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Preface

Network science for the analysis of dynamical systems has become a widely
applied methodology over the past decade. Representing the system as a mathe-
matical graph enables several network-based methods to be applied and centrality
and clustering measures calculated to characterise and describe the behaviour of
dynamical systems. Through the application of network-related algorithms in
complex interconnected systems, the methodology created a strong connection
between computer science, control theory and other fields where the approach is
applicable, e.g. in biology.

The key idea of this book is that the dynamical properties of complex systems
can be determined by the effective calculation of specific structural features by
network science-based analysis. Furthermore, certain dynamical behaviours can
originate from the existence of specific motifs in the network representation or can
be determined by network segmentation. Although the applicability of the methods
and results was highlighted in the operability analysis of dynamical systems, the
proposed methods can be utilised in various fields that will be mentioned at the end
of each chapter.

Chapter 1 of this book provides a brief introduction to the methodology that
utilises the network science-based representation of dynamical systems to deter-
mine the location of the inputs and outputs such that their cardinality is also
minimised. Then the scientific impact and main applications, e.g. in biology,
sociology or physics, of the methodology are expounded on.

Chapter 2 deals with the structural analysis of the network-based representation
of dynamical systems and defines those motifs that are specified by the dynamics of
networks, e.g. integrating behaviour of a state variable, the diffusion of commu-
nication or changes in a temporal network. It was pointed out that these motifs are
usually missing from benchmark networks. The significant reduction in the number
of necessary inputs and outputs according to the presence of these motifs is also
presented.

Chapter 3 deals with the improvement of the input and output configurations of
dynamical systems, and presents five methods that can be used to decrease their
relative degree according to the revealed motifs of the networks.
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Chapter 4 deals with the analysis of the correlation between the structural
properties of network-based representations and dynamical behaviours of dynam-
ical systems. A general workflow is proposed, which was presented through a case
study, that involved more than 600 heat exchanger networks.

Finally, an Octave- and MATLAB-compatible toolbox is introduced which is
capable of conducting the analysis introduced in the previous chapters. The
implemented functions are presented in the form of an artificial example that clearly
shows the connection between the structural as well as dynamical features and
highlights the differences between the centrality measures.

The applicability of the developed algorithms is presented in the form of
well-known benchmark examples. An in-depth knowledge of the benchmark
examples is not required from the reader, however, this may be beneficial to
understand the proposed approaches. The reader is encouraged to unleash his/her
imagination in terms of the applicability of the methods in other fields since the
problems and results can be transferred to other networks and system classes. The
introduction of the proposed algorithms is supported by in excess of 50 figures and
more than 170 references that provide a good overview of the current state of the
network science-based analysis of dynamical systems and suggest further reading
material for researchers and students. The files of the proposed toolbox are
downloadable from the website of the authors (www.abonyilab.com).

We hope, with the help of this book, that computer scientists can take on new
challenges as further algorithms are necessary to reveal all the information that is
hidden behind the structure of the networks. What is more, control engineers will
acquaint themselves with a new tool applicable to the analysis of interconnected and
structurally complex systems. Additionally, other experts, e.g. biologists, physicists,
pharmacists, doctors and logisticians, will receive an overview of how the analysis
of the dynamic-related properties of networks can support their analysis.

This research was supported by the National Research, Development and
Innovation Office NKFIH, through the project OTKA-116674 (Process mining and
deep learning in the natural sciences and process development) and the
EFOP-3.6.1-16-2016-00015 Smart Specialization Strategy (S3) Comprehensive
Institutional Development Program.

Veszprém, Hungary
September 2019

Dániel Leitold
Ágnes Vathy-Fogarassy

János Abonyi
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Symbols

State-Space Representation

x Vector of state variables
u Vector of inputs
d Vector of disturbances
y Vector of outputs
A State-transition matrix
B Input matrix
E Disturbance matrix (linear)
C Output matrix
D Feedthrough (or feedforward) matrix
b j jth column of matrix B
cj jth row of matrix C
C Controllability matrix
O Observability matrix
IN Identity matrix of size N � N
N Number of state variables
M Number of inputs
K Number of outputs
f State-transition function
t Time

Network Representations

GðV ;EÞ Network representation of the system
Gu Undirected representation of G
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V Set of vertices of the network representation of the system
E Connections between the state variables
Vi Node i from the node set V
Ei Edge i from the edge set E
GSS SS-based graph
VSS Set of nodes of SS-based representation
ESS Set of edges of SS-based representation
GSM SM-based graph
VSM Set of nodes of SM-based representation
ESM Set of edges of SM-based representation
GDAE DAE-based graph
VDAE Set of nodes of DAE-based representation
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Vhs Set of nodes of hot streams in SM-based representation
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CcðiÞ Closeness centrality of node i
BcðiÞ Betweenness centrality of node i
rst Number of shortest paths from node s to t
rstðiÞ Number of shortest paths from node s to t that intercept node i
K þ Number of additional sensor nodes
L Lie derivative
ri;j Relative degree of yi and uj
ri Relative degree of yi
r Relative order of the system
rmax Upper bound for r
S Set of sensor nodes
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Sf Set of fixed sensor nodes
Sc Set of candidate sensor nodes
b Weighting parameter of cost function
M� Set of matched nodes
D Difference between cost functions in SA
Tmax; Tmin Maximum and minimum temperature in SA
mmax;mmin Maximum and minimum fuzzy exponent in SA
Ti Temperature in iteration i
mi Fuzzy exponent in iteration i
a Reduction rate of temperature
am Reduction rate of the fuzzy exponent
maxiter Number of iterations of SA
RðsjÞ Set of the state variables of the cluster of sensor node sj
li;j Fuzzy membership function of xj to yi

Network Measures

ni Weight of node i
wi Weight of edge i
kouti ; kini ; ki Out-, in-, and simple degree of node i
hkii Average node degree
‘ij Length of shortest path between nodes i and j
D Distance matrix
TWCðGÞ Total walk count measure of graph G
CNCðGÞ Coefficient of network complexity of graph G
EccðiÞ;EccðGÞ Eccentricity of node i, or graph G
WðGÞ Wiener index of graph G
ADðGÞ A/D index of graph G
BJðGÞ Balaban-J index of graph G
CIðGÞ Connectivity index of graph G
dmax Diameter of the network

Heat Exchanger Networks

Thi Hot input temperature of a heat exchanger
Tci Cold input temperature of a heat exchanger
Tho Hot output temperature of a heat exchanger
Tco Cold output temperature of a heat exchanger
vh Flow rate of hot stream
vc Flow rate of cold stream
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Vh Volume of hot side of heat exchanger
Vc Volume of cold side of heat exchanger
U Heat transfer coefficient
A Heat transfer area
cph Heat capacity of hot stream
cpc Heat capacity of cold stream
qh Density of hot stream
qc Density of cold stream
Uun Number of units
Ns Number of streams
L Number of independent loops
S Number of separate components
H Number of heat exchangers

Water Tanks

Ai Area of water tank i
Kv State of valve i (open/close)
Fi Flow rate of valve i
xi Water level in tank i

Acronyms

ARR Analytical redundancy relation
CFD Computational fluid dynamics
CLASA Clustering large applications based on simulated annealing
CNC Coefficient of network complexity
CO Combinatorial optimisation
DAE Differential-algebraic system of equations
DN Distribution network
DRSA Dual representation simulated annealing
FDI Fault detection and isolation
GA Genetic algorithm
GD Grid diagram
GDFCM Geodesic distance-based fuzzy c-medoid clustering method
GDFCMSA Geodesic distance-based fuzzy c-medoid clustering method with

simulated annealing
HEN Heat exchanger network
HLMN Human liver metabolic network
HSCN Human signalling cancer network
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LCC Longest control chain
LTI Linear time-invariant
mCLASA Modified clustering large applications based on simulated annealing
MDS Minimum driver node set
MER Maximum energy recovery or minimum energy requirements
MIMO Multiple-input and multiple-output
MNA Modified nodal analysis
ncRNA Non-protein coding ribonucleic acid
NOCAD Network-based observability and controllability analysis of

dynamical systems
OSLP Optimal sensor location problem
PEEC Partial element equivalent circuit
PFD Process flow diagram
PI Process integration
PSO Particle swarm optimisation
RI Resilience index
SA Simulated annealing
SCC Strongly connected components
SHM Structural health monitoring
SM Streams and matches
SS State-space approach
TAC Total annualised cost
TCO Target control problem with objectives-guided optimisation
TOG Time-ordered graph
TWC Total walk count
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