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Abstract. Recognizing and diagnosing learner's cognitive and emotional state to intervene assertively 
is an important aspect to importance to improve the process. This mission that can be supported by 
social robots in educational contexts. A cognitive architecture to manage the robot social behavior with 
handling capacity is presented. The human-robot scaffolding architecture is composed of three systems: 
multimodal fusion, believes, and scaffolding. Those recognizes verbal and nonverbal data from user 
and from the mechanical assembly task, acknowledges the user's cognitive and emotional state 
according to the learning task and configure the actions of the robot based on the Flow Theory, which 
establishes relations between challenges and skills during the learning process. The theoretical analysis 
and explorative actions with children to build each subsystem of architecture are presented.  The present 
research contributes to the field of human-robot interaction by suggesting an architecture that seeks the 
robot’s proactive behavior according to learner’s needs. 
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1. Introduction 
 

During the learning process, the social robots can give physical, cognitive and emotional support based on the learner’s 
characteristics. In the physical aspect, robots can assist the user during the mechanical assembly process by manipulating and 
reorganizing the blocks. For example, robots can change the blocks to foster new ways of thinking about the problem. In the 
cognitive aspect, robots can give support through three strategies: focus lessons, guided instructions, and collaborative work. 
For example, if the user is so confused then robots teach specific lessons through verbal cues or prompts. And finally, they can 
give emotional support to encourage the user during the learning process. For example, when the user is bored robots show a 
happy face to foster learners to continue the learning process. In overall, the assertive robot intervention allows to stablish, 
maintain, change, and finish learning events through cognitive, emotional, and physical strategies. 

In the field of education, there is research interest in how to use the artificial cognitive systems to support learning processes 
which have been historically supported by humans. Some advancements are related to topics like: relation between physical 
presence and perceived support effect [6][29]; mechanisms of emotional communication [28]; non-verbal language [35] and 
non-verbal user behavior recognized by robots [46]. However, cognitive conditions of current anthropomorphic robots allow 
use them as collaborative agents in collaborative learning tasks.  

2. Architecture Development 
System I: multimodal fusion 
As mentioned above, the proposed artificial cognitive architecture in three modules is presented in Figure 1. The first module 
acknowledges the student’s behavior (multimodal fusion). The proposed method recognizes the tradition of the work developed 
at the Technische Universität München around the JAST project. Having said this; The architecture recognizes actions of verbal 
and non-verbal communication of the subject [2]. The robot interprets integrates the information of the different communication 
channels and estimates the cognitive state of the user [3][4]. The context for interpreting information is the mechanical task, 
which is related to the solution of a transformation problem. That is a problem with a defined space [30][32][33][48]. The 
actions developed by the robot contribute to foster the learner's cognitive development [31]. 



Sensorial processing subsystem 

The observation of the student’s behavior is estimated by modules as blocks’ positions, blocks’ movements, emotional state, 
verbal judgments and cognitive gestures, as can be seen in the same figure. 

The positions of the blocks allow to determine two aspects: the knowledge of the problem and the knowledge of the strategy 
to solve the problem. The knowledge problem is linked to the use of the operator’s (an action to change a state) problem, 
application of rules, and the knowledge of the different states (initial, intermediate, goal) during the process to solve the 
problem. The knowledge to develop the strategy involves three objectives: to transform, to reduce and to apply. They are part 
of the Mean-End Analysis strategy. On the other hand, blocks’ positions are described through three-dimensional coordinates 
according to mechanical restrictions. With each movement, a new node is created in the user`s problem space. Some tests have 
been carried out with a camera and a Kinect device, although an accelerometer device into each block could be another option. 

The kinematic description of the blocks is measured during each change of the state of the problem developed by the learner. 
This contributes to acknowledge the learner’s cognitive process within the problem’s solution space. For example, the variation 
of block’s trajectory indicates changes on the user’s reasoning [8], the object manipulation find out relationship between 
concepts and spatial thinking, and recognition of spatial patterns of the problem promotes the choice of operators even by 
omitting deliberative processes (National Research Council, 2005). 

In order to develop the kinematic descriptions each coordinate is taken during the trajectory between two nodes is measured. 
Based on these data three quantitative descriptors are determined: block’s velocity, change of trajectory, and blocks’ dropping. 
Figure 2 presents the analysis of four trajectories generated by some students. In task context, the trajectories generated by the 
movement of the blocks could indicate cognitive actions such as hypothesis evaluation, goal change, safety and insecurity in 
knowledge. For example, a continuous block's trajectory means self-confidence; a change of direction or bounce indicates a 
change of objective. To contrast the theoretical issues, the code has been implemented using OpenCv and Python. The 
technological tools could be the same options which was proposed above. 

The emotional state indicates the user’s cognitive mood to undertake, develop and complete a learning task. The cognitive 
arrangement depends on two aspects: The user skills and the challenge of the problem [16]. The combination of both variables 

Figure 1: Human-Robot Scaffolding Architecture 



generates three emotional states: anxiety, flow, and boredom [21]. These can be divided into eight areas: anxiety, concern, 
comfort and optimism, curiosity, interest, indifference, and boredom [27].  

In order to determine the user emotional learning’s states different data from face movement are taken. Some alternative 
software as Emotient and Affective have been tested during the design of this architecture. 

The verbal judgments allow to give sense to the cognitive processes and the knowledge of the user during the process of 
problems solution. Cognitive processes are related to aspects such as thought, attention, strategies, knowledge, and hypothesis. 
The interpretation of verbal judgments has two background aspects: the context of the task and the cognitive processes [12]. 
According to the information processing theory, the context of the task determines the operators, the rules, and the knowledge 
to solve the problem [37]. With this data, the emotional, cognitive and meta-cognitive states are recognized. According to the 
Intelligent Tutors Systems, the most use characteristics so to model to the student profile are: knowledge level (52.8%), 
cognitive features (40.75%), affective features (16.85%), misconceptions (15.75%), and meta-cognitive features (6.74%) [10]. 
Alternatives as CMU Sphinx to recognize emotions and Synesketch to recognize textual emotion recognition have been tested 
to design this architecture. 

 
Figure 2: Kinematic characteristics 

Body gestures expose the actions of thought in the problem-solving process. Characteristics such as body posture, facial 
expressions, eye movement and hand movement have been studied [17], based on the degree of abstraction, during the problem-
solving process. The study of gestures involves three aspects: recognition, cognitive contribution, and estimation of mental 
models. First, the recognition involves coding gestures according to the characteristics of the problem, and segmenting them 
according to their occurrence, size, and quantity [36]. Second, cognitive contribution involves recognizing how its occurrence 
evokes implicit knowledge, promotes spatial representation, and introduces information to solve the problem [1]. Finally, but 
not least, is the estimation of mental models to acknowledge aspects such as knowledge of strategy, strategy change, problem 
difficulty and solver's expertise [11][1]. 

Different body movements during the problem-solving process have been analyzed. This kind of movements with or without 
blocks are useful to carry out assertive robot`s intervention. Figure 3 presents four typical cognitive gestures presented in 
experimental sessions during problem-solving process: confused, spatial reasoning, iconic movements, and the intention to 
apply an operator and change the problem state. The optional devices to get data from fingers, wrist, arm, shoulders and head 
movements are cameras, Kinect, and particularly RealSense by Intel. 

In general, the main methods of perception used in robots like Kismet, Cog, iCub, GRACE, Robox, Reckman, Robovie, RUBI, 
AMARIII, Papero, Huggable, MEXI, ROMAN, BARTHOC, BIRON, Fritz, ASIMO, iCat, AIBO, Albert Einstein and YouBot 
are presented. Three actions are highlighted. First, extraction of characteristics of signals like video, audio, tactile and sensors. 
Second, reduction of dimensionality through techniques such as analysis of main components, analysis of linear discriminants 
and preservation of local projections. Third, semantic comprehension through the recognition, tracking and segmentation of 
objects [20]. 



As a conclusion of System I, the information obtained from the sensorial processing module is organized into the graph 
generated by the transition of states during of solution of the transformation problem.  

According to Figure 4, the nodes indicate the changes of the state in the problem space, and the arcs represent the relation 
between cognitive gestures, verbal judgments, and emotional states. 

 
Figure 3: Cognitive gestures  

SYSTEM II: BELIEVES 
As mentioned above, Figure 1 shows the proposed artificial cognitive architecture in three modules. The second module 
diagnoses cognitive and emotional states (believes). The main objective is prioritizing the learning goals through four aspects: 
the knowledge of the problem, the knowledge of the strategy, the learning objectives and questioner module [10]. (See figure 
1). 
Subsystem: knowledge of the problem 
The problem knowledge level is determined through the student's behavior observation. Characteristics as the initial state, goal 
state, intermediate states, operators, errors, misconceptions, and rules are analyzed. In the transformation problems as Hanoi 
Tower, errors are detected by infringing rules and misconceptions are detected through the development of the strategy [14]. 

The current state module takes information from the previously constructed graph. Figure 4 presents a bit of the graph.  The 
module evaluates the learner's actions related to the problem. The actions describe the learner's procedural knowledge related 
to the use of rules and operators. The evaluation process means the user's knowledge of the problem. With this information, 
the objectives for procedural support are estimated. 

The history states module takes information from the previously constructed graph. The module evaluates the learner's actions 
related to use of means-ends analysis strategy. The learner's actions describe their cognitive knowledge related to two objectives 
of this strategy. First, to transform (to find the difference between the current state and the target state). Second, to reduce (to 
find the operator that reduces the difference). As a result, the evaluation indicates the knowledge of the strategy. With the above 
information, the goals for cognitive support are estimated. 
Subsystem: knowledge of the strategy 
The strategy knowledge level is acknowledged through data of the task. The cognitive characterization process involves four 
steps: labeling data, distilling data features, developing detector and validating. Data as time invested in the transition of each 
problem state and previous interactions are evaluated [13]. Also, the metacognitive characteristics as self-regulation, self-
evaluation, self-explanation, and self-efficacy could be assessed.  

The memory state sequence shows aspects as the learner's thinking states and the doubts and pauses which correspond to 
changes in the direction of thought. Each memory state is joined to a knowledge about the solution process. This kind of 
information is useful to determine the cognitive student needs (transforming, reducing) which are necessary to learn the mean-
end analysis strategy. Also, the information of memory states is useful to estimate the learner’s space problem, which is a 
dynamic structure and it is defined by sub-goals (transforming, reducing, applying), storage goals, connection table, structure 
goals, and production system. 



Different methods of cognitive task analysis as think-aloud protocols, content analysis, process isolation, situated studies, 
hierarchical task analysis, link analysis, operational diagram sequence, timeline analysis and GOMS has been analyzed to 
determine the learning outcomes. The learning outcomes have two categories: procedural and cognitive. 
Subsystem: learning outcomes 
The questioner module is a useful methodology to know the hypotheses generated by the users during the solution of the 
problem. Whit this kind of answers, the robot can estimate aspects such as student's beliefs, self-evaluation, biases, and 
heuristics used for reasoning, even the robot`s effect [19]. 

As conclusion, the learning objectives are grouped into two categories. First, the objectives related to the knowledge of the 
problem. For example, the use of rules or operators to change states. Second, the objectives related to the knowledge of the 
strategy to solve the problem. For example, the recognition of the objectives to transform and reduce the problem, which is 
useful to implement the strategy of means-ends analysis. 

 
Figure 4: Graph characteristics 

SYSTEM III: SCAFFOLDING 
As mentioned above, Figure 1 shows the proposed artificial cognitive architecture in three modules. The third module plans 
and creates the intervention according to two conditions: learning curve (scaffolding) and Flow theory. After that, learning 
outcomes are prioritized and the intervention strategy is defined (See figure 1). 

Figure 5 describes the Flow theory which is described as a balance between skills and task demands. The marron line represents 
the flow’s evolution from a low level to a high level. The marron line divides the flow area into two equal parts. The axis y 
represents the level of the challenge of the problem. For example, in the Hanoi tower, the number of the disks involved in the 
problem. The axis x represents the user’s skills. For example, the knowledge of the strategy. The Ci represents the current 
challenge level of the problem. The Si represents the learner`s skills which have been estimated by the previous subsystem. 
When the system determines the learner's flow level, three actions (c, e, s) are developed to bring closer the learner to the ideal 
flow zone.  
Subsystem: flow manager 
The flow manager is composed by four modules. First, learner's flow state. The learner's flow state acknowledges the balance 
between the learner's skills and the emotional state to change the cognitive load through different cognitive, emotional or 
physical actions. Second, support strategy selector. According to Figure 1, the robot has four strategies to support the learning 
process: focus lesson, guided instruction, collaborative work, and independent work. Third, role robot selector. The robot can 
take three different roles to support assertively the learning process: peer, tutor, and learner. Four, metacognitive trigger. The 
function is generated thinking process based on the graph evolution. 

The learning process is foster through four strategies: focus lesson, guided instruction, cooperative work and independent work. 
By each strategy, a role is assigned. There are three alternatives: tutor, peer, and learner. As tutor, the robot interventions to 
explain and guide the learner's actions. As peer, the robot intervenes through verbal suggestions and physical interventions 
negotiated with the learner. As learner, the robot carry out questions related to the development of the task and through 
erroneous physical actions. In the three roles mentioned above, five aspects are implemented in robot: emotion, gestures, verbal 
judgments, kinematic description, positioning the blocks. 



 
Figure 5: Flow Theory as decision robot's rule 

The robot’s morphology affects alternatives of gestural behavior and therefore its process of communication with the user. The 
robot can perform different kind of movements as emblematic, descriptive, rhythmic, deictic, symbolic, expressive and 
regulated. In humanoid robots, the non-verbal behavior of the robot affects the perception of the subjects [52]. In non-humanoid 
robots and without emotions: the behavior is related to the movement associated with the task. 
Subsystem: action manager 
According to the architecture and the scaffolding theory, robot decides which the best option to support the learning process. 
There are three ways. First, the robot gives emotions support. Second, the robot presents new information or gives support 
based on hits and missed done by the learner. The support's strategy could consider physical intervention as moving the blocks. 
Third, the robot changes the task's challenge. In this option, the robot changes the task's complexity and the number of blocks 
is reduced or augmented. 

Emotional expression done by social robots during the learning process contribute to the feedback of task performance. 
Emotional manifestations expressed by the robot are: seeking information, attention, and interest, inviting and controlling 
interaction, influencing others and presenting their emotional state according to the conditions of a learning activity [50]. As a 
collaborative agent, robot has physical and cognitive artificial infrastructure (reason and emotion) to foster thought’s actions 
during learning. One way is through emotional responses that allow increasing, refine and restructure the mental models of the 
learning situation. The way of expressing emotions, which is part of the personality of the robot, facilitates the understanding 
of the actions of the subject and affects his learning process.  

The verbal judgments of the robot guide the student's learning process in two aspects: procedural and metacognitive. In the 
procedural aspect, verbal judgments made by the robot aim to guide the development of the problem posed using operators, 
recognition of rules and initial and target states. In the metacognitive aspect, the verbal judgments stimulate actions of thinking 
that guide the knowledge of the strategy of analysis of means-ends. Four actions proposed are to ask to evaluate the student's 
knowledge and understanding, to suggest facilitating the cognitive and meta-cognitive process, to point out to change the 
attention of the students, to explain in the moments where the student does not have enough knowledge of the problem or the 
implementation of the strategy to solve it [15].  

As was mentioned above, the main mechanism of the scaffolding of the robot is the movement of the blocks to contribute to 
the process of solving the problem of transformation such as the Hanoi towers, the stair set and stacking blocks. The position 
of the blocks and the kinematic conditions for during positioning influence the user's thought processes [7].  

In order to effectively support the robot, is necessary to consider aspects such as: adaptive behavior [39], use of skills learned 
from other tasks for use in new tasks [25], dynamic transition of responsibility between robot and learner [41], recognition of 
the cognitive state of the user [34], increase of dialogue resources through nonverbal behaviors [5], assertive suggestions 
appropriate to the needs of the learner [43][47][40][44]. 

In addition, support during decision-making requires consideration of aspects such as the dialogue system for the understanding 
of robot interventions [33][34], motor interaction requirements [23], The development of interactive behaviors through actions 
such as pointing objects [24], non-verbal actions such as gaze, proximity and development of iconic, metaphoric, deictic and 
vocal gestures robot [9]. 

The scaffolding process not only depends on student characteristics, also depends on the strategy and the task’s characteristics. 
The above aspects open possibilities of generating levels of granularity in the scaffolding process. Figure 6 elicits a process of 



interaction with the robot. The physical appearance of the robot generates expectations of behavior, cognitive, emotional 
support, evaluation mechanisms and continuous feedback. 

 
Figure 6: Baxter robot 

3. Discusion and Conclusions 
The technologies available these days are useful for countless applications. That is de case for robotics that can be adapted to 
different cases where the robot can be another participant in an environment created for a specific goal. That is the case of the 
present work where robots are used to establish Human-Robot interaction for the improvement of the learning environment. 
The same case could be used for the healthcare domain where tests are being designed for patients with mild dementia that are 
experiencing cognitive decline. Especially in older patients, the permanent availability of the robot without time constraints, 
can be useful as the older patients can use it when they are willing to make cognitive rehabilitation any time without the need 
of a therapist for those designed training exercises. 

As conclusion, in education, robots have been considered as learning tools. They have evolved from simple tools that only 
followed students' instructions to complex cognitive artificial systems which allow robots to behave as tutor, peer, or learner. 
Each proposed behavior has been inspired by different pedagogical and psychological theories despite having been constrained 
by the contemporary technical conditions. Nowadays, embodiment, emotions, and physical interaction are topics of interest in 
the cognitive convergence challenge in the Human-Robot Interaction. For convergence to be effective and to contribute to the 
learning process, it is necessary for the cognitive architecture of the robot to develop three actions: to observe student behavior, 
to diagnose their cognitive and emotional states, and to intervene assertively according to their learning curve. 

The robot as a collaborative agent recognizes several characteristics of the student and average during the learning process. 
The concept of mediation suggests an assertive intervention of the robot in a way that promotes cognitive effort during the 
development of the task and the student does not lose interest. 

The shape of the robot influence the human-robot interaction and the behavior, which affects the user's understanding. In 
humanoid robots, the non-verbal behavior of the robot affects the perception of the subjects. In robots with the ability to 
manipulate and express emotions, the movement of the arms reflects the behavior. In non-humanoid robots and without 
emotions: the behavior is related to the movement associated with the task. 
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