
Leveraging Linear Decryption: Rate-1 Fully-Homomorphic

Encryption and Time-Lock Puzzles

Zvika Brakerski∗

Weizmann Institute of Science
Nico Döttling

CISPA Helmholtz Center for Information Security

Sanjam Garg†

University of California, Berkeley
Giulio Malavolta‡

Carnegie Mellon University

Abstract

We show how to combine a fully-homomorphic encryption scheme with linear decryption and a
linearly-homomorphic encryption schemes to obtain constructions with new properties. Specifically,
we present the following new results.

(1) Rate-1 Fully-Homomorphic Encryption: We construct the first scheme with message-to-ciphertext
length ratio (i.e., rate) 1 − σ for σ = o(1). Our scheme is based on the hardness of the Learning
with Errors (LWE) problem and σ is proportional to the noise-to-modulus ratio of the assumption.
Our building block is a construction of a new high-rate linearly-homomorphic encryption.

One application of this result is the first general-purpose secure function evaluation protocol in the
preprocessing model where the communication complexity is within additive factor of the optimal
insecure protocol.

(2) Fully-Homomorphic Time-Lock Puzzles: We construct the first time-lock puzzle where one can
evaluate any function over a set of puzzles without solving them, from standard assumptions. Prior
work required the existence of sub-exponentially hard indistinguishability obfuscation.

1 Introduction

Fully-homomorphic encryption (FHE) allows one to evaluate any function over encrypted data. Since the
breakthrough result of Gentry [Gen09], the development of FHE schemes has seen a rapid surge [vGHV10,
BV11, BGV12, GSW13, BV14, AP14] and by now FHE has become a well-established cryptographic prim-
itive. An FHE scheme gives an elegant solution to the problem of secure function evaluation: One party
publishes the encryption of its input under its own public key Enc(pk, x) while the other evaluates some
function f homomorphically, returning c = Enc(pk, f(x)). The first party can recover the output by simply
decrypting c. The crucial property of this approach is that its communication complexity is proportional
to the size of the input and of the output, but does not otherwise depend on the size of f . This distin-
guishing feature is essential for certain applications, such as private information retrieval [CGKS95], and has
motivated a large body of work on understanding FHE and related notions [BGI16, QWW18].

Unfortunately, our understanding in secure computation protocol with optimal communication complex-
ity is much more limited. Typically, FHE schemes introduce a polynomial blowup factor (in the security

∗Supported by the Israel Science Foundation (Grant No. 468/14), Binational Science Foundation (Grants No. 2016726,
2014276) and European Union Horizon 2020 Research and Innovation Program via ERC Project REACT (Grant 756482) and
via Project PROMETHEUS (Grant 780701).
†Supported in part from DARPA/ARL SAFEWARE Award W911NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR

YIP Award, DARPA and SPAWAR under contract N66001-15-C-4065, a Hellman Award and research grants by the Okawa
Foundation, Visa Inc., and Center for LongTerm Cybersecurity (CLTC, UC Berkeley).
‡Supported in part by a gift from Ripple, a gift from DoS Networks, a grant from Northrop Grumman, a Cylab seed funding

award, and a JP Morgan Faculty Fellowship.

1

parameter) to the cipheretext size, thereby affecting the overall communication rate of the protocol. Given
the current state-of-the-art FHE schemes, the only class of functions we can evaluate without communication
blowup are linear functions [DJ01]. An FHE scheme with optimal rate, i.e., with a message-to-ciphertext ra-
tio approaching 1, would immediately give us a general-purpose tool to securely evaluate any function (with
sufficiently large inputs and outputs) with asymptotically optimal communication complexity. Motivated by
this objective, this work seeks to answer the following question:

Can we construct an FHE scheme with rate 1 from standard assumptions?

We also consider the related problem of constructing fully-homomorphic time-lock puzzles (FH-TLP), a
primitive recently introduced in [MT19] to address the computational burden of classical time-lock puz-
zles [RSW96]. Time-lock puzzles encapsulate secrets for a pre-determined amount of time, and FH-TLP
allow one to evaluate functions over independently generated puzzles. The key feature of FH-TLPs is that
after a function has been homomorphically evaluated on a (possibly large) number of input TLPs, only a
single output TLP has to be solved to recover the function result. Consquently, FH-TLP can be used in the
very same way as TLPs, but the solver is spared from solving a large number of TLPs (in parallel) and only
needs to solve a single TLP which encapsulates the function result.

FH-TLP have been shown to be a very versatile tool and have several applications, ranging from coin-
flipping to fair contract signing [MT19]. In [MT19] FH-TLPs were constructed from probabilistic iO
[CLTV15] and scheme from standard assumptions were limited to restricted classes of functions (e.g., linear
functions). Motivated by this gap, the second question that we ask is:

Can we construct an FH-TLP scheme (ideally with rate 1) from standard assumptions?

1.1 Our Results

In this work, we answer both questions in the affirmative. Specifically, we present the following new results:

(1) Our main result is the construction of an FHE which allows compressing many ciphertexts into a
compressed ciphertext which has rate 1 � 1/λ. In fact, we show that for any a-priori block size
` = poly(λ), we can construct a scheme where the ciphertext length is at most ` + τ(λ), where τ
is a fixed polynomial (which does not depend on `). Setting ` = λ � τ(λ), the rate claim follows.

To prove security of this scheme, we only need to assume the hardness of the Learning With Errors
(LWE) [Reg05] problem with polynomial modulus-to-noise ratio.1

(2) We provide a construction of a fully-homomorphic time-lock puzzle from multi-key FHE and linearly
homomorphic time-lock puzzles. The security of the former can be based on the hardness of LWE with
superpolynomial modulus-to-noise ratio, whereas the latter can be constructed from the sequential
squaring assumption [RSW96] in groups of unknown order.

On a technical level, both of our main results are tied together by the common idea of combining an FHE
with a linear decryption algorithm with a linearly-homomorphic encryption (time-lock puzzle, respectively)
of optimal rate. The hybrid scheme inherits the best of both worlds and gives us a rate-optimal FHE scheme
or an FH-TLP from standard assumptions, depending on the building block that we use. Our techniques
are reminiscent of the chimeric scheme of Gentry and Halevi [GH11], with a new twist to how to encode
information without inflating the size of the ciphertexts. Somewhat interestingly, our construction of rate-1
linearly homomorphic encryption from LWE leverages ideas which were originally conceived in the context
spooky FHE [DHRW16], homomorphic secret sharing [BKS19] and private-information retrieval [DGI+19].

Concurrent Work. In a concurrent work, Gentry and Halevi [GH19] constructed rate-1 FHE schemes
using similar ideas as in our work. While the goal of their work is realizing practically efficient high-rate
private information retrieval protocols, our constructions are more general and designed to achieve the best
possible asymptotic rate.

1We note that the modulus-to-noise ratio does depend (linearly) on `.

2

1.2 Applications

We outline a few interesting implications of our results. We stress that the tools that we develop in this work
are of general purpose and we expect them to find more (possibly indirect) applications in the near future.

(1) Secure Function Evaluation: FHE yields a very natural protocol for secure function evaluation (SFE)
where one party encrypts its input and the other computes the function homomorphically. Given that
the input and the output are sufficiently large, rate-1 FHE yields a (semi-honest) SFE scheme where
the communication complexity is within additive factor from that of the best possible insecure protocol.

(2) Encrypted Databases with Updates: Using rate-1 FHE, it is possible to outsource an encrypted
database to an untrusted (semi-honest) cloud provider, without suffering additional storage overhead
due to ciphertext expansion. While FHE hybrid encryption (using a non-rate-1 FHE) allows to store a
static database without additional storage requirements, as soon as database entries are homomorphi-
cally updated they become FHE-ciphertexts and consequently their size grows substantially. Keeping
the database encrypted under a rate-1 FHE scheme enables the cloud provider to perform updates on
the database, while not increasing the size of the encrypted data.

(3) Malicious Circuit Privacy: Instantiating the generic compiler of Ostrovsky et al. [OPP14] with our
rate-1 FHE scheme gives the first maliciously circuit-private FHE scheme with rate-1. A maliciously
circuit-private scheme does not leak any information to the decrypter about the homomorphically
evaluated functions (beyond the function output) for any choice of the public parameters. Among
others, a rate-1 scheme implies a maliciously statistically sender-private oblivious transfer [BD18] with
the same rate. Previous works [DGI+19] were able to achieve rate 1 only for oblivious transfer and
only in the semi-honest setting. The prior best known rate in the malicious setting was � 1/2.

(4) Sealed Bid Auctions: One of the motivating applications of time-lock puzzles is to construct fair
sealed bid auctions, where each bid is encrypted in a time-lock puzzle whose opening can be forced by
the auctioneer in case the bidder refuses to disclose it. This however involves a computational effort
proportional to the number of unopened bids, which can be used as a vector for denial-of-service attacks.
Homomorphic time-lock puzzles solve this problem by allowing the auctioneer to homomorphically
compute the winner of the auction and only solve a single puzzle. Since this computation cannot be
expressed as a linear function, our work provides the first solution from standard assumptions.

1.3 Technical Outline

We present a detailed technical outline of our results in the following. As far as rate-1 FHE is concerned,
our focus is on techniques to compress post-evaluation ciphertexts. Compressed ciphertexts can be further
expanded (and homomorphically evaluated) via standard bootstrapping techniques.

Schematically, our method for achieving rate-1 FHE is as follows. We consider the “batched-Regev”
LWE based encryption scheme (which appears explicitly in the literature, e.g., in [PVW08, BGH13]). This
scheme has much better rate than “plain” Regev, but the rate is still asymptotically 0 (i.e., o(1)). It can
be shown that it is possible to convert plain-Regev ciphertexts into batched-Regev, essentially using the
key-switching technique that is frequently used in the FHE literature (see, e.g., [BV11]). We then show that
batched-Regev ciphertexts can be compressed in a way that increases the rate to 1 � o(1), but maintains
(perfect) decryptability. We do this by combining rounding techniques that appeared previously in the
literature [DHRW16, BKS19, DGI+19] with new techniques that we develop and allow to maintain high
rate, perfect correctness, and modest LWE modulus simultaneously. We note that in order to apply key-
switching, we need to use batched-Regev in its non-compressed form, and only apply the compression after
the switching is complete. This transformation, maintains decryptability but homomorphic capabilities are
lost. As mentioned above, these can be restored using bootstrapping in a generic way.

3

Leveraging Linear Decryption. Our starting point is the observation that, for essentially any FHE
construction in literature, decryption (or rather noisy decryption) is a linear function in the secret key. More
specifically, we can write the decryption operation as a function Lc(s), which is linear in s, the secret key.
Typically things are set up in a way such that it holds for correctly formed ciphertexts c that Lc(s) = q

2 �m+e,
where m is the plaintext and e is a small noise term. We can then recover m from Lc(s) via rounding.

For many FHE schemes, the choice of the factor q/2 is not hardwired into the scheme, but can be provided
as an explicit input to the decryption function. More specifically, it holds that

L�;c(s) = α �m + e,

where L�;c(�) is a linear function and e is a small noise term. Assume in the following that jej < B for
some bound B. We refer to this operation as linear decrypt-and-multiply. In fact, Micciancio [Mic19]
observed that any FHE scheme with linear decryption can be transformed into a scheme which supports
linear decrypt-and-multiply.

Equipped with a linear decrypt-and-multiply FHE, our main idea to construct a rate-1 FHE scheme is to
run the linear decrypt-and-multiply operation of the FHE scheme inside a high rate linearly homomorphic
scheme. Consider an FHE scheme whose secret keys are vectors over Zq, and a rate-1 linearly homomorphic
scheme HE with plaintext space Zq. Assume we are given as “compression key” the encryption ck = Enc(pk, s)
of the FHE secret key s under the linearly homomorphic scheme HE. Given an FHE ciphertext c encrypting
a message m 2 f0, 1g, we can transform c into an encryption of m under the linearly homomorphic scheme
by homomorphically evaluating the linear function L�;c(�) on ck, i.e. we compute HE.Eval(L�;c(�), ck). By
homomorphic correctness, this results in an encryption of α �m + e under the linearly homomorphic scheme
HE.

So far, we have not gained anything in terms of rate, as we still have a large ciphertext encrypting only
a single bit m. However, we have not yet taken advantage of the fact that we can choose α freely and that
the scheme HE has rate 1. Our idea to increase the rate is to pack many FHE ciphertexts (c1, . . . , c‘), each
encrypting a single bit mi, into a single ciphertext of the high-rate linearly homomorphic scheme HE. More
specifically, for given FHE ciphertexts (c1, . . . , c‘) and a parameter t, consider the function L�(x) defined as

L�(x) =

‘X
i=1

L2t+i;ci(x).

Note that, although we define L� as a sum of functions, this is not how we compute it. Since L� is a linear
function, we can obtain a matrix-representation of it by, e.g., evaluating it on a basis and then later use the
matrix representation to compute the function. By correctness of the FHE scheme it holds that

L�(s) =

‘X
i=1

L2t+i;ci(s)

=

‘X
i=1

2t+i �mi + e,

where e =
P‘
i=1 ei is an `B-bounded noise term. Consequently, by homomorphically evaluating L� on ck, we

obtain an encryption c̃ of
P‘
i=1 2t+i �mi + e under the high-rate scheme HE. Given that 2t > `B, the noise

e does not interfer with the encodings of the message bits mi and they can be recovered during decryption.
The main effect that works in our favor here is that we can distribute the message bits mi into the high

order bits by multiplying them with appropriate powers of 2, whereas the decryption noise piles up in the low
order bits. Consequently, the noise occupies only the lower � log(`)+log(B) bits, whereas the remaining bits
of the message space can be packed with message bits. Choosing q as q � (`B)1=� for a parameter ε > 0 we

achieve an encoding rate of log(q)�log(‘B)
log(q) = 1� ε. Given that the linearly homomorphic encryption scheme

has a similarly high rate, we obtain an overall rate of 1�O(ε). Consequently, this construction yields an FHE
scheme with rate 1�O(1/λ) using, e.g., the Damg̊ard-Jurik cryptosystem or a variant of Regev encryption
as linearly homomorphic scheme, where the LWE modulus-to-noise ratio is with (sub-)exponential [PVW08].

4

Towards a Scheme from Standard LWE. Our next goal is to achieve the same (asymptotic) rate
assuming only LWE with polynomial modulus-to-noise ratio. Recall that our packing strategy consisted in
encoding the message vector m = (m1, . . . ,m‘) into the high-order bits of a Zq-element by homomorphically
computing t> � m, where t> = (2t+1, . . . , 2t+‘). However, this is not the only possible strategy. More
generally, linear decrypt-and-multiply enables us to homomorphically pack messages (m1, . . . ,m‘) into an
encoded vector T �m for some packing matrix T 2 Zk�‘q . Since linear decryption is inherently noisy, we will
require some error correcting properties from such an encoding, i.e., we need to be able to reconstruct m
from T �m+ e, for short noise terms e. With this observation in mind, our next step will be to construct an
ad-hoc high-rate linearly homomorphic encryption and pair it with an appropriate packing strategy.

Linearly Homomorphic Encryption with Ciphertext Shrinking. We now discuss new constructions
of linearly homomorphic encryption schemes from LWE which allow asymptotically optimal ciphertext sizes.
To avoid confusion with our FHE ciphertext compression technique, we will refer to this technique as ci-
phertext shrinking. Our starting point is Regev encryption and its variants. Let q be a modulus. In Regev
encryption a ciphertext c consists of two parts, a vector c1 2 Znq and a scalar c2 2 Zq. The secret key is a
vector s 2 Znq . Decryption for this scheme is linear, and it holds that

c2 � s> � c1 =
q

2
�m + e| {z }

m̂

,

where e with jej < B for some bound B is a decryption noise term. We obtain the plaintext m by rounding
m̂, i.e., by computing

dm̂c2 = dm̂ � 2/qc

=
l�q

2
�m + e

�
� 2/q

k
= dm + 2e/qc = m,

given that q > 4B. We first show how to shrink the component c2 of the ciphertext into a single bit at
the expense of including an additional ring element r 2 Zq in the ciphertext. Although this procedure does
not actually shrink the ciphertext (in fact it increases its size by one bit), we will later amortize the cost
of r across multiple components. The main idea is to delegate a part of the rounding operation from the
decrypter to a public operation Shrink and it is inspired by recent works on spooky encryption [DHRW16],
homomorphic secret sharing [BKS19], and private-information retrieval [DGI+19].

The algorithm Shrink takes as input the ciphertext c = (c1, c2) where c2 2 Zq and proceeds as follows. It
first chooses an r 2 Zq such that c2 + r /2 [q/4 � B, q/4 + B] [[3/4 � q � B, 3/4 � q + B], then it computes
w = dc2 + rc2 and outputs a compressed ciphertext c̃ = (c1, r, w). Given a shrunk ciphertext c̃ = (c1, r, w)
and the secret key s, the decrypter computes

m0 = (w � ds>c2 + rc2) mod 2.

We claim that m0 is identical to Dec(s, c) = dc2� s> � c1c2. To see this, note that since c2� s> � c1 = q
2m+ e,

we can write
c2 � e = s> � c1 +

q

2
�m.

Now, since r is chosen such that c2 + r /2 [q/4 � B, q/4 + B] [[3/4 � q � B, 3/4 � q + B] and e 2 [�B,B], it
holds that

dc2 + rc2 = dc2 + r � ec2.

Using the above this implies that

w = dc2 + rc2 = dc2 + r � ec2 = ds> � c1 + r +
q

2
�mc2 = (ds> � c1 + rc2 + m) mod 2.

5

It follows that m = (w � ds>c2 + rc2) mod 2. Note that after shrinking ciphertexts, we can no longer
perform homomorphic operations (unless one is willing to run a bootstrapped ciphertext expansion). As
a consequence, in our applications we will only perform the shrinking operation after all homomorphic
operations have been computed.

What is left to be shown is how to amortize the cost of including r by shrinking many c2 components for
the same c1. To achieve this, instead of using basic Regev encryption, we use batched Regev encryption. In
batched Regev encryption, ciphertexts consist of a vector c1 2 Znq and ring elements c2;i 2 Zq for i 2 [`]. To
decrypt the i-th message component mi, we compute

mi = dc2;i � s>i � c1c2.

where si is the secret key for the i-th component. Consequently, we can use the same shrinking strategy as
above for every c2;i. However, now each c2;i imposes a constraint on r, namely that c2;i+ r /2 [q/4�B, q/4+
B] [[3/4 � q �B, 3/4 � q +B].

Fortunately, given that q is sufficiently large, namely q > 4`B, there exists an r which fulfills all constraints
simultaneously. To find such an r, we compute a union of all forbidden intervals modulo q, and pick an r
outside of this set. Notice that this procedure can be efficiently implemented even if q is super-polynomially
large. The rate of the resulting scheme is

`

(n+ 1) log(q) + `
= 1� (n+ 1) log(q)

(n+ 1) log(q) + `
.

For q � 4`B and a sufficiently large ` = Ω(λ � (n+ 1) log(q)) = poly(λ), we achieve rate 1�O(1/λ).
Notice that while basic Regev encryption is only additively homomorphic, we need a scheme that supports

homomorphic evaluation of linear functions. Fortunately, this can be achieved by a very simple modification.
Instead of encrypting a message m, encrypt the messages 2i � m for all i 2 [k]. Further details are deferred
to the main body (Section 3.3).

Back to Rate-1 FHE. Returning to our main objective of rate-1 FHE, if we instantiate our generic
construction from above with the packed Regev scheme that allows ciphertext shrinking, note that there is
a slight mismatch. Recall that our rate 1 FHE construction assumed a linearly homomorphic encryption
scheme with plaintext space Zq or Zkq , whereas our Regev scheme with shrinking has a plaintext space f0, 1g‘.

Towards resolving this issue, it is instructive to consider Regev encryption without message encoding
and decryption without rounding. That is, we consider only the linear part of decryption where a ciphertext
c = (c1, c2) decrypts to

Dec(s, c) = c2 � s> � c1 = m� + e0

where s is the secret key and the message m� is an element of Zq. The important observation is that in
the construction above the message m� is the result of a linear decrypt-and-multiply operation. This means
that m� already contains a certain amount of decryption noise and the actual message contained in m� has
already been encoded by the linear decrypt-and-multiply operation.

Assuming for simplicity that m� = L q
2 ;c

�(s�), where c� is an FHE ciphertext encrypting a message m and
s� the corresponding FHE secret key, we have that

Dec(s, c) = c2 � s> � c1 = L q
2 ;c

�(s�) + e0

=
q

2
�m + e0 + e00,

where e00 is a small noise term which is introduced by the inner FHE decryption. Note that above we only
had to deal with noise e00 coming from the inner FHE decryption, whereas now we have an additional noise
term e0 coming from the decryption of the linearly homomorphic scheme. Given that the compound noise
e = e0 + e00 is sufficiently small, our shrinking technique for the ciphertext (c1, c2) still works. The only
condition we need for the shrinking technique to work is that c2 � s> � c1 is of the form q

2 � m + e for a
B-bounded error e.

6

To sum things up, all we need to ensure is that the encrypted message is well-formed before ciphertext
shrinking via the Shrink procedure. To stay with the notation from above, for this scheme the packing matrix
T which is used to encode plaintexts during the homomorphic decrypt-and-multiply step will be q

2 � I, where
I is the identity matrix.

Fully Homomorphic Time-Lock Puzzles. We finally show how ideas from our rate-1 FHE construction
can be used to obtain fully homomorphic time-lock puzzles (FH-TLP) from standard assumptions. Very
recently, Malavolta and Thyargarajan [MT19] introduced the notion of homomorphic time-lock puzzles and
proposed an efficient construction of linearly homomorphic timelock puzzles (LH-TLP) from the sequential
squaring assumption [RSW96]. An LH-TLP allows for evaluations of linear functions on messages encrypted
in time-lock puzzles. A key aspect here is that the time-lock puzzles may be independently generated by
different players.

The basic idea underlying our construction of FH-TLP is to replace the linearly homomorphic encryption
scheme in our rate-1 FHE construction above by an LH-TLP. More concretely, fix and LH-TLP scheme where
the message-space is Zq and an FHE scheme for which the secret keys are Znq vectors. We will describe how
to generate a puzzle for a message m and time parameter T . First, generate an FHE public key pk together
with a secret key s 2 Znq . Next, create a puzzle Z with time parameter T for the LH-TLP scheme encrypting
the FHE secret key s. Finally, encrypt the message m under the FHE public key pk obtaining a ciphertext
c. The time-lock puzzle consists of (pk, c,Z) and can be solved by recovering the secret key s and then
decrypting the message m.

While this simple idea allows us to perform homomorphic computations on a single message m, it fails at
our actual goal of allowing homomorphic computations on puzzles generated by different puzzle generators.
The reason being that every time we generate a new puzzle, we generate a fresh FHE key, and generally
homomorphic computations across different keys are not possible. To overcome this issue, we instead use a
multi-key FHE scheme, which enables homomorphic computations across different public keys. More specifi-
cally, given ` puzzles (pk1, c1,Z1), . . . , (pk‘, c‘,Z‘), encrypting messages (m1, . . . ,m‘), and an ` input function
f , we can homomorpically compute a ciphertext c� = Eval(pk1, . . . , pk‘, f, (c1, . . . , c‘)) which encrypts the
message m� = f(m1, . . . ,m‘).

We have, however, still not solved the main problem. In order to recover f(m1, . . . ,m‘) from c�, we first
have to recover all secret keys (s1, . . . , s‘) from the LH-TLPs (Z1, . . . ,Z‘). Thus, the workload is proportional
to that of solving ` time-lock puzzles, which is identical to the trivial construction. The final idea is to use
a multi-key FHE scheme with linear decryption: If c� is a (homomorphically evaluated) ciphertext which
encrypts a message m� under public keys pk1, . . . , pk‘, we can decrypt c� using a function Lc�(s1, . . . , s‘)
which is linear in the secret keys s1, . . . , s‘. As before, this decryption operation is noisy, i.e.,

Lc�(s1, . . . , s‘) =
q

2
�m� + e,

where e with jej < B is a small noise term. This allows us to homomorphically evaluate the linear function
Lc� over the time-lock puzzles (Z1, . . . ,Z‘) (recall the Zi encrypts the secret key si) and obtain a time-lock
puzzle Z� = Eval(Lc� , (Z1, . . . ,Z‘)) encrypting Lc�(s1, . . . , s‘) = q

2 �m
�+e. To recover the computation result

m� we only have to solve Z�. Note that the final puzzle Z� is a single compact puzzle for the LH-TLP scheme,
thus the overhead to solve this puzzle is that of solving a single LH-TLP and therefore independent of `.

We remark that both multi-key FHE from standard assumptions [CM15, MW16] and LH-TLP from
standard assumptions [MT19] need a setup. Consequently, our FH-TLP construction inherits this property.
Finally, techniques that we develop to construct rate-1 FHE also apply to our FH-TLP construction.

2 Preliminaries

We denote by λ 2 N the security parameter. We we say that a function negl(�) is negligible if it vanishes
faster than any polynomial. Given a set S, we denote by s $S the uniform sampling from S. We say
that an algorithm is PPT if it can be implemented by a probabilistic machine running in time poly(λ). We

7

abbreviate the set f1, . . . , ng as [n]. Matrices are denoted by M and vectors are denoted by v. We use the
infinity norm of a vector kvk1, since it behaves conveniently with rounding. For a given modulus q, we
define the rounding function dxc2 = dx � 2/qc mod 2.

2.1 Learning with Errors

The (decisional) learning with errors (LWE) problem was introduced by Regev [Reg05]. The LWE problem
is parametrized by a modulus q, positive integers n,m and an error distribution χ. An adversary is either
given (A, s> �A + e) or (A,u) and has to decide which is the case. Here, A is chosen uniformly from Zn�mq ,
s is chosen uniformly from Znq , u is chosen uniformly from Zmq and e is chosen from χm. The matrix version
of this problem asks to distinguish (A,S � A + E) from (A,U), where the dimensions are accordingly. It
follows from a simple hybrid argument that the matrix version is as hard as the standard version.

As shown in [Reg05, PRS17], for any sufficiently large modulus q the LWE problem where χ is a discrete
Gaussian distribution with parameter σ = αq � 2

p
n (i.e. the distribution over Z where the probability

of x is proportional to e��(jxj=�)2

), is at least as hard as approximating the shortest independent vector
problem (SIVP) to within a factor of γ = Õ(n/α) in worst case dimension n lattices. We refer to α = σ/q as
the modulus-to-noise ratio, and by the above this quantity controls the hardness of the LWE instantiation.
Hereby, LWE with polynomial α is (presumably) harder than LWE with super-polynomial or sub-exponential
α. We can truncate the discrete gaussian distribution χ to σ �ω(

p
log(λ)) while only introducing a negligible

error. Consequently, we omit the actual distribution χ but only use the fact that it can be appropriately
bounded by a (small) bound B.

2.2 Homomorphic Encryption

We recall the definition of homomorphic encryption in the following.

De�nition 2.1 (Homomorphic Encryption). A homomorphic encryption scheme consists of the following
efficient algorithms.

KeyGen(1�) : On input the security parameter 1�, the key generation algorithm returns a key pair (sk, pk).

Enc(pk,m) : On input a public key pk and a message m, the encryption algorithm returns a ciphertext c.

Eval(pk, f, (c1, . . . , c‘)) : On input the public key pk, an `-argument function f , and a vector of ciphertexts
(c1, . . . , c‘), the evaluation algorithm returns an evaluated ciphertext c.

Dec(sk, c) : On input the secret key sk and a ciphertext c, the decryption algorithm returns a message m.

We say that a scheme is fully-homomorphic (FHE) if it is homomorphic for all polynomial-size circuits.
We also consider a restricted class of homomorphism that supports linear functions and we refer to such
a scheme as linearly-homomorphic encryption. We characterize correctness of a single function evaluation.
This can be extended to the more general notion of multi-hop correctness [GHV10] if the condition specified
below is required to hold for arbitrary compositions of functions.

De�nition 2.2 (Correctness). A homomorphic encryption scheme (KeyGen,Enc,Eval,Dec) is correct if for
all λ 2 N, all `-argument functions f in the supported family, all inputs (m1, . . . ,m‘), all (sk, pk) in the
support of KeyGen(1�), and all ci in the support of Enc(pk,mi) there exists a negligible function negl(�) such
that

Pr [Dec(sk,Eval(pk, f, (c1, . . . , c‘))) = f(m1, . . . ,m‘)] � 1� negl(λ) .

We require a scheme to be compact in the sense that the size of the ciphertext should not grow with the
size of the evaluated function.

8

De�nition 2.3 (Compactness). A homomorphic encryption scheme (KeyGen,Enc,Eval,Dec) is compact if
there exists a polynomial poly(�) such that for all λ 2 N, all `-argument functions f in the supported family,
all inputs (m1, . . . ,m‘), all (sk, pk) in the support of KeyGen(1�), and all ci in the support of Enc(pk,mi) it
holds that

jEval(pk, f, (c1, . . . , c‘))j = poly(λ, jf(m1, . . . ,m‘)j) .

The notion of security is standard for public-key encryption [GM82].

De�nition 2.4 (Semantic Security). A homomorphic encryption scheme (KeyGen,Enc,Eval,Dec) is seman-
tically secure if for all λ 2 N and for all PPT adversaries A = (A0,A1) there exists a negligible function
negl(�) such that

Pr

2664b = A1(c, st)

��������
(sk, pk) KeyGen(1�)
(m0,m1, st) A0(pk)
b $ f0, 1g
c Enc(pk,mb)

3775 =
1

2
+ negl(λ) .

Finally we define the rate of an encryption scheme as the asymptotic message-to-ciphertext size ratio.

De�nition 2.5 (Rate). We say that a homomorphic encryption scheme (KeyGen,Enc,Eval,Dec) has rate
ρ = ρ(λ), if it holds for all pk in the support of KeyGen(1�), all supported functions f with sufficiently large
output size, all messages (m1, . . . ,m‘) in the message space, and all ci in the support of Enc(pk,mi) that

jf(m1, . . . ,m‘)j
jEval(pk, f, (c1, . . . , c‘))j

� ρ.

We also say that a scheme has rate 1, if it holds that

lim inf
�!1

ρ(λ) = 1.

Note that in Definition 2.5 we need to restrict ourselves to a class of supported functions for which the
output size jf(m1, . . . ,m‘)j is sufficiently large. E.g., if a function output f(m1, . . . ,m‘) is just one bit,
we cannot hope to achieve a good rate. Consequently we will only consider functions with a large output
domain.

2.2.1 Multi-Key Homomorphic Encryption

A multi-key homomorphic encryption supports the evaluation of functions over ciphertexts computed under
different (possibly independently sampled) keys. The result of the computation can then be decrypted using
all of the corresponding secret keys. Formally, this introduces a few syntactical modifications. Most notably
and in contrast with the single-key variant, multi-key schemes might need a setup which generates public
parameters shared across all users.

De�nition 2.6 (Multi-Key Homomorphic Encryption). A multi-key homomorphic encryption scheme con-
sists of the following efficient algorithms.

Setup(1�) : On input the security parameter 1�, the setup algorithm returns the public parameters pp.

KeyGen(pp) : On input the public parameters pp, the key generation algorithm returns a key pair (sk, pk).

Enc(pk,m) : On input a public key pk and a message m, the encryption algorithm returns a ciphertext c.

Eval((pk1, . . . , pk‘), f, (c1, . . . , c‘)) : On input a vector of public keys (pk1, . . . , pk‘), an `-argument function
f , and a vector of ciphertexts (c1, . . . , c‘), the evaluation algorithm returns an evaluated ciphertext c.

Dec((sk1, . . . , sk‘), c) : On input a vector of secret keys (sk1, . . . , sk‘) and a ciphertext c, the decryption algo-
rithm returns a message m.

9

As before, we say that the scheme is fully-homomorphic (MK-FHE) if it is homomorphic for P/poly. The
definition of correctness is adapted to the multi-key settings.

De�nition 2.7 (Multi-Key Correctness). A multi-key homomorphic encryption scheme (Setup,KeyGen,Enc,
Eval,Dec) is correct if for all λ 2 N, all ` polynomial in λ, all `-argument functions f in the supported family,
all inputs (m1, . . . ,m‘), all pp in the support of Setup, all (ski, pki) in the support of KeyGen(pp), and all ci
in the support of Enc(pki,mi) there exists a negligible function negl(�) such that

Pr [Dec((sk1, . . . , sk‘),Eval((pk1, . . . , pk‘), f, (c1, . . . , c‘))) = f(m1, . . . ,m‘)] � 1� negl(λ) .

Compactness is unchanged except that the ciphertext may grow with the number of keys.

De�nition 2.8 (Multi-Key Compactness). A multi-key homomorphic encryption scheme (Setup,KeyGen,Enc,
Eval,Dec) is compact if there exists a polynomial poly(�) such that for all λ 2 N, all ` polynomial in λ,
all `-argument functions f in the supported family, all inputs (m1, . . . ,m‘), all (ski, pki) in the support of
KeyGen(1�), and all ci in the support of Enc(pki,mi) it holds that

jEval((pk1, . . . , pk‘), f, (c1, . . . , c‘))j = poly(λ, `, jf(m1, . . . ,m‘)j) .

The definition of semantic security is identical to that of single-key schemes.

2.2.2 Linear Decrypt-and-Multiply

To construct our schemes we will need FHE schemes with a more fine-grained correctness property. More
specifically, we will require an FHE scheme where for which decryption is a linear function in the secret key.
Furthermore, we require that this linear decryption function outputs a the product of the plaintext whith a
constant ω (which is provided as input to the decryption algorithm). We will refer to such schemes as linear
decrypt-and-multiply schemes.

The output of this function may contain some (short) noise, thus we also need an upper bound on
amount of noise linear decrypt-and-multiply introduces. This property was explicitly characterized in an
oral presentation of Micciancio [Mic19] where he showed that schemes from the literature already satisfy this
notion [AP14, GSW13] and discussed some applications. A formal definition is given in the following.

De�nition 2.9 (Decrypt-and-Multiply). We call a homomorphic encryption scheme (KeyGen,Enc,Eval,Dec)
a decrypt-and-multiply scheme, if there exists bounds B = B(λ) and Q = Q(λ) and an algorithm Dec&Mult
such that the following holds. For every q � Q, all (sk, pk) in the support of KeyGen(1�, q), every `-argument
functions f (in the class supported by the scheme), all inputs (m1, . . . ,m‘), all ci in the support of Enc(pk,mi)
and every ω 2 Zq that

Dec&Mult(sk,Eval(pk, f, (c1, . . . , c‘)), ω) = ω � f(m1, . . . ,m‘) + e mod q

where Dec&Mult is a linear function in sk over Zq and jej � B with all but negligible probability.

We also consider decrypt-and-multiply for multi-key schemes and we extend the definition below. We
note that schemes with such a property were previously considered in the context of Spooky Encryp-
tion [DHRW16].

De�nition 2.10 (Multi-Key Decrypt-and-Multiply). We call a multi-key homomorphic encryption scheme
(Setup,KeyGen,Enc,Eval,Dec) a decrypt-and-multiply scheme, if there exists bounds B = B(λ) and Q = Q(λ)
and an algorithm Dec&Mult such that the following holds. For every q � Q, all pp in the support of
Setup(1�; q), all (ski, pki) in the support of KeyGen(1�), every `-argument functions f (in the class supported
by the scheme), all inputs (m1, . . . ,m‘), all ci in the support of Enc(pki,mi) and every ω 2 Zq that

Dec&Mult((sk1, . . . , sk‘),Eval((pk1, . . . , pk‘), f, (c1, . . . , c‘)), ω) = ω � f(m1, . . . ,m‘) + e mod q

where Dec&Mult is a linear function in the vector (sk1, . . . , sk‘) over Zq and jej � B with all but negligible
probability.

10

An aspect we have omitted so far is to specify over which domain we require decryption to be linear. For
essentially all FHE schemes in the literature, decryption is a linear function over a ring Zq, which also requires
that secret keys are vectors over Zq. As mentioned before, the main idea behind our constructions will be
to perform linear decrypt-and-multiply under a linearly homomorphic encryption scheme. Consequently, we
need to match the plaintext space of the linearly homomorphic scheme with the secret key-space of the fully
homomorphic scheme. As for some linearly homomorphic schemes we consider, such as the Damg̊ard-Jurik
scheme the plaintext space will depend on the public key, we will need a way to connect the two. Luckily, for
essentially all FHE schemes in the literature, the modulus q does not depend on any secret but depends only
on the security parameter. Moreover, LWE-based FHE schemes can be instantiated with any (sufficiently
large) modulus q without affecting the worst-case hardness of the underlying LWE problem [PRS17].

Consequently, we can consider the modulus q as a system parameter for the underlying FHE scheme. In
abuse of notation, we will provide the modulus q as an explicit input to the FHE key generation algorithm.

2.2.3 Schemes with Linear Decrypt-and-Multiply

Micciancio [Mic19] has recently shown that any FHE scheme with linear decryption always admits an efficient
linear decrypt-and-multiply algorithm. Notable examples of constructions that support linear decrypt-and-
multiply right away are GSW-based schemes [GSW13], e.g., [AP14, BV14, CM15, MW16, DHRW16].

In these schemes, ciphertexts are of the form C = A �R + m �G, where A 2 Zn�mq is a matrix specified
in the public key, R is a matrix with small entries and G is the so-called gadget matrix. The secret key is
a vector s, for which the last component sn = 1, which has the property that s> �A = e>, for a vector e>

with small entries. For a vector v let G�1(v) be a binary vector with the property that G �G�1(v) = v
(G�1(�) is a non-linear function). For an ω 2 Zq let ! 2 Znq be a vector which is 0 everywhere but ω in the
last component. We can perform the linear decrypt-and-multiply operation by computing

s> �C �G�1(!) = s> �A �R �G�1(!) + m � s> �G �G�1(!)

= e> �R �G�1(!) + m � s> � !
= ω �m + e0,

where e0 = e> � R � G�1(!) is a short noise vector. The second equality holds as s> � A = e>, and the
third one holds as s> �! = ω. We remark that the scheme of Brakerski and Vaikunthanatan [BV14] satisfies
these constraints with a polynomial modulus-to-noise ratio, by exploiting the asymmetric noise growth in
the GSW scheme and a specific way to homomorphically evaluate functions.

Since we need a multi-key FHE scheme in our construction of fully homomorphic time-lock puzzles,
we briefly discuss a linear decrypt-and-multiply procedure for the MK-FHE construction of Mukherjee and
Wichs [MW16], which in turn is a simplified version of the scheme from Clear and McGoldrick [CM15].
Recall that the scheme shown in [CM15, MW16] is secure against the Learning with Errors problem (with
super-polynomial modulo-to-noise ratio) and satisfies the following properties:

(1) The construction is in the common random string model and all parties have access to a uniform matrix

A $ Z(n�1)�m
q .

(2) For any fixed depth parameter d, the scheme supports multi-key evaluation of depth-d circuits using
public keys of size d �poly(λ), while secret keys are vectors s $ Znq , regardless of the depth parameter.
More concretely, there exists an efficient algorithm MK-FHE.Eval that is given as input:

(a) Parameters (`, d) 2 N, where ` is the number of public keys that perform depth-d computation.

(b) A depth-d circuit that computes an `-argument Boolean function f : f0, 1g� ! f0, 1g.
(c) A vector of public keys (pk1, . . . , pk‘) and a fresh (bit-by-bit) encryption of each argument xi

under pki, denoted by ci MK-FHE.Enc(pki, xi).

11

Then MK-FHE.Eval outputs a matrix C 2 Zn‘�m‘q such that

s̃ �C �G�1 (!) = ω � f(x1, . . . , x‘) + e (mod q)

where s̃ is the row concatenation of (s1, . . . , s‘), ! is the row vector (0, . . . , 0, ω) 2 Zn‘q , and G�1 is the
bit-decomposition operator. Furthermore, it holds that

jej � β � (m4 +m)(m`+ 1)d = β � 2O(d�log(�))

where β is a bound on the absolute value of the noise of fresh ciphertexts.

(3) By further making a circular-security assumption, MK-FHE.Eval supports the evaluation of circuits
of any depth without increasing the size of the public keys. In this case the bound on the noise is
jej � β � 2O(dDec�log(�)), where dDec is the depth of the decryption circuit, which is poly-logarithmic in λ.

Note that that by setting ` = 1 we recover the FHE scheme of [GSW13] except that for the latter we can
give a slightly better bound for the noise, namely jej � β �m2(m + 1)d. The important observation here is
that C �G�1 (!) does not depend on the secret key and therefore defining

Dec&Mult(s̃,C, ω) = s̃ �C �G�1 (!)

gives a syntactically correct linear decrypt-and-multiply algorithm and B = jej is the corresponding noise
bound. Finally we remark that the MK-FHE scheme does not impose any restriction on the choice of q
(except for its size) so we can freely adjust it to match the modulus of the companion time-lock puzzle.

2.3 Homomorphic Time-Lock Puzzles

Homomorphic time-lock puzzles generalize the classical notion of time-lock puzzles [RSW96] by allowing
one to publicly manipulate puzzles to evaluate functions over the secrets. They were introduced in a recent
work [MT19] and we recall the definition in the following.

De�nition 2.11 (Homomorphic Time-Lock Puzzles). A homomorphic time-lock puzzle consists of the fol-
lowing efficient algorithms.

Setup(1�, T) : On input the security parameter 1� and a time parameter T , the setup algorithm returns the
public parameters pp.

PuzGen(pp, s) : On input the public parameters pp and a secret s, the puzzle generation algorithm returns a
puzzle Z.

Eval(pp, f, (Z1, . . . ,Z‘)) : On input the public parameters pp, an `-argument function f , and a vector of
puzzles (Z1, . . . ,Z‘), the evaluation algorithm returns an evaluated puzzle Z.

Solve(pp,Z) : On input the public parameters pp and a puzzle Z, the solving algorithm returns a secret s.

By convention, we refer to a puzzle as fully-homomorphic (FHTLP) if it is homomorphic for all circuits.
We now give the definition of (single-hop) correctness.

De�nition 2.12 (Correctness). A homomorphic time-lock puzzle (Setup,PuzGen,Eval,Solve) is correct if for
all λ 2 N, all T 2 N, all `-argument functions f in the supported family, all inputs (s1, . . . , s‘), all pp in the
support of Setup(1�, T), and all Zi in the support of PuzGen(pp, si) the following two conditions are satisfied:

(1) There exists a negligible function negl(�) such that

Pr [Solve(pp,Eval(pp, f, (Z1, . . . ,Z‘))) = f(s1, . . . , s‘)] = 1� negl(λ) .

12

(2) The runtime of Solve(pp,Z), where Z Eval(pp, f, (Z1, . . . ,Z‘)), is bounded by poly(λ, T), for some
fixed polynomial poly(�).

Homomorphic time-lock puzzles should also satisfy the notion of compactness. To rule out trivial schemes,
we specifically require that the running time of the evaluation algorithm does not depend on the hardness
of the puzzle.

De�nition 2.13 (Compactness). A homomorphic time-lock puzzle (Setup,PuzGen,Eval,Solve) is compact if
there exist two polynomials poly(�) and ˜poly(�) such that for all λ 2 N, all T 2 N, all `-argument functions f
in the supported family, all inputs (s1, . . . , s‘), all pp in the support of Setup(1�, T), and all Zi in the support
of PuzGen(pp, si) the following two conditions are satisfied:

(1) jEval(pp, f, (Z1, . . . ,Z‘))j = poly(λ, jf(s1, . . . , s‘)j).

(2) The runtime of Eval(pp, f, (Z1, . . . ,Z‘)) is bounded by ˜poly(λ, jf j), where jf j is the size of the circuit
representation of f .

In this work we consider the stronger notion of security where time is counted starting from the moment
the puzzle is generated (as opposed to the moment where the public parameters of the scheme are generated).
This is termed security with reusable setup in [MT19] and we henceforth refer to it simply as security.

De�nition 2.14 (Security). A homomorphic time-lock puzzle (Setup,PuzGen,Eval,Solve) is secure if for all
λ 2 N, all T 2 N, all PPT adversaries A = (A0,A1) such that the depth of A1 is bounded by T , there exists
a negligible function negl(�) such that

Pr

2664b = A1(Z, st)

��������
pp Setup(1�, T)
(s0, s1, st) A0(pp)
b $ f0, 1g
Z PuzGen(pp, sb)

3775 =
1

2
+ negl(λ) .

3 Shrinking Linearly Homomorphic Encryption

In the following section we introduce the useful abstraction of linearly homomorphic encryption with com-
pressing ciphertexts and we discuss several concrete instantiations.

3.1 Definitions

We start by providing relaxed correctness definitions for linearly homomorphic encryption. As discussed
before, for Regev-like encryption schemes decryption is a linear operation which, unavoidably, introduces
noise. This noise is dealt with by encoding the message accordingly and decoding the result of linear
decryption, usually by applying a rounding function. In this section we provide definitions for linearly
homomorphic encryption which account for noise, and allow to treat encoding and decoding of the message
separately. We assume that a linearly homomorphic encryption scheme is described by four algorithms
(KeyGen,Enc,Dec,Eval) with the usual syntax. We further assume that each public key pk specifies a message
space of the form Zkq .

De�nition 3.1 (Relaxed Correctness). Let HE = (KeyGen,Enc,Dec,Eval) be a linearly homomorphic en-
cryption scheme. Let B = B(λ) and ` = poly(λ). We say that HE is correct with B-noise, if it holds for
every (pk, sk) in the support of KeyGen(1�), where pk specifies a message space Zkq , every linear function

f : (Zkq)‘ ! Zkq , all messages (m1, . . . ,m‘) 2 Zkq that

Dec(sk,Eval(pk, f, (Enc(pk,m1), . . . ,Enc(pk,m‘)))) = f(m1, . . . ,m‘) + e,

where e 2 Zk is a noise term with kek1 � `B.

13

Notice that we allow the amount of noise to depend linearly on the parameter `. We also consider linearly
homomorphic encryption schemes which allow for shrinking post-evaluation ciphertexts. Such schemes will
have two additional algorithms Shrink and ShrinkDec defined below.

Shrink(pk, c) : Takes as input a public key pk and an evaluated ciphertext c and outputs a shrunk ciphertext
c̃.

ShrinkDec(sk, c̃) : Takes as input a secret key sk and a