Skip to main content

A Multilayer Sparse Representation of Dynamic Brain Functional Network Based on Hypergraph Theory for ADHD Classification

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Big Data and Machine Learning (IScIDE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11936))

Abstract

Nowadays, studies on the brain show that the resting brain is still dynamic, and the dynamics of brain functional connectivity remains to be proven, which is very important for the research and diagnosis of mental disorders. In this paper, we apply the Bayesian Connection Change Point Model (BCCPM) to perform dynamic testing on the brain. A sparse model is used to construct a hypergraph to represent the brain function connectivity network, and then the dictionary obtained by sparse learning is used to further extract the features of brain function network. The experimental results on ADHD data show that the accuracy of the proposed method has been improved. Meanwhile, we find that there are obvious differences in the sparse features values of the brain functional networks between patients and normal controls. In addition, the comparison between the proposed method with/without the BCCPM demonstrated the importance of dynamic detection further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song, M., Du, H., Wu, N., et al.: Impaired resting-state functional integrations within default mode network of generalized tonic-clonic seizures epilepsy. PLoS ONE 6(2), 1729 (2011)

    Google Scholar 

  2. Rashid, B., Arbabshirani, M.R., Damaraju, E., et al.: Classification of schizophrenia and bipolar patients using static and time-varying resting-state FMRI brain connectivity. In: IEEE, International Symposium on Biomedical Imaging, pp. 645–657. IEEE (2015)

    Google Scholar 

  3. Wang, X., Ren, Y., Yang, Y., et al.: A weighted discriminative dictionary learning method for depression disorder classification using fMRI data. In: IEEE International Conferences on Big Data and Cloud Computing, pp. 618–623. IEEE (2016)

    Google Scholar 

  4. Golbabaei, S., Vahid, A., Hatami, J., et al.: Classification of Alzheimer’s disease and mild cognitive impairment: machine learning applied to rs-fMRI brain graphs. In: 2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering (ICBME). IEEE (2016)

    Google Scholar 

  5. Cicek, G., Akan, A., Orman, Z.: Classification of ADHD by using textural analysis of MR images. In: Medical Technologies National Congress, pp. 1–4 (2017)

    Google Scholar 

  6. Biswal, B., Yetkin, F.Z., Haughton, V.M., et al.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995)

    Article  Google Scholar 

  7. Raichle, M.E., Mintun, M.A.: Brain work and brain imaging. Annu. Rev. Neurosci. 29, 449–476 (2006)

    Article  Google Scholar 

  8. Allen, E.A., Damaraju, E., Plis, S.M., et al.: Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24(3), 663–676 (2014)

    Article  Google Scholar 

  9. Zhang, X., Li, X., Jin, C., et al.: Identifying and characterizing resting state networks in temporally dynamic functional connectomes. Brain Topogr. 27(6), 747–765 (2014)

    Article  Google Scholar 

  10. Lian, Z., Li, X., Xing, J., et al.: Exploring functional brain dynamics via a Bayesian connectivity change point model. In: 2014 IEEE 11th International Symposium on Biomedical Imaging, ISBI 2014. IEEE (2014)

    Google Scholar 

  11. Li, Y., Lian, Z., Li, M., et al.: ELM-based classification of ADHD patients using a novel local feature extraction method. In: IEEE International Conference on Bioinformatics & Biomedicine. IEEE (2017)

    Google Scholar 

  12. Jie, B., Wee, C.Y., Shen, D., et al.: Hyper-connectivity of functional networks for brain disease diagnosis. Med. Image Anal. 32, 84–100 (2016). S1361841516300044

    Article  Google Scholar 

  13. Ke, M., Duan, X., Zhang, F., Yang, X.: Complex brain network of patients with epilepsy using cascading failure analysis of fMRI data. In: 2015 IEEE/ACIS 16th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), Takamatsu, pp. 1–6 (2015)

    Google Scholar 

  14. Bahramf, M., Hossein-Zadeh, G.: Functional parcellations affect the network measures in graph analysis of resting-state fMRI. In: 2014 21th Iranian Conference on Biomedical Engineering (ICBME), Tehran, pp. 263–268 (2014)

    Google Scholar 

  15. Hiroyasu, T., Kohri, Y., Hiwa, S.: Sparse feature selection method by Pareto-front exploration—Extraction of functional brain network and ROI for fMRI data. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, pp. 1–8 (2017)

    Google Scholar 

  16. Guo, H., Li, Y., Xu, Y., et al.: Resting-state brain functional hyper-network construction based on elastic net and group lasso methods. Front. Neuroinform. 12, 25 (2018)

    Article  Google Scholar 

  17. Zhang, X., Guo, L., Li, X., et al.: Characterization of task-free and task-performance brain states via functional connectome patterns. Med. Image Anal. 17(8), 1106–1122 (2013)

    Article  Google Scholar 

  18. Liu, J., Ji, S., Ye, J.: SLEP: sparse learning with efficient projections. Comput. Sci. Eng. 61 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichao Lian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Lian, Z., Huang, C. (2019). A Multilayer Sparse Representation of Dynamic Brain Functional Network Based on Hypergraph Theory for ADHD Classification. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Big Data and Machine Learning. IScIDE 2019. Lecture Notes in Computer Science(), vol 11936. Springer, Cham. https://doi.org/10.1007/978-3-030-36204-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36204-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36203-4

  • Online ISBN: 978-3-030-36204-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics