives us triangle 369. We place
vertices 1 and 4 at (0, 0, 3/4) and (0, 0, 1/4), respectively. Figure 16 illustrates
the triangles induced by these eight vertices.

It is easy to see that for any β ≤ 60◦, the (blue) triangles incident to vertex 4
are interior-disjoint. Suppose β = 60◦. Then, in the projection on the xy-
plane (through the z-axis), the (green) triangles incident to vertex 1 map to
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Figure 15: The Fano plane and a drawing using touching triangles in 3D

three segments all intersecting at the same point. Thus, in order for the green
triangles to be interior-disjoint, we need β < 60◦; and in fact the smaller the
scale factor is (from one), the smaller β needs to be. Note that β cannot be too
small, as otherwise the blue and green triangles would intersect. More precisely,
β should be large enough so that for any two triangles 4uv and 1uw, where
u ∈ {2, 5, 8} and v, w ∈ {3, 6, 9}, in the projection through the directed line u4,
the projection of v is to the right of the projection of w and the projection of
w is to the right of the projection of 1. In our construction, we use β = 45◦

(and the scale factor 1/5), which satisfies all the required conditions for having
the blue and green triangles interior-disjoint. So far, we have determined the
position of eight vertices (i.e., all but 7) such that the (eight) triangles induced
by them are all pairwise non-intersecting.

Vertex 7 (not placed yet) forms four triangles with segments 26, 35, 89,
and 14. Note that the first three of these segments are on the convex hull of
the vertices put so far (see Fig. 16(b)). Let ` denote the intersection line of the
planes defined by 358 and 269. The projection of ` and the projection of segment
89 on the xy-plane intersect (see Fig. 16(a)). Let H be the plane containing 89
and parallel to the z-axis, and let P be the intersection point of H and `. If
vertex 7 is above P , then the set of eight triangles not incident to 7, together
with triangles 267, 357, and 789 are all pairwise non-intersecting (recall that
segments 26, 35, and 67 are on the convex hull of vertices {1, . . . , 6, 8, 9}). In
order to make sure that triangle 147 does not cause any intersections, we fix
the position of 7 by lifting P slightly so that it still remains below the plane
defined by 123. In our construction, 7 is obtained by lifting P by 1/10 unit.
Our drawing fits in a rectangular cuboid of size 1 × 1 × 1.5. The minimum
distance between any two vertices is 1/5 in this drawing. Figure 17 illustrates
a (complete) representation of S(2, 3, 9). �

Now we turn to a special class of 4-uniform hypergraphs; Steiner quadruple
systems S(3, 4, n) [28]. They exist for any vertex number in {6k+ 2, 6k+ 4: k ∈
N}. For n = 8, 10, 14, . . . , the corresponding 4-uniform hypergraph has m =(
n
3

)
/4 hyperedges and vertex degree 4m/n = (n− 1)(n− 2)/6. In the following,
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Figure 16: Partial drawing of the Steiner triple system S(2, 3, 9) showing trian-
gles not incident to 7, together with the opposite segments to 7 for the remaining
triangles.

we study the realizability of Steiner quadruple systems.

Observation 3.2 In a non-crossing drawing of a Steiner quadruple system us-
ing quadrilaterals in 3D, every plane contains at most four vertices.

Proof: Suppose that there is a drawing R and a plane Π that contains at least
five vertices. Let ab be a maximum length edge of the convex hull of the points
in the plane Π. No four, say wxyz in that order, can be collinear, otherwise
the quadrilateral containing wyz is either wxyz, which is degenerate (a line
segment), or it contains x on its perimeter but x is not a corner, a contradiction.
Thus the set S of vertices on Π that are not on the edge ab has size at least two.
If there exist u, v ∈ S such that abu and abv form4 two distinct quadrilaterals
with ab then these quadrilaterals intersect in the plane (they are both on the
same side of ab), a contradiction. If no such pair exists then S contains exactly
two points and they form one quadrilateral with ab, which must contain the
other vertex in Π (on the edge ab) that is not a corner, a contradiction. �

Observation 3.2 is the starting point for the following result.

Proposition 3.3 The Steiner quadruple system S(3, 4, 8) does not admit a non-
crossing drawing using (convex or non-convex) quadrilaterals in 3D.

Proof: The Steiner quadruple system S(3, 4, 8) has eight vertices and 14 hy-
peredges and is unique; see Table 2.

4In a Steiner quadruple system, every triple of vertices appears in a unique quadruple.
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Figure 17: 3D contact representation of the Steiner triple system S(2, 3, 9).

Assume that S(3, 4, 8) has a contact representation by quadrilaterals. With-
out loss of generality, assume that quadrilateral 1248 lies on the xy-plane. We
show that the supporting plane of the triple 367 is also the xy-plane, which, by
Observation 3.2, is a contradiction.

The line through 18 and the line through 24 either intersect in a point v
on the xy-plane or are parallel. The supporting planes of 1378 and 2347 both
contain the line through 37 and the point v or, if v doesn’t exist, the line 37
is parallel to 18 and 24. Similarly, the lines 14 and 28 intersect in a point w
on the xy-plane or are parallel. The supporting planes of 1467 and 2678 both
contain the line through 67 and the point w or, if w doesn’t exist, the line 67
is parallel to 14 and 28. Again, a similar statement holds for the intersection
u on the xy-plane of the lines 12 and 48. The supporting planes of 1236 and
3468 both contain the line 36 and the point u or, if u doesn’t exist, the line 36
is parallel to 12 and 48. These conditions imply that the supporting plane of
367 is parallel to the xy-plane (unless 3, 6, and 7 are all collocated which is not
possible as otherwise quadrilateral 3567 is a segment). Since at least one of u,
v, and w exists and is in the xy-plane, 367 lies in the xy-plane, contradicting
Observation 3.2. �

The main observation used in proving Proposition 3.3 is that if we partition
any quadruple abcd into two pairs in any way, there exists a fixed pair, say ef ,
such that the union of ef and each of the two partitions form a quadruple in
S(3, 4, 8). We note that the same property holds for S(3, 4, 10). However, since
this case contains more vertices, the “fixed pairs” obtained from different ways
of “partitioning” of a quadruple would not have common vertices, and hence this
property alone is not enough to show that S(3, 4, 10) cannot be realized. We
show this for a restricted case using the following auxiliary lemma.
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Lemma 3.4 Let H be a hypergraph whose edge set contains the subset F =
{abcd, abuv, cduv, acwx, bdwx, adyz, bcyz}. Then H does not admit a contact
representation by quadrilaterals in which the edges in F are all convex or all
non-convex.

Proof: Suppose that H has a representation where the hyperedges in F are
all convex. Let e = abcd. (Note that we identify e with the quadrilateral that
represents it.) No matter which segments form the diagonals of e (ab and cd, ac
and bd, or ad and bc), there is a pair (uv, wx, or yz) that forms two hyperedges
with the two diagonals. We assume that the diagonals are ab and cd forming
hyperedges abuv and cduv. Due to the convexity of the quadrilateral e, ab and cd
intersect. Hence, since abuv and cduv are convex, one of the hyperedges abuv
and cduv must be drawn above e, and the other below e. This yields the desired
contradiction since u and v are contained in both of these hyperedges.

Suppose that H has a representation where the hyperedges in F are all non-
convex. We may assume that the diagonals of e are again ab and cd, that ab is
not contained in e, and that c lies on the convex hull of e whereas d does not.
Let x be the intersection point of the supporting lines of ab and cd. Note that x
lies on ab. This is due to the fact that cd is incident to c and lies inside the angle
∠acb. The supporting planes of the quadrilaterals abuv and cduv intersect in a
line ` that intersects the supporting plane of e in x. Clearly, u and v must lie
on ` since they are part of both quadrilaterals abuv and cduv.

We consider two cases. In the first case, u and v lie on different halflines of `
with respect to x. Then vertices a, b, u, and v are in convex position, forming
a convex quadrilateral with diagonals uv and ab. Note that it is not possible
to connect points in convex position with straight-line segments to form a non-
degenerate non-convex polygon. This contradicts the fact that all quadrilaterals
in F must be non-convex. In the second case, u and v lie on the same halfline
of ` with respect to x. But then vertices c, d, u, and v are in convex position
since also c and d lie on the same halfline with respect to x. This again yields
the desired contradiction. �

Proposition 3.5 The Steiner quadruple system S(3, 4, 10) does not admit a
non-crossing drawing in 3D, where all quadrilaterals representing the hyperedges
are convex or all quadrilaterals are non-convex.

Proof: The Steiner quadruple system S(3, 4, 10) has ten vertices and 30 hyper-
edges and is unique; see Table 2. Note that S(3, 4, 10) satisfies the assumptions
of Lemma 3.4 for a = 1, b = 4, c = 2, d = 5, u = 7, v = 9, w = 6, x = 0, y = 3, and
z = 8, i.e., it contains the set of edges F = {1245, 1260, 4560, 1479, 2579, 1538, 2438}.
The claim follows from Lemma 3.4. �

Theorem 3.6 No Steiner quadruple system admits a non-crossing drawing us-
ing convex quadrilaterals in 3D. If the system contains at least 20 vertices, it
does not admit a non-crossing drawing using any quadrilaterals in 3D.

Proof: Day and Edelsbrunner [10, Lemma 2.3] used an approach similar to
that of Carmesin (mentioned in footnote 3) to show that the number of triangles
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spanned by n points in 3D is less than n2 if no two triangles have a non-trivial
intersection. (A trivial intersection is a common point or edge.) We need to
redo their proof taking lower-order terms into account. If a Steiner quadruple
system S(3, 4, n) can be drawn using quadrilaterals in 3D, the intersection of
these quadrilaterals with a small sphere around a vertex is a planar graph.
Recall that any S(3, 4, n) has n vertices and m =

(
n
3

)
/4 quadruples. Let v

be any vertex. Then v is incident to 4m/n = (n − 1)(n − 2)/6 quadrilaterals.
Suppose that there is a representation consisting of only convex quadrilaterals.
Break each convex quadrilateral incident to v into two triangles such that both
triangles are incident to v. The intersection of these triangles with a small
sphere around v yields a graph on n− 1 vertices (that is, on all vertices but v)
with (n − 1)(n − 2)/3 edges. For n > 8, this graph cannot be planar. This,
together with Proposition 3.3, yields the first part of our claim.

The same approach proves the second part as well. Suppose that there is a
representation without any restrictions. For a non-convex quadrilateral incident
to v, it may or may not be possible to break it into two triangles such that both
are incident to v. Here, we can only break the quadrilaterals (convex or non-
convex) for which this splitting is possible. After this step, the polygons incident
to v are either triangles or quadrilaterals. The intersection of these polygons
with a small sphere around v yields a graph that has at most n − 1 vertices
and at least (n− 1)(n− 2)/6 edges. Such a graph cannot be planar for n ≥ 18.
Since the first Steiner quadruple system with n ≥ 18 vertices has 20 vertices,
the proof is complete. �

3.2 Conclusion and Open Problems

We conclude the paper by pointing out some possible directions for further
research.

Representing Graphs. Our general construction in Section 2.1 implies that
every n-vertex graph of maximum degree ∆ can be represented in 3D by mono-
tone polygonal curves with at most ∆ − 2 bends. Is there a natural class of
graphs such that every graph G in that class can be represented by such chains
with fewer than ∆(G)− 2 bends?

Open Problem 3.7 Does some non-trivial class of graphs admit an intersec-
tion representation in 3D using polygonal chains with less than ∆(G)− 2 bends
for any graph G in that class?

Furthermore, it is interesting to consider representations of specific graph
with highly regular polygons. In particular, we suggest the following extension
of the result in Theorem 2.12.

Open Problem 3.8 If k ≥ 5 is odd, can C2
k be represented by touching unit

squares?
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Steiner Triple Systems. We have constructed non-crossing drawings of the
two smallest such systems, S(2, 3, 7) and S(2, 3, 9), using triangles; see Propo-
sition 3.1. What about larger Steiner triple systems?

Open Problem 3.9 Does any Steiner triple system S(2, 3, n) with n ≥ 13 ad-
mit a non-crossing drawing using triangles in 3D?

Steiner Quadruple Systems. We have shown that no Steiner quadruple sys-
tem admits a crossing-free drawing using convex quadrilaterals and that Steiner
systems with exactly 8 or with at least 20 vertices do not admit crossing-free
drawings using arbitrary quadrilaterals; see Theorem 3.6 and Proposition 3.3.

Open Problem 3.10 Does any Steiner quadruple system with n ∈ {10, 14, 16}
vertices admit a non-crossing drawing using “mixed” quadrilaterals, that is, some
convex, some not?

Projective Planes. Note that in Steiner quadruple systems many pairs of
edges intersect in two vertices. In a projective plane, every pair of edges (called
lines) intersects in exactly one vertex (point). So maybe this is easier? Recall
that any projective plane fulfills the following axioms:

(P1) Given any two distinct points, there is exactly one line incident to both of
them.

(P2) Given any two distinct lines, there is exactly one point incident to both of
them.

(P3) There are four points such that no line is incident to more than two of
them. (Non-degeneracy axiom)

Every projective plane has the same number of lines as it has points. The
projective plane of order N , PG(N), has N2 + N + 1 lines and points and
there are N + 1 points on each line, and N + 1 lines go through each point.
Equivalently, we can see PG(N) as the Steiner system S(2, N + 1, N2 +N + 1).

Note, however, that any contact representation of PG(3) by convex quadri-
laterals contains a contact representation of S(2, 3, 9) by triangles: just drop one
of the 13 quadruples of PG(3) and remove its four vertices from all quadruples.
This yields twelve triples with the property that any pair of vertices is contained
in a unique triple (P1).

Observation 3.11 Suppose that there is a realization of PG(3) with convex
quadrilaterals, then no two quadrilaterals are coplanar in such a realization.

Proof: For the sake of contradiction, suppose that two quadrilaterals, q1 and q2,
lie in the same plane Π in a realization R of PG(3) with convex quadrilaterals.
Every two quadrilaterals share exactly one vertex (P2), hence, we can write q1
and q2 as q1 = u1u2u3w and q2 = v1v2v3w. Since every pair of vertices appears
in exactly one quadrilateral (P1), each pair uivj with i, j ∈ {1, 2, 3} is contained
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PG(3)

A B C D
A 1 2 3
A 4 5 6
A 7 8 9
B 1 4 7
B 2 5 8
B 3 6 9
C 1 5 9
C 2 6 7
C 3 4 8
D 1 6 8
D 2 4 9
D 3 5 7

Figure 18: The second smallest discrete projective plane PG(3), which is a 4-
regular 4-uniform hypergraph with 13 vertices and 13 hyperedges. The drawing
was inspired by https://puzzlewocky.com/games/the-math-of-spot-it/.

in a different quadrilateral. Since the quadrilaterals in R are convex, each line
segment uivj is contained in the unique quadrilateral containing vertices ui
and vj . Since ui and vj lie in Π, uivj also lies in Π. As a result, Π contains a
planar (straight-line) drawing of K3,3 (with vertex set {u1, u2, u3}∪{v1, v2, v3}),
which yields the desired contradiction. �

Or is it perhaps more natural to represent PG(3) by touching tetrahedra?
We used an integer linear program to compute the poset dimension of the vertex–
hyperedge inclusion order of PG(3), which turned out to be 5. Hence the method
of Ossona de Mendez [22] yields a contact representation of PG(3) by touching
tetrahedra – but only in 4D.
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