Skip to main content

Augmented Reality System for Multi-robot Experimentation in Warehouse Logistics

  • Conference paper
  • First Online:
Robot 2019: Fourth Iberian Robotics Conference (ROBOT 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1092))

Included in the following conference series:

Abstract

The application of tools as augmented reality has been developing innovative solutions for the industrial scenario. In this context, this work presents an industrial plant of a warehouse, where augmented reality is used to represent virtual loads to be transported by multiple small mobile robots. The results promote an application developed in ROS, with virtual and real objects sharing the same environment, producing an excellent scenario to development and experimentation to new approaches for automation in warehouses or smart factories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoun, A., Valentini, G., Hocquard, E., Wiandt, B., Trianni, V., Dorigo, M.: Kilogrid: a modular virtualization environment for the kilobot robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3809–3814. IEEE (2016)

    Google Scholar 

  2. Gavish, N., Gutiérrez, T., Webel, S., Rodríguez, J., Peveri, M., Bockholt, U., Tecchia, F.: Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interact. Learn. Environ. 23(6), 778–798 (2015)

    Article  Google Scholar 

  3. Ghiringhelli, F., Guzzi, J., Di Caro, G.A., Caglioti, V., Gambardella, L.M., Giusti, A.: Interactive augmented reality for understanding and analyzing multi-robot systems. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1195–1201. IEEE (2014)

    Google Scholar 

  4. Gianni, M., Ferri, F., Pirri, F.: ARE: augmented reality environment for mobile robots. In: Conference Towards Autonomous Robotic Systems, pp. 470–483. Springer (2013)

    Google Scholar 

  5. Hoenig, W., Milanes, C., Scaria, L., Phan, T., Bolas, M., Ayanian, N.: Mixed reality for robotics. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5382–5387. IEEE (2015)

    Google Scholar 

  6. Li, J.T., Liu, H.J.: Design optimization of Amazon robotics. Autom. Control Intell. Syst. 4(2), 48–52 (2016)

    Google Scholar 

  7. Lu, Y.: Industry 4.0: a survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 6, 1–10 (2017)

    Google Scholar 

  8. Millard, A.G., Redpath, R., Jewers, A., Arndt, C., Joyce, R., Hilder, J.A., McDaid, L.J., Halliday, D.M.: ARDebug: an augmented reality tool for analysing and debugging swarm robotic systems. Frontiers Robotics AI (2018)

    Google Scholar 

  9. Nee, A.Y., Ong, S., Chryssolouris, G., Mourtzis, D.: Augmented reality applications in design and manufacturing. CIRP Ann. 61(2), 657–679 (2012)

    Article  Google Scholar 

  10. Reina, A., Cope, A.J., Nikolaidis, E., Marshall, J.A., Sabo, C.: Ark: augmented reality for kilobots. IEEE Robot. Autom. Lett. 2(3), 1755–1761 (2017)

    Article  Google Scholar 

  11. Reina, A., Salvaro, M., Francesca, G., Garattoni, L., Pinciroli, C., Dorigo, M., Birattari, M.: Augmented reality for robots: virtual sensing technology applied to a swarm of e-pucks. In: 2015 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp. 1–6. IEEE (2015)

    Google Scholar 

  12. ROS: ar\(\_\)track\(\_\)alvar ros wiki. http://wiki.ros.org/ar_track_alvar (2019). Accessed 9 May 2019

  13. ROS: Ros.org. https://www.ros.org/about-ros (2019). Accessed 8 May 2019

  14. ROS: rviz ros wiki. http://wiki.ros.org/rviz (2019). Accessed 9 May 2019

  15. ROS: Usb\(\_\)cam ros wiki. http://wiki.ros.org/usb_cam (2019). Accessed 9 May 2019

  16. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective behaviors. In: 2012 IEEE International Conference on Robotics and Automation, pp. 3293–3298. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Piardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Limeira, M., Piardi, L., Cremer Kalempa, V., Schneider, A., Leitão, P. (2020). Augmented Reality System for Multi-robot Experimentation in Warehouse Logistics. In: Silva, M., Luís Lima, J., Reis, L., Sanfeliu, A., Tardioli, D. (eds) Robot 2019: Fourth Iberian Robotics Conference. ROBOT 2019. Advances in Intelligent Systems and Computing, vol 1092. Springer, Cham. https://doi.org/10.1007/978-3-030-35990-4_26

Download citation

Publish with us

Policies and ethics