Skip to main content

Multi-modality Low-Rank Learning Fused First-Order and Second-Order Information for Computer-Aided Diagnosis of Schizophrenia

  • Conference paper
  • First Online:
Book cover Intelligence Science and Big Data Engineering. Big Data and Machine Learning (IScIDE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11936))

Abstract

The brain functional connectivity network (BFCN) based methods for diagnosing brain diseases have shown great advantages. At present, most BFCN construction strategies only calculate the first-order correlation between brain areas, such as the Pearson correlation coefficient method. Although the work of the low-order and high-order BFCN construction methods exists, there is very little work to integrate them, that is, to design a multi-modal BFCN feature selection and classification method to combine low-order and high-order information. This may affect the performance of brain disease diagnosis. To this end, we propose a multi-modality low-rank learning framework jointly learning first-order and second-order BFCN information and apply it to the diagnosis of schizophrenia. The proposed method not only embeds the correlation information of multi-modality data in the learning model, but also encourages the cooperation between the first-order and the second-order BFCN by combining the ideal representation term. The experimental results of the three schizophrenia datasets (totally including 168 patients and 163 normal controls) show that our proposed method achieves promising classification results in the diagnosis of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bluhm, R.L., et al.: Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr. Bull. 33, 1004–1012 (2007)

    Article  Google Scholar 

  2. Richiardi, J., Achard, S., Bunke, H., Van De Ville, D.: Machine learning with brain graphs: predictive modeling approaches for functional imaging in systems neuroscience. IEEE Signal Process. Mag. 30, 58–70 (2013). https://doi.org/10.1109/MSP.2012.2233865

    Article  Google Scholar 

  3. Guo, S., Kendrick, K.M., Yu, R., Wang, H.L.S., Feng, J.: Key functional circuitry altered in schizophrenia involves parietal regions associated with sense of self. Hum. Brain Mapp. 35, 123–139 (2014). https://doi.org/10.1002/hbm.22162

    Article  Google Scholar 

  4. Zhu, Q., Li, H., Huang, J., Xu, X., Guan, D., Zhang, D.: Hybrid functional brain network with first-order and second-order information for computer-aided diagnosis of schizophrenia. Front. Neurosci. 13, 603 (2019). https://doi.org/10.3389/fnins.2019.00603

    Article  Google Scholar 

  5. Huang, S., et al.: Identifying Alzheimer’s disease-related brain areas from multi-modality neuroimaging data using sparse composite linear discrimination analysis. In: Advances in Neural Information Processing Systems, vol. 1431–1439 (2011)

    Google Scholar 

  6. Zhang, D., Shen, D.: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. Neuroimage 59, 895–907 (2012). https://doi.org/10.1016/j.neuroimage.2011.09.069

    Article  Google Scholar 

  7. Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory 56, 2053–2080 (2010)

    Article  MathSciNet  Google Scholar 

  8. Zhu, Q., Li, H., Huang, J., Xu, X., Guan, D., Zhang, D.: Hybrid functional brain network with first-order and second-order information for computer-aided diagnosis of schizophrenia. Front. Neurosci. 13, 603 (2019). https://doi.org/10.3389/fnins.2019.00603

    Article  Google Scholar 

  9. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35, 171–184 (2013). https://doi.org/10.1109/TPAMI.2012.88

    Article  Google Scholar 

  10. Zhang, N., Yang, J.: Low-rank representation based discriminative projection for robust feature extraction. Neurocomputing 111, 13–20 (2013). https://doi.org/10.1016/j.neucom.2012.12.012

    Article  Google Scholar 

  11. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 717–772 (2009). https://doi.org/10.1007/s10208-009-9045-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Fazel, M.: Matrix Rank Minimization with Applications. Dissertation (2002)

    Google Scholar 

  13. Jie, B., Zhang, D., Cheng, B., Shen, D.: Manifold regularized multitask feature learning for multimodality disease classification. Hum. Brain Mapp. 36, 489–507 (2015)

    Article  Google Scholar 

  14. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35, 171–184 (2013). https://doi.org/10.1109/TPAMI.2012.88

    Article  Google Scholar 

  15. Wright, J., Ganesh, A., Rao, S., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices, vol. 1, pp. 289–298 (2009). 58

    Google Scholar 

  16. Zhu, C., Wei, L., Zhou, R., Wang, X., Wu, A.: Robust subspace segmentation by self-representation constrained low-rank representation. In: Neural Processing Letters, pp. 1671–1691 (2018) https://doi.org/10.1007/s11063-018-9783-y

    Article  Google Scholar 

  17. Lin, Z., Chen, M., Wu, L., Ma, Y.: The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices. Eprint Arxiv. 9 (2010)

    Google Scholar 

  18. Zhang, Z., Liu, L., Shen, F., Shen, H.T., Shao, L.: Binary multi-view clustering. IEEE Trans. Pattern Anal. Mach. Intell. 41, 1 (2018)

    Article  Google Scholar 

  19. Yang, J., Yin, W., Zhang, Y., Wang, Y.: A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J. Imaging Sci. 2, 569–592 (2009)

    Article  MathSciNet  Google Scholar 

  20. Zhang, X., Jia, Y.: A linear discriminant analysis framework based on random subspace for face recognition. Pattern Recogn. 40, 2585–2591 (2007). https://doi.org/10.1016/j.patcog.2006.12.002

    Article  MATH  Google Scholar 

  21. Chang, C., Lin, C.: LIBSVM. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011). https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  22. Cai, D., He, X., Han, J.: Speed up kernel discriminant analysis. VLDB J. 20, 21–33 (2011)

    Article  Google Scholar 

  23. Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55, 856–867 (2011). https://doi.org/10.1016/j.neuroimage.2011.01.008

    Article  Google Scholar 

  24. Foroughi, H., Shakeri, M., Ray, N., Zhang, H.: Face recognition using multi-modal low-rank dictionary learning. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 1082–1086. IEEE (2017). https://doi.org/10.1109/ICIP.2017.8296448

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (Nos. 61501230, 61732006, 61876082 and 81771444), National Science and Technology Major Project (No. 2018ZX10201002), and the Fundamental Research Funds for the Central Universities (No. NJ2019010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Zhu, Q., Zhang, R., Zhang, D. (2019). Multi-modality Low-Rank Learning Fused First-Order and Second-Order Information for Computer-Aided Diagnosis of Schizophrenia. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Big Data and Machine Learning. IScIDE 2019. Lecture Notes in Computer Science(), vol 11936. Springer, Cham. https://doi.org/10.1007/978-3-030-36204-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36204-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36203-4

  • Online ISBN: 978-3-030-36204-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics