# SpringerBriefs in Computer Science

#### **Series Editors**

Stan Zdonik, Brown University, Providence, RI, USA
Shashi Shekhar, University of Minnesota, Minneapolis, MN, USA
Xindong Wu, University of Vermont, Burlington, VT, USA
Lakhmi C. Jain, University of South Australia, Adelaide, SA, Australia
David Padua, University of Illinois Urbana-Champaign, Urbana, IL, USA
Xuemin Sherman Shen, University of Waterloo, Waterloo, ON, Canada
Borko Furht, Florida Atlantic University, Boca Raton, FL, USA
V. S. Subrahmanian, University of Maryland, College Park, MD, USA
Martial Hebert, Carnegie Mellon University, Pittsburgh, PA, USA
Katsushi Ikeuchi, University of Tokyo, Tokyo, Japan
Bruno Siciliano, Università di Napoli Federico II, Napoli, Italy
Sushil Jajodia, George Mason University, Fairfax, VA, USA
Newton Lee, Institute for Education, Research, and Scholarships, Los Angeles, CA, USA

SpringerBriefs present concise summaries of cutting-edge research and practical applications across a wide spectrum of fields. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic.

Typical topics might include:

- A timely report of state-of-the art analytical techniques
- A bridge between new research results, as published in journal articles, and a contextual literature review
- A snapshot of a hot or emerging topic
- An in-depth case study or clinical example
- A presentation of core concepts that students must understand in order to make independent contributions

Briefs allow authors to present their ideas and readers to absorb them with minimal time investment. Briefs will be published as part of Springer's eBook collection, with millions of users worldwide. In addition, Briefs will be available for individual print and electronic purchase. Briefs are characterized by fast, global electronic dissemination, standard publishing contracts, easy-to-use manuscript preparation and formatting guidelines, and expedited production schedules. We aim for publication 8–12 weeks after acceptance. Both solicited and unsolicited manuscripts are considered for publication in this series.

More information about this series at http://www.springer.com/series/10028

Dániel Leitold · Ágnes Vathy-Fogarassy · János Abonyi

# Network-Based Analysis of Dynamical Systems

Methods for Controllability and Observability Analysis, and Optimal Sensor Placement



Dániel Leitold Department of Computer Science and Systems Technology University of Pannonia Veszprém, Hungary

János Abonyi MTA-PE Lendület Complex Systems Monitoring Research Group University of Pannonia Veszprém, Hungary Ágnes Vathy-Fogarassy Department of Computer Science and Systems Technology University of Pannonia Veszprém, Hungary

ISSN 2191-5768 ISSN 2191-5776 (electronic) SpringerBriefs in Computer Science ISBN 978-3-030-36471-7 ISBN 978-3-030-36472-4 (eBook) https://doi.org/10.1007/978-3-030-36472-4

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

# Preface

Network science for the analysis of dynamical systems has become a widely applied methodology over the past decade. Representing the system as a mathematical graph enables several network-based methods to be applied and centrality and clustering measures calculated to characterise and describe the behaviour of dynamical systems. Through the application of network-related algorithms in complex interconnected systems, the methodology created a strong connection between computer science, control theory and other fields where the approach is applicable, e.g. in biology.

The key idea of this book is that the dynamical properties of complex systems can be determined by the effective calculation of specific structural features by network science-based analysis. Furthermore, certain dynamical behaviours can originate from the existence of specific motifs in the network representation or can be determined by network segmentation. Although the applicability of the methods and results was highlighted in the operability analysis of dynamical systems, the proposed methods can be utilised in various fields that will be mentioned at the end of each chapter.

Chapter 1 of this book provides a brief introduction to the methodology that utilises the network science-based representation of dynamical systems to determine the location of the inputs and outputs such that their cardinality is also minimised. Then the scientific impact and main applications, e.g. in biology, sociology or physics, of the methodology are expounded on.

Chapter 2 deals with the structural analysis of the network-based representation of dynamical systems and defines those motifs that are specified by the dynamics of networks, e.g. integrating behaviour of a state variable, the diffusion of communication or changes in a temporal network. It was pointed out that these motifs are usually missing from benchmark networks. The significant reduction in the number of necessary inputs and outputs according to the presence of these motifs is also presented.

Chapter 3 deals with the improvement of the input and output configurations of dynamical systems, and presents five methods that can be used to decrease their relative degree according to the revealed motifs of the networks.

Chapter 4 deals with the analysis of the correlation between the structural properties of network-based representations and dynamical behaviours of dynamical systems. A general workflow is proposed, which was presented through a case study, that involved more than 600 heat exchanger networks.

Finally, an Octave- and MATLAB-compatible toolbox is introduced which is capable of conducting the analysis introduced in the previous chapters. The implemented functions are presented in the form of an artificial example that clearly shows the connection between the structural as well as dynamical features and highlights the differences between the centrality measures.

The applicability of the developed algorithms is presented in the form of well-known benchmark examples. An in-depth knowledge of the benchmark examples is not required from the reader, however, this may be beneficial to understand the proposed approaches. The reader is encouraged to unleash his/her imagination in terms of the applicability of the methods in other fields since the problems and results can be transferred to other networks and system classes. The introduction of the proposed algorithms is supported by in excess of 50 figures and more than 170 references that provide a good overview of the current state of the network science-based analysis of dynamical systems and suggest further reading material for researchers and students. The files of the proposed toolbox are downloadable from the website of the authors (www.abonyilab.com).

We hope, with the help of this book, that computer scientists can take on new challenges as further algorithms are necessary to reveal all the information that is hidden behind the structure of the networks. What is more, control engineers will acquaint themselves with a new tool applicable to the analysis of interconnected and structurally complex systems. Additionally, other experts, e.g. biologists, physicists, pharmacists, doctors and logisticians, will receive an overview of how the analysis of the dynamic-related properties of networks can support their analysis.

This research was supported by the National Research, Development and Innovation Office NKFIH, through the project OTKA-116674 (Process mining and deep learning in the natural sciences and process development) and the EFOP-3.6.1-16-2016-00015 Smart Specialization Strategy (S3) Comprehensive Institutional Development Program.

Veszprém, Hungary September 2019 Dániel Leitold Ágnes Vathy-Fogarassy János Abonyi

# Contents

| 1 | Intr | oduction                                                 |    |
|---|------|----------------------------------------------------------|----|
|   | 1.1  | Network Science-Based Analysis of Complex Systems        |    |
|   | 1.2  | Formalisation of the Network-Based Controllability and   |    |
|   |      | Observability Analysis                                   |    |
|   | 1.3  | Recent Trends in Network-Based Dynamical System Analysis |    |
|   | 1.4  | Motivation and Outline of the Book                       | 9  |
|   | Refe | erences                                                  | 12 |
| 2 | Stru | ctural Controllability and Observability Analysis        |    |
|   | in C | Complex Networks                                         | 1′ |
|   | 2.1  | Critical Evaluation of the Methodology                   | 1  |
|   | 2.2  | Connections Between the State Variables and Their Effect |    |
|   |      | on Controllability and Observability                     | 1  |
|   | 2.3  | Benchmark Examples                                       | 2  |
|   | 2.4  | Effect of the Connection Types                           | 2  |
|   | 2.5  | Discussion                                               | 2  |
|   | Refe | erences                                                  | 2  |
| 3 | Red  | uction of Relative Degree by Optimal Control and Sensor  |    |
|   | Plac | ement                                                    | 2  |
|   | 3.1  | Problem of Sensor Placement                              | 2  |
|   | 3.2  | Relative Degree-Based Cost Functions                     | 2  |
|   | 3.3  | Fast and Robust Output Configuration Design              | 3  |
|   |      | 3.3.1 Centrality Measures and Set Covering-Based Methods | 3  |
|   |      | 3.3.2 Simulated Annealing and Fuzzy Clustering-Based     |    |
|   |      | Methods                                                  | 3  |
|   |      |                                                          |    |

|    | 3.4   | Sensor Placement Case Studies                          | 35  |
|----|-------|--------------------------------------------------------|-----|
|    |       | 3.4.1 Description of the Case Studies                  | 35  |
|    |       | 3.4.2 Performance of the Optimisation Algorithms       | 38  |
|    |       | 3.4.3 Convergence Analysis                             | 44  |
|    | 3.5   | Discussion                                             | 45  |
|    | Refe  | erences                                                | 46  |
| 4  | Apr   | lication to the Analysis of Heat Exchanger Networks    | 49  |
|    | 4.1   | Importance of Process Integration                      | 49  |
|    | 4.2   | Network-Based Complexity and Operability Analysis      |     |
|    |       | of HENs                                                | 51  |
|    | 4.3   | Studied Benchmark Problems                             | 56  |
|    |       | 4.3.1 Analysis of the 9sp-al1 Problem                  | 56  |
|    |       | 4.3.2 Correlation Between Structural and Dynamical     |     |
|    |       | Properties                                             | 63  |
|    | 4.4   | Discussion                                             | 66  |
|    | Refe  | erences                                                | 67  |
| 5  | The   | NOCAD MATLAB/Octave Toolbox Developed                  |     |
|    |       | the Analysis of Dynamical Systems                      | 71  |
|    | 5.1   | Existing Tools for Network Analysis                    | 71  |
|    | 5.2   | The Workflow Related to the Application of the Toolbox | 73  |
|    | 5.3   | Structure of the Toolbox                               | 73  |
|    | 5.4   | Use Cases                                              | 74  |
|    | 5.5   | Discussion                                             | 80  |
|    | Refe  | erences                                                | 80  |
| 6  | Sun   | mary                                                   | 83  |
| Ŭ  | 6.1   | Conclusion                                             | 83  |
|    | 0.12  |                                                        | 00  |
| Aŗ | pend  | lix A: Effect of Connection Types                      | 87  |
| Ap | pend  | lix B: Reduction of Relative Degree by Additional      |     |
|    |       | Drivers and Sensors                                    | 99  |
| In | dex . |                                                        | 109 |
|    |       |                                                        |     |

# Symbols and Acronyms

## **Symbols**

#### **State-Space Representation**

- *x* Vector of state variables
- *u* Vector of inputs
- *d* Vector of disturbances
- y Vector of outputs
- A State-transition matrix
- **B** Input matrix
- E Disturbance matrix (linear)
- C Output matrix
- **D** Feedthrough (or feedforward) matrix
- $b^j$  *j*th column of matrix **B**
- $c_i$  *j*th row of matrix **C**
- C Controllability matrix
- $\mathcal{O}$  Observability matrix
- $\mathbf{I}_N$  Identity matrix of size  $N \times N$
- N Number of state variables
- M Number of inputs
- K Number of outputs
- f State-transition function
- t Time

#### **Network Representations**

| G(V, E) | Network representation of the system |
|---------|--------------------------------------|
| $G^u$   | Undirected representation of G       |

| V         | Set of vertices of the network representation of the system |
|-----------|-------------------------------------------------------------|
| Ε         | Connections between the state variables                     |
| $V_i$     | Node $i$ from the node set $V$                              |
| $E_i$     | Edge $i$ from the edge set $E$                              |
| $G_{SS}$  | SS-based graph                                              |
| $V_{SS}$  | Set of nodes of SS-based representation                     |
| $E_{SS}$  | Set of edges of SS-based representation                     |
| $G_{SM}$  | SM-based graph                                              |
| $V_{SM}$  | Set of nodes of SM-based representation                     |
| $E_{SM}$  | Set of edges of SM-based representation                     |
| $G_{DAE}$ | DAE-based graph                                             |
| $V_{DAE}$ | Set of nodes of DAE-based representation                    |
| $E_{DAE}$ | Set of edges of DAE-based representation                    |
| $V_{hs}$  | Set of nodes of hot streams in SM-based representation      |
| $V_{cs}$  | Set of nodes of cold streams in SM-based representation     |
| $V_{hp}$  | Node of high pressure steam in SM-based representation      |
| $V_{cw}$  | Node of cold water in SM-based representation               |
| $E_{he}$  | Set of edges of heat exchangers in SM-based representation  |
| $E_{uh}$  | Set of edges of utility heaters in SM-based representation  |
| $E_{uc}$  | Set of edges of utility coolers in SM-based representation  |

## **Configurations Extension**

| $N_R(i)$         | Set of reachable nodes from node <i>i</i>                             |
|------------------|-----------------------------------------------------------------------|
| $Z_i$            | Set of nodes to which the nearest sensor node is node <i>i</i>        |
| $W_i$            | Set of reachable nodes from node $i$ in $r_{max}$ steps               |
| U                | Set of all state variables                                            |
| С                | Set of necessary driver nodes for structural controllability          |
| 0                | Set of necessary sensor nodes for structural observability            |
| J                | Set of driver/sensor nodes of the input/output configuration          |
| Р                | Set of state variables covered by set $J$                             |
| Cc(i)            | Closeness centrality of node <i>i</i>                                 |
| Bc(i)            | Betweenness centrality of node <i>i</i>                               |
| $\sigma_{st}$    | Number of shortest paths from node $s$ to $t$                         |
| $\sigma_{st}(i)$ | Number of shortest paths from node $s$ to $t$ that intercept node $i$ |
| $K^+$            | Number of additional sensor nodes                                     |
| L                | Lie derivative                                                        |
| $r_{i,j}$        | Relative degree of $y_i$ and $u_j$                                    |
| $r_i$            | Relative degree of $y_i$                                              |
| r                | Relative order of the system                                          |
| $r_{max}$        | Upper bound for r                                                     |
| S                | Set of sensor nodes                                                   |
|                  |                                                                       |

| $S_f$              | Set of fixed sensor nodes                                      |
|--------------------|----------------------------------------------------------------|
| $S_c$              | Set of candidate sensor nodes                                  |
| β                  | Weighting parameter of cost function                           |
| M*                 | Set of matched nodes                                           |
| $\Delta$           | Difference between cost functions in SA                        |
| $T_{max}, T_{min}$ | Maximum and minimum temperature in SA                          |
| $m_{max}, m_{min}$ | Maximum and minimum fuzzy exponent in SA                       |
| $T^i$              | Temperature in iteration <i>i</i>                              |
| $m^i$              | Fuzzy exponent in iteration <i>i</i>                           |
| α                  | Reduction rate of temperature                                  |
| $\alpha_m$         | Reduction rate of the fuzzy exponent                           |
| maxiter            | Number of iterations of SA                                     |
| $R(s_j)$           | Set of the state variables of the cluster of sensor node $s_j$ |
| $\mu_{i,j}$        | Fuzzy membership function of $x_j$ to $y_i$                    |

#### **Network Measures**

| $n_i$                      | Weight of node <i>i</i>                           |
|----------------------------|---------------------------------------------------|
| Wi                         | Weight of edge <i>i</i>                           |
| $k_i^{out}, k_i^{in}, k_i$ | Out-, in-, and simple degree of node i            |
| $\langle k_i \rangle$      | Average node degree                               |
| $\ell_{ij}$                | Length of shortest path between nodes $i$ and $j$ |
| $\mathcal{D}$              | Distance matrix                                   |
| TWC(G)                     | Total walk count measure of graph G               |
| CNC(G)                     | Coefficient of network complexity of graph $G$    |
| Ecc(i), Ecc(G)             | Eccentricity of node $i$ , or graph $G$           |
| W(G)                       | Wiener index of graph G                           |
| AD(G)                      | A/D index of graph G                              |
| BJ(G)                      | Balaban-J index of graph G                        |
| CI(G)                      | Connectivity index of graph G                     |
| $d_{max}$                  | Diameter of the network                           |
|                            |                                                   |

## Heat Exchanger Networks

- $T_{hi}$  Hot input temperature of a heat exchanger
- $T_{ci}$  Cold input temperature of a heat exchanger
- $T_{ho}$  Hot output temperature of a heat exchanger
- $T_{co}$  Cold output temperature of a heat exchanger
- $v_h$  Flow rate of hot stream
- $v_c$  Flow rate of cold stream

- $V_h$  Volume of hot side of heat exchanger
- $V_c$  Volume of cold side of heat exchanger
- U Heat transfer coefficient
- A Heat transfer area
- $c_{ph}$  Heat capacity of hot stream
- $c_{pc}$  Heat capacity of cold stream
- $\rho_h$  Density of hot stream
- $\rho_c$  Density of cold stream
- U<sub>un</sub> Number of units
- N<sub>s</sub> Number of streams
- *L* Number of independent loops
- *S* Number of separate components
- *H* Number of heat exchangers

### Water Tanks

- $A_i$  Area of water tank i
- $K_v$  State of valve *i* (open/close)
- $F_i$  Flow rate of value *i*
- $x_i$  Water level in tank i

## Acronyms

| ARR     | Analytical redundancy relation                                |
|---------|---------------------------------------------------------------|
| CFD     | Computational fluid dynamics                                  |
| CLASA   | Clustering large applications based on simulated annealing    |
| CNC     | Coefficient of network complexity                             |
| CO      | Combinatorial optimisation                                    |
| DAE     | Differential-algebraic system of equations                    |
| DN      | Distribution network                                          |
| DRSA    | Dual representation simulated annealing                       |
| FDI     | Fault detection and isolation                                 |
| GA      | Genetic algorithm                                             |
| GD      | Grid diagram                                                  |
| GDFCM   | Geodesic distance-based fuzzy c-medoid clustering method      |
| GDFCMSA | Geodesic distance-based fuzzy c-medoid clustering method with |
|         | simulated annealing                                           |
| HEN     | Heat exchanger network                                        |
| HLMN    | Human liver metabolic network                                 |
| HSCN    | Human signalling cancer network                               |

| LCC    | Longest control chain                                               |
|--------|---------------------------------------------------------------------|
| LTI    | Linear time-invariant                                               |
| mCLASA | Modified clustering large applications based on simulated annealing |
| MDS    | Minimum driver node set                                             |
| MER    | Maximum energy recovery or minimum energy requirements              |
| MIMO   | Multiple-input and multiple-output                                  |
| MNA    | Modified nodal analysis                                             |
| ncRNA  | Non-protein coding ribonucleic acid                                 |
| NOCAD  | Network-based observability and controllability analysis of         |
|        | dynamical systems                                                   |
| OSLP   | Optimal sensor location problem                                     |
| PEEC   | Partial element equivalent circuit                                  |
| PFD    | Process flow diagram                                                |
| PI     | Process integration                                                 |
| PSO    | Particle swarm optimisation                                         |
| RI     | Resilience index                                                    |
| SA     | Simulated annealing                                                 |
| SCC    | Strongly connected components                                       |
| SHM    | Structural health monitoring                                        |
| SM     | Streams and matches                                                 |
| SS     | State-space approach                                                |
| TAC    | Total annualised cost                                               |
| TCO    | Target control problem with objectives-guided optimisation          |
| TOG    | Time-ordered graph                                                  |
| TWC    | Total walk count                                                    |
|        |                                                                     |