
ar
X

iv
:1

90
9.

01
15

2v
2

 [
cs

.D
S]

 1
1

M
ar

 2
02

0

Efficient Computation of Optimal Temporal

Walks under Waiting-Time Constraints

Anne-Sophie Himmel∗, Matthias Bentert, André Nichterlein, and

Rolf Niedermeier

Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Berlin, Germany,
{anne-sophie.himmel, matthias.bentert, andre.nichterlein,

rolf.niedermeier}@tu-berlin.de

Node connectivity plays a central role in temporal network analysis. We
provide a comprehensive study of various concepts of walks in temporal
graphs, that is, graphs with fixed vertex sets but edge sets changing over time.
Taking into account the temporal aspect leads to a rich set of optimization
criteria for “shortest” walks. Extending and significantly broadening state-
of-the-art work of Wu et al. [IEEE TKDE 2016], we provide an algorithm for
computing optimal walks that is capable to deal with various optimization
criteria and any linear combination of these. It runs in O(|V | + |E| log |E|)
time where |V | is the number of vertices and |E| is the number of time edges.
A central distinguishing factor to Wu et al.’s work is that our model allows
to, motivated by real-world applications, respect waiting-time constraints for
vertices, that is, the minimum and maximum waiting time allowed in inter-
mediate vertices of a walk. Moreover, other than Wu et al. our algorithm
also allows to search for walks that pass multiple subsequent edges in one
time step, and it can optimize a richer set of optimization criteria. Our
experimental studies indicate that our richer modeling can be achieved with-
out significantly worsening the running time when compared to Wu et al.’s
algorithms.

1 Introduction

Computing shortest paths in networks is arguably among the most important graph
algorithms, relevant in numerous application contexts and being used as a subroutine in

∗Supported by the DFG, projects FPTinP (NI 369/16).

1

http://arxiv.org/abs/1909.01152v2

A B C

DE

4

8

10

14

16

Figure 1: A temporal graph (with time-labeled arcs) with maximum waiting time four
in which the only temporal walk from A to C visits B twice.

a highly diverse set of applications. While the case has been studied in static graphs for
decades, over the last years there has been an intensified interest in studying shortest
path computations in temporal graphs—graphs where the vertex set remains static, but
the edge set may change over (discrete) time.

Two natural motivating examples for the relevance of path and walk (which can visit
a vertex multiple times) computations in temporal graphs are as follows. First, Wu et
al. [30] discuss applications in flight networks where every node represents an airport and
each edge is labeled with a flight’s departure time. Clearly, a “shortest” path may then
relate to a most convenient flight connection between two cities. Second, understanding
the spread of infectious diseases is a major challenge to global health. Herein, nodes
represent persons and time-labeled edges represent contacts between persons where say
a virus can be transmitted. “Shortest” path (walk) analysis here may help us (among
other concepts of connectivity) to find measures against disease spreading [24, Chapter
17]. Notably, in both examples one might need to also take into account issues such as
different concepts of “shortest”—also called optimal—paths (walks) or waiting times in
nodes; this will be an important aspect of our modeling.

Our main reference point is the work of Wu et al. [30] on efficient algorithms for
optimal temporal path computation. These are also implemented in the temporal graph
library of Apache Flink [20]. We extend their model with respect to two aspects. First,
we additionally consider waiting-time constraints1 for the network nodes; importantly,
maximum-waiting-time constraints can enforce cycles from one node to another; refer
to Figure 1 for a simple example. Hence, we need to take into account optimal temporal
walks from one node to another (in Wu et al.’s model without waiting-time constraints
there is always an (optimal) temporal path visiting no node twice because no cycles are
necessary). Actually, if one insists on paths (without repeated nodes) instead of walks,
then even deciding whether there exists a path between two nodes becomes NP-hard [7].
The second extension to Wu et al.’s work lies in an increased number of optimality criteria
(different notions of optimal walks) and the fact that we do not only deal with optimizing
one criterion but a linear combination of any of these, thus addressing richer modeling
needs in real-world applications. For example, in the above-mentioned flight network a
traveling person might want to use our algorithm to optimize a linear combination of
cost and travel duration. Note that trying to find walks under constraints (e.g., travel

1Waiting-time constraints play a particularly important role in standard spreading models of infectious
diseases such as the SIS-model (Susceptible-Infected-Susceptible) [24, Chapter 17].

2

duration at most t and cost at most c for given c, t ∈ N) leads to NP-hard computational
problems, even in the static case [1].

Related Work. The theory of temporal graphs is a relatively young but active field
of research [11, 13, 14, 15]. Many of the basic concepts of temporal graphs such as
temporal connectivity [2, 16, 22, 25] or s-z-separation [9, 32] are based on the notion of
the temporal paths and walks. The concept of optimal temporal walks plays a central role
in the definition of temporal graph metrics such as eccentricity, diameter, betweenness
and closeness centrality [17, 27, 29].

An early algorithm for computing optimal temporal walks is due to Xuan et al. [31].
They computed temporal walks under different optimization criteria, namely foremost,
fastest, and minimum hop-count2 for a restricted variant of temporal graphs. Wu et
al. [30] followed up by introducing algorithms for computing optimal walks for the op-
timization criteria foremost, reverse-foremost, fastest, and shortest on temporal graphs
with no waiting-time constraints. Their algorithms run in linear and quasi-linear time
with respect to the number of time-arcs, provided that transmission times on time-arcs
are greater than zero. Concerning time-dependent multicriteria optimal path computa-
tion, there has been research in the related field of route planning [4].

The study of minimum- and maximum-waiting-time constraints in vertices has not
received much attention in the context of temporal walks even though they are considered
as important extensions to the temporal walk model [13, 27]. One of the first papers
to consider waiting-time constraints in the context of paths is the one by Dean [8].
He showed that time-dependent shortest path problems with waiting constraints can
be solved in polynomial time which is closely related to waiting-time constraints for
optimal temporal walks. In more recent work, Modiri et al. [23] and Kivelä et al. [18]
studied the changes in reachability when introducing maximum-waiting time constraints
for temporal walks using so-called event graphs. Lastly, Casteigts et al. [7] have recently
shown that finding optimal temporal path under maximum-waiting-time constraints is
NP-hard.

In the so-called multistage setting, which is closely related to temporal graphs, paths
have been studied by Fluschnik et al. [10].

Our Contributions. We analyze the running time complexity of computing optimal
temporal walks under waiting-time constraints. We develop and (theoretically and em-
pirically) analyze an algorithm for finding an optimal walk from a source vertex to
each vertex in the temporal graph under waiting-time constraints. Our algorithm runs
in quasi-linear time in the number of time-arcs. This implies that the introduction
of waiting-time constraints on temporal walks does not increase the asymptotic com-
putational complexity of finding optimal temporal walks. Moreover, our algorithm can
compute optimal walks not only for single optimality criteria but also for any linear com-
bination of these. In experiments on real-world social network data sets, we demonstrate
that in terms of efficiency our algorithm can compete with state-of-the-art algorithms

2Refer to the next section for definitions of these and further optimality criteria.

3

by Wu et al. [30]. Their algorithms only run on temporal graphs without waiting-time
constraints, which do optimize only one criterion (and not a linear combination). Ad-
ditionally, our algorithm allows transmission times being zero (hence, allowing to pass
multiple arcs in one time step) while the algorithms of Wu et al. request transmission
times on arcs to be greater than zero. Lastly, we analyze how different values of maxi-
mum waiting times influence the reachability within the temporal graph and how they
influence the structure of optimal temporal walks in context of the existence of cycles.

Organization of the Paper. In Section 2, we discuss temporal graphs, temporal walks,
and the various corresponding optimality criteria, starting with an extensive motivating
example in the context of disease spreading. In Section 3, we introduce definitions and
notations used throughout the paper. We continue in Section 4 by presenting two simple
linear-time transformations to eliminate transmission times and minimum waiting times
in the temporal graph without loosing any modeling power. In Section 5, we design and
analyze an algorithm for computing optimal walks under maximum-waiting-time for any
linear combination of these. Finally, in Section 6, we demonstrate the efficiency of our
algorithm on real-world data sets. We compare our running times with the running
times of the algorithms of Wu et al. [30]. We further examine the impact of different
maximum-waiting-time values on the existence and structure of optimal temporal walks.

2 Modeling of Optimal Temporal Walks

Before we introduce our basic concepts relating to temporal graphs and walks, we start
with a more extensive discussion of a motivating example from the disease spreading
context.

Disease Spreading Motivating Example. Pandemic spread of an infectious disease is
a great threat to global health, potentially associated with high mortality rates as well
as economic fallout [28]. Understanding the dynamics of infectious disease spread within
human proximity networks could facilitate the development of mitigation strategies.

A large part of the legwork required to understand the dynamics of infectious diseases
is the analysis of transmission routes through proximity networks [28]. Classical graph
theory can be used to model the main structure of a network: Each person in the network
is represented by a node and an bi-directional arc between two nodes indicates at least
one proximity contact between these persons. However, the time component plays a
crucial role in the analysis of transmission routes of a potential disease as shown in the
following example:

Example 1. Studying a proximity network as shown in Fig. 2(a), there are several
transmission routes from A to D, e.g., A → B → D and A → C → D, by which a
disease could have spread. If we extend our model by the points in time of proximity
contacts in Fig. 2(b) to Fig. 2(d), then we reach the conclusion that a disease could not

have spread from A to D. The proximity contacts A
3
→ B and A

3
→ C occurred on

4

A

B

C

D

(a) Proximity net-
work

Day 1

A

B

C

D

(b) Proximity net-
work at day 1

Day 2

A

B

C

D

(c) Proximity net-
work at day 2

Day 3

A

B

C

D

(d) Proximity net-
work at day 3

Figure 2: A proximity network modeled as a static graph (Fig. 2(a)) and a closer look
at the days in which the proximity contacts appear (Figs. 2(b) to 2(d)).

day three whereas the contacts B
1
→ D and C

2
→ D occurred on days one and two,

respectively. Thus, A could have only infected B and C after proximity contact with D.

In addition to what has been said so far, the infectious period of a disease also has
to be taken into account when computing potential transmission routes through the
network, implying the minimum time a person has to be infected before she becomes
contagious herself and the maximum time a person can be infected before she is no
longer contagious:

Example 2. If person B was infected by person A on day four (A
4
→ B) and the

infectious period of the disease starts after one day and ends after the fourth day, then

personB could not have infected person C she met on day ten (B
10
→ C). Hence, person C

could not have been infected by the disease via the transmission route A
4
→ B

10
→ C.

Temporal Graphs. These are capable of representing both properties elaborated in
the two examples above. Temporal graphs are already a frequently used model in the
prediction and control of infectious diseases [12, 21]. Temporal graphs—also referred to
as temporal networks [13, 26], evolving graphs [31], or time-varying graphs [5, 29]—are
graphs where the arc set changes over time3; thus, they can capture the dynamics within
a proximity network.

In this paper, we will consider the following temporal graph model: A temporal graph
consists of a lifetime, a set of vertices, and a set of time-arcs. A time-arc is a directed edge
between two vertices that is associated with a time stamp at which the contact occurs and
a transmission time that indicates the amount of time to traverse the arc. Furthermore,
each vertex v exhibits an individual minimum waiting time α(v) and maximum waiting
time β(v) that can reflect the infectious period in our previous example.

3We always assume that all changes over time are given as input.

5

The application areas of temporal graphs are numerous: In addition to human and
animal proximity networks, they are used in communication networks, traffic networks,
and distributed computing, to name a few application areas [13, 14, 15].

In our running disease spreading example, we are interested in transmission routes of
an infectious disease. These transmission routes can revisit a person in the proximity
network due to possible reinfection [3]. Hence, the transmission routes can contain cycles
which needs to be considered in the choice of concepts representing these routes.

Temporal Walks & Optimal Temporal Walks. Within the temporal graph model, tem-
poral walks—also called journeys [26, 31]—are the fundamental concept that represents
the transmission routes in our running example.

A temporal walk is a sequence of time-arcs which connects a sequence of vertices and
which are non-decreasing in time. In our model, a temporal walk additionally ensures
that it remains the minimum waiting time in each intermediate vertex and does not
exceed the maximum waiting time in any intermediate vertex of the walk.

Example 3. Continuing Example 2, a valid temporal walk (transmission route) from A

to D could be the following: A
4
→ B

8
→ D. Person A could have infected B on day four.

Due to the infectious period of four days, B was still contagious on day eight when she

had contact with person C. This does not hold on a route A
4
→ B

10
→ C as discussed in

Example 2. If B was infected at time step 4, then she was not contagious anymore at
time step 10.

A temporal path is a temporal walk where all vertices are pairwise distinct. Maximum-
waiting-time constraints have significant impact on temporal walks. In a temporal graph
with constraints on the maximum waiting time, one can be forced to make detours
because the maximum waiting time in a vertex is exceeded. As a consequence, there
can be two vertices A and C such that any temporal walk from A to C is not a path, as
shown in Figure 1.

Observation 1. Let G = (V,E, T, β) be a temporal graph with maximum-waiting-time
constraints. Then there can exist two vertices s, z ∈ V such that each s-z-walk is not a
temporal path.

We are interested in temporal walks within our proximity network in general, but
wish to place emphasis on temporal walks that optimize certain properties. A plethora
of criteria can be optimized as a consequence of the time aspect. Possible criteria (with
the names we chose or were chosen in literature in brackets) include: arrival time (fore-
most), departure time (reverse-foremost), duration (fastest), transmission time (short-
est), number of time-arcs (minimum hop-count), time-arc cost (cheapest), probabil-
ity (Most-likely), and waiting time (minimum waiting time). Next, we provide examples
for all properties from their respective fields of application.

Foremost. A foremost walk is a temporal walk that has the earliest arrival time possible.
Computing a foremost walk from a source vertex to all vertices in the proximity
network signifies the speed with which an infectious disease could spread.

6

Reverse-Foremost. A reverse-foremost walk is a temporal walk that exhibits the latest
possible departure time. Computing a reverse-foremost walk from a source vertex
to all vertices in the proximity network estimates the latest possible point in time
at which an infectious disease could start spreading and still permeates the entire
network.

Fastest. A fastest walk is a temporal walk which exhibits the minimum duration, that is,
the minimum difference between departure and arrival times. For an appropriate
motivation, we leave proximity networks and consider the field of flight networks.
Airports represent vertices, time-arcs represent flights from one airport to another.
The time stamp indicates the departure time of a flight, the transmission time
indicates the duration. The minimum waiting time in the vertices signifies the
minimum time required in an airport to catch a connecting flight. Within flight
networks, the duration is often the criterion passengers aim to minimize in order
to streamline their journey.

Shortest. A shortest walk is a temporal walk that minimizes the sum of transmission
times on the time-arcs. In the context of flight networks, a shortest walk is a flight
connection with the minimum time spent airborne.

Minimum Hop-Count. A minimum-hop-count walk is a temporal walk which minimizes
the number of time-arcs. Within a flight network, passengers also aim to minimize
their number of connecting flights to avoid lengthy boarding procedures and the
risk of missing connecting flights.

Cheapest. For a given cost function on the time-arcs, a cheapest walk is a temporal walk
with the minimum sum of costs over all time-arcs. The benefits of the minimization
of this property within flight networks are obvious: Weighing long travel times and
multiple connections against the cheapest fare is the oldest consideration in the
book for many air travelers.

Most-Likely. For given probabilities on the time-arcs, a most-likely walk is a temporal
walk with the highest probability. One application lies in disease spreading: For
every contact there is a certain likelihood for an infectious disease to be transmitted
depending on the proximity of the persons or the body contact between them.
Thus, a most-likely walk is a transmission route with the highest probability for the
infectious disease to be spread under the assumption of stochastic independence.
The respective probabilities of the time-arcs within the walk are multiplied.

Minimum Waiting Time. The minimum-waiting-time walk is a temporal walk that has
minimum sum of waiting times over all intermediate vertices. Routing packets
through a router network prioritizes minimum waiting times of packages in the
routers to improve the overall performance of the network.

7

3 Formal Definitions

In this section, we formally introduce the most important concepts related to temporal
graphs, temporal walks, and formalize our optimality criteria. We start with some basic
mathematical definitions. We refer to an interval [a, b] as a contiguous ordered set of
discrete time steps: [a, b] := {n | n ∈ N ∧ a ≤ n ≤ b}, where a, b ∈ N. Further,
let [a] := [1, a]. Given a function f : A→ B, we write f ≡ c if f(a) = c for all a ∈ A and
c ∈ B.

Temporal Graph. A temporal graph is a graph whose edge set changes over time.

Definition 1 (Temporal Graph). A temporal graph G = (V,E, T, α, β) is a five-tuple
consisting of

• a lifetime T ∈ N,

• a vertex set V ,

• a time-arc set E ⊆ V × V × {1, . . . , T} × {0, . . . , T},

• a minimum waiting time α : V → {0, . . . , T}, and

• a maximum waiting time β : V → {0, . . . , T}.

A time-arc (v,w, t, λ) ∈ E is a directed connection from v to w with time stamp t
and transmission time λ, that is, a transmission from v to w starting at time step t and
taking λ time steps to cross the arc. The departure time in vertex v is t; the arrival time
in vertex w is then t + λ. The two waiting-time functions α : V → N and β : V → N

assign each vertex a minimum and maximum waiting time, respectively. The minimum
waiting time α(v) is the minimum time a person has to stay in a vertex v before she can
move on in the temporal graph. The maximum waiting time β(v) is the maximum time
a person can stay in a vertex v before she is no longer allowed to move further in the
graph. A temporal graph G = (V,E, T, α, β) is called instantaneous if α(v) = 0 for all
v ∈ V and λ = 0 for all (v,w, t, λ) ∈ E. Then, for the ease of presentation, we neglect
α and we write arcs as triples (v,w, t) ∈ E for instantaneous graphs. In Table 1, we
introduce some notation for temporal graphs.

Temporal Walk. A temporal walk is a walk in a temporal graph such that the time
stamps of the visited time-arcs of a temporal walk are increasing in time. Additionally,
the transmission time and the waiting-time constraints have to be taken into account.

Definition 2 (Temporal Walk). Given a temporal graph G = (V,E, T, α, β) and two
vertices s, z ∈ V , a temporal walk from s to z is a sequence ((vi−1, vi, ti, λi))

k
i=1 of time-

arcs such that s = v0, z = vk, and ti + λi + α(vi) ≤ ti+1 ≤ ti + λi + β(vi) for all
i ∈ [k − 1].

A temporal path is a temporal walk where all vertices are pairwise distinct.

8

Table 1: Frequently used notation for a temporal graph G.

V the vertex set of G
E the time-arc set of G
[T] the time interval of G
α the minimum waiting time with α : V → N;
β the maximum waiting time with β : V → N

Vt the vertex subset Vt ⊆ V at time t, that is,
Vt := {v | (v,w, t, λ) ∈ E ∨ (w, v, t, λ) ∈ E}

Et the time-arc subset at time t, that is, Et := {(v,w) | (v,w, t, λ) ∈ E}
Gt the directed, static graph Gt := (Vt, Et)

Optimal Temporal Walk. Due to the additional time aspect, there are several, po-
tentially contradicting criteria that can be optimized in a temporal walk. We formally
define the criteria that were already motivated in Section 2.

Definition 3 (Optimal Temporal Walk). Let G = (V,E, T, α, β) be a temporal graph,
let c : E → N be a cost function, and let s, z ∈ V be two vertices. A temporal walk P =
((vi−1, vi, ti, λi))

k
i=1 from s to z is called optimal if it minimizes or maximizes a certain

value among all temporal walks from s to z. We consider the following variants:

criterion min / max optimization value

foremost min tk + λk

reverse-foremost max t1

fastest min (tk + λk)− t1

shortest min
∑k

i=1 λi

cheapest min
∑k

i=1 c((vi−1, vi, ti, λi))

most-likely max
∏k

i=1 c((vi−1, vi, ti, λi))

minimum hop-count min k

minimum waiting time min
∑k−1

i=1 ti+1 − (ti + λi)

Note that the most-likely criterion can easily be transformed into cheapest. For the
most-likely criterion, the cost values of the time-arcs represent probabilities, imply-
ing c(e) ∈ [0, 1] for all e ∈ E. Hence, maximizing

∏k
i=1 c((vi−1, vi, ti, λi) is equivalent to

minimizing
k
∑

i=1

− log c((vi−1, vi, ti, λi))

of a temporal walk. Hence, we neglect considering the most-likely criterion separately.
We further call a temporal walk P = ((vi−1, vi, ti, λi))

k
i=1 from s to z an optimal temporal

9

walk with respect to a linear combination with δ1, . . . , δ7 ∈ Q+
0 if it minimizes

lin(P) = δ1 · (tk + λk) Foremost

+ δ2 · (−t1) Reverse-Foremost

+ δ3 · (tk + λk − t1) Fastest

+ δ4 ·
k
∑

i=1

λi Shortest

+ δ5 ·
k
∑

i=1

c((vi−1, vi, ti, λi)) Cheapest

+ δ6 · k Minimum Hop-Count

+ δ7 ·
k−1
∑

i=1

(ti+1 − (ti + λi)) Minimum Waiting Time

among all temporal walks from s to z.

4 Transformations

To simplify the presentation of the forthcoming algorithm in Section 5 for computing
optimal temporal walks, we design it to run only on instantaneous temporal graphs, that
is, temporal graphs with no transmission times (λ = 0 for all (v,w, t, λ) ∈ E) and no
minimum-waiting-time constraints (α(v) = 0 for all v ∈ V). This is no restriction since
we can eliminate these with the following transformation.

Transformation 1 (Remove α and λ.). Let G = (V,E, T, α, β) be a temporal graph
and let c : E → N be a cost function. Transform (G, c) into (G′, c′, cλ, ind, A) where

• G′ is an instantaneous temporal graph G′ = (V ′, E′, T, β′) with

– V ′ = V ∪ V E with V E := {ve | e ∈ E},

– E′ = EO ∪ EI with EO := {(v, ve, t) | e = (v, u, t, λ) ∈ E} and EI =
{(ve, u, t+ λ+ α(u)) | e = (v, u, t, λ) ∈ E},

– β′ : V ′ → N with β′(v) := β(v) for all v ∈ V , else β′(v) := T ,

• c′ : E′ → N is cost function with c′(e) := c(ê) for all e = (v, vê, t) ∈ EO,
else c′(e) := 0.

• cλ : E
′ → N is a transmission-cost function with cλ(e) := ℓ for e = (vê, w, t + ℓ +

α(w)) ∈ EI and ê = (v,w, t, ℓ) ∈ E, else cλ(e) := 0.

• ind : V ′ → {0, 1} is a vertex-index function with ind(v) := 1 if v ∈ V ,
else ind(v) := 0.

• A(v) : V ′ → {0, 1} is an auxiliary function with A(v) := α(v) if v ∈ V ,
else A(v) := 0.

10

We now show that any temporal graph can be transformed by Transformation 1 into
an equivalent instantaneous temporal graph in linear time such that any optimal tem-
poral walk in the instantaneous temporal graphs directly corresponds to an optimal
temporal walk in the original graph and vice versa. Therefore, we have to slightly adapt
the formula for the linear combination as shown in the following proposition.

Proposition 1. Let G = (V,E, T, α, β) be a temporal graph, let c : E → N be a cost
function, and let s, z ∈ V . Let further (G′ = (V ′, E′, T ′, β′), c′, cλ, ind, A) be the result of
applying Transformation 1 to (G, c).

For δ1, . . . , δ7 ∈ Q+
0 , there exists a temporal walk P = ((vi−1, vi, ti, λi))

k
i=1 = (ei)

k
i=1

from s to z in G is optimal with respect to a linear combination of δ1, . . . , δ7 if and only
if the temporal walk

P ′ = ((vi−1, vei , ti), (vei , vi, ti + λi + α(vi))))
k
i=1 = (e′i)

2k
i=1 = (v′i−1, v

′
i, t

′
i)
2k
i=1

from s to z in G′ is optimal with respect to the new formula for a linear combination of
our optimality criteria defined as follows:

linT(P ′) = δ1 · t
′
2k Foremost

+ δ2 · (−t
′
1) Reverse-Foremost

+ δ3 · (t
′
2k − t′1) Fastest

+ δ4 ·
2k
∑

i=1

cλ(e
′
i) Shortest

+ δ5 ·
2k
∑

i=1

c(e′i) Cheapest

+ (δ6/2) · 2k Minimum Hop-Count

+ δ7 ·
2k−1
∑

i=1

((t′i+1 − (t′i −A(v′i))) · ind(v
′
i)) Minimum Waiting Time.

Transformation 1 runs in O(|V |+ |E|) time.

Proof. Now, we will show that any temporal walk P in G corresponds to a temporal
walk P ′ in G′ such that lin(P) = linT(P ′) and vice versa. To this end, observe that each
vertex v ∈ V E has an in-going and an out-going arc and the vertex set V = V ′ \ V E

is an independent set in G′. Hence, each temporal walk in G′ from s to z alternately
uses vertices in V and V E . Since each vertex in V E represents an arc in G, each
temporal walk in G′ has a unique representation in G and vice versa. It remains to
show that lin(P) = linT(P ′) − C for any temporal walk P in G where C is a constant
only depending on the last vertex in P . Observe that by construction each vertex vi
in P is the same vertex as v′2i in P ′ and the arc (vi−1, vi, ti, λi) is represented by the
vertex v′2i and the arcs e′2i−1 and e′2i. It holds that λi = cλ(e

′
2i) = cλ(e

′
2i−1) + cλ(e

′
2i)

11

and c(ei) = c′(e′2i) = c′(e′2i−1) + c′(e′2i). Finally, ti+1 = t′2i+1 and ti + λi = t′2i − A(v′2i)
and hence ti+1 − (ti + λi) = t′2i+1 − (t′2i −A(v′2i)). Thus,

lin(P) =

δ1 · (tk + λk) + δ2 · (−t1) + δ3 · (tk + λk − t1) + δ4 ·
k
∑

i=1

λi

+ δ5 ·
k
∑

i=1

c(ei) + δ6 · k + δ7 ·
k−1
∑

i=1

(ti+1 − (ti + λi))

= δ1 · (tk + λk + α(tk)− α(tk)) + δ2 · (−t1)

+ δ3 · (tk + λk + α(tk)− α(tk)− t1) + δ4 ·
k
∑

i=1

λi + δ5 ·
k
∑

i=1

c(ei)

+ δ6 · k + δ7 ·
k−1
∑

i=1

(ti+1 − (ti + λi + α(ti)− α(ti)))

= δ1 · (t
′
2k−1 −A(v′2k)) + δ2 · (−t

′
1) + δ3 · (t

′
2k−1 −A(v′2k)− t′1)

+ δ4 ·
2k
∑

i=1

cλ(e
′
i) + δ5 ·

2k
∑

i=1

c′(e′i) + (δ6/2) · 2k

+ δ7 ·

(

k
∑

i=1

((t′2i − (t′2i−1 −A(v′2i−1))) · 0) +
k−1
∑

i=1

(t′2i+1 − (t′2i −A(v′2i)))

)

= δ1 · (t
′
2k−1 −A(v′2k)) + δ2 · (−t

′
1)

+ δ3 · (t
′
2k−1 −A(v′2k)− t′1) + δ4 ·

2k
∑

i=1

cλ(e
′
i) + δ5 ·

2k
∑

i=1

c′(e′i)

+ (δ6/2) · 2k + δ7 ·
2k−1
∑

i=1

((t′i+1 − (t′i −A(v′i))) · ind(v
′
i))

= linT(P ′)− (δ1 + δ3) ·A(v
′
2k).

Observe that (δ1 + δ3) ·A(v′2k) is independent of the temporal walk P ′ and hence any
optimal walk P in G corresponds to an optimal temporal walk P ′ in G′. Lastly, notice
that it is easy to verify that Transformation 1 runs in O(|V |+ |E|) time.

The algorithm for computing optimal temporal walks that we will introduce in the
forthcoming section will find temporal walks optimizing the formula linT(·) introduced
in Proposition 1. For instantaneous temporal graphs, where we do not have to use
Transformation 1, optimizing according to linT(·) is not a drawback as stated in the
following:

Observation 2. Let G = (V,E, T, β) be an instantaneous temporal graph, let c : E → N

be a cost function. Let further P = ((vi−1, vi, ti, λi))
k
i=1 = (ei)

k
i=1 be a temporal walk

12

in G. For δ1, . . . , δ7 ∈ Q+
0 , it holds that

lin(P) = linT(P) + (δ6/2) · k

for c′ = c, cλ ≡ 0, ind ≡ 1, and A ≡ 0.

5 Algorithm

In this section, we present a single-source optimal walks algorithm with respect to any
linear combination of our optimality criteria. That is, given a temporal graph G =
(V,E, T, β), a cost function c : E → N and a source vertex s ∈ V , we compute an optimal
temporal walk with respect to any linear combination with δ1, . . . , δ7 ∈ Q from s to all
vertices in the temporal graph (if it exists). To this end, we first apply Transformation 1
to G to obtain an instantaneous temporal graph. Algorithm 1 then performs for each t ∈
[T] three main steps:

GraphGeneration. Generate Gt which only contains the arcs present at time step t and
add arcs from s to each vertex v in Gt that has been reached within the last β(v)
time steps.

ModDijkstra. Run a modified version of Dijkstra’s algorithm to compute for each v
in Gt the optimal walk from s to v that arrives at time step t (if it exists).

Update. Update a list with representations of all candidates for optimal walks (with
corresponding arrival times and optimal values) from s to each v ∈ V .

Efficiently storing and accessing the value of an optimal walk from s to v that arrives
at a certain time step t is the heart of the algorithm. We can maintain this information
in O(|E|) time during a run of Algorithm 1 such that this information can be accessed
in constant time. The algorithm is presented in Algorithm 1 from which we can derive
the following theorem:

Theorem 1. With respect to any linear combination of the optimality criteria, an op-
timal temporal walk from a source vertex s to each vertex in a temporal graph can be
computed in O(|V |+ |E| log |E|) time.

Algorithm Details. Let G′ be a temporal graph with a cost function c′ : E → N and
let s ∈ V be the source. We can apply Transformation 1 to (G′, c′) to obtain (G =
(V,E, T, β), c, cλ , ind, A) where G is an instantaneous temporal graph. If G′ is already an
instantaneous temporal graph, then we set c = c′, cλ ≡ 0, ind ≡ 1, and A ≡ 0 as shown
in Observation 2.

13

Algorithm 1: Computes optimal walks.

Input: An instantaneous temporal graph G = (V,E, T, β), two cost
functions c, cλ, two vertex functions ind, A, and a source vertex s ∈ V .

Output: For each v ∈ V the specific length of an optimal s-v walk.
Variables:

opt(v) stores the value of an optimal walk from s to v within [0, t];
L(v) is a sorted list [(opta1

, a1), . . . , (optak
, ak)] where optai

is an optimal value of
a walk from s to v that arrives at time ai with t+ β(v) ≤ ai ≤ t.

δ1, ..., δ7 linear combination of the optimality criteria foremost, reverse-foremost, fastest,
shortest, cheapest, minimum hop-count, and minimum waiting time, respec-
tively.

1 Initialize opt(v) =∞ and L(v) as empty list for all v ∈ V \ {s}
2 for t = 1, . . . , T with Et 6= ∅ do
3 G, dt, dr ← generateGraph(Gt)

4 V ′, optt ← modDijkstra(G, dt, dr)
5 for v ∈ V ′ do

6 opt(v)← min{opt(v), δ1 · t− δ2 · T + δ3 · (t− T) + optt(v)}
7 L(v)← append (optt(v), t) and delete redundant tuples (see Lemma 1)

8 return opt
9 function generateGraph(Gt):

10 Initialize Er ← ∅; dr(v,w)←∞ and dt(v,w)←∞ for all v,w ∈ Vt ∪ {s}
11 for (v,w) ∈ Et do

12 dt(v,w) ←
{

(δ2 + δ3) · (T − t) + δ4 · cλ(v,w, t) + δ5 · c(v,w, t) + δ6 if v = s

δ4 · cλ(v,w, t) + δ5 · c(v,w, t) + δ6 else

13 for v ∈ Vt \ {s} do
14 delete tuples (opta, a) in L(v) with a+ β(v) < t
15 if L(v) not empty then

16 Er ← Er ∪ {(s, v)}
17 opta ← min{opta | (opta, a) ∈ L(v)}
18 dr(s, v)← opta+δ7 · ind(v) · (t− a+A(v))

19 return
(

(Vt ∪ {s}, Et ∪Er), dt, dr
)

20 function modDijkstra((V,Et ∪Er), dt, dr):
21 initialize optt(v)←∞, r(v)←∞ for all v ∈ Vt, and r(s) = 0
22 initialize Q← V and V ′ ← ∅
23 while Q 6= ∅ do
24 v ← vertex in Q with minimum r(v)
25 remove v from Q
26 for (v,w) ∈ Et ∪ Er do

27 r(w)← min{r(w), r(v) + min{dt(v,w), dr(v,w)}}
28 if (v,w) ∈ Et then

29 optt(w)← min{optt(w), r(v) + dt(v,w)}
30 V ′ ← V ′ ∪ {w}

31 return V ′, optt 14

For δ1, . . . , δ7 ∈ Q, Algorithm 1 computes an optimal walk P = ((vi−1, vi, ti))
k
i=1 =

(ei)
k
i=1 from s to v for all v ∈ V with respect to

linT(P) =δ1 · (tk) + δ2 · (−t1) + δ3 · (tk − t1) + δ4 ·
k
∑

i=1

cλ(ei)

+ δ5 ·
k
∑

i=1

c(ei) + δ6 · k + δ7 ·
k−1
∑

i=1

(ti+1 − ti +A(vi+1)) · ind(vi).

We have shown in Transformation 1 that an optimal walk with respect to linT(P) in G
directly corresponds to an optimal walk with respect to lin(P) in the original temporal
graph G′.

For each vertex v ∈ V \ {s}, Algorithm 1 stores in opt(v) the value of an optimal
walk from s to v and in L(v) a list of all relevant arrival times from s to v with their
optimal values. In the beginning, opt(v) =∞ and L(v) is initially an empty list (Line 1
in Algorithm 1). Then, for each time step t, Algorithm 1 computes the optimal walk
from the source s to v ∈ V that arrives in time step t (if it exists). Thus, Algorithm 1
performs for each t ∈ {1, . . . , T} the following steps:

GraphGeneration. Generate a static graph G with GenerateGraph (Line 3 and Lines 9
to 19). This graph consists of the static graph Gt = (Vt, Et), that is, the static
graph induced by all time-arcs with time stamp t, and the source vertex s.

The weight of an arc (v,w) ∈ Et is set to their arc cost δ4 ·cλ(v,w)+δ5 ·c(v,w)+δ6.
If further v = s, then we have to add (δ2 + δ3) · (T − t) to take the departure time
in s into account for the criteria reverse-foremost and fastest, see Line 12.

Additionally, non-existing arcs from s to each vertex v ∈ Vt are added if there
exists a temporal walk from s to v that arrived not later than β(v) time steps
ago. Let opta be the optimal value among all walks that arrive within the time
interval [t− β(v), t] and let a be the corresponding arrival time in v. Additionally,
the minimum waiting time A(v) plus the additional waiting time (t − a) in v
has to be taken into account if ind(v) = 1. Hence, the weight of arc (s, v) is set
to opta+δ7 · ind(v) ·(t−a+A(v)), see Line 18. Let Er be the set of these additional
arcs. Then, G = (Vt ∪ {s}, Et ∪Er, dt, dr).

ModDijkstra. Run a modified Dijkstra Algorithm on G with modDijkstra (Line 4 and
Lines 20 to 31). Instead of computing a shortest walk (using the original Dijkstra
Algorithm) in G, compute a shortest walk among all walks that end in an arc of Et.
This represents a temporal walk that arrives in time step t with optimal value. The
function modDijkstra returns the set V ′ of vertices that can be reached within G
via an arc in Et and the function optt : V

′ → N that maps each vertex v ∈ V ′ to
its optimal value of a walk from s to v that arrives exactly at time t.

Update. For each v ∈ V ′, set the optimum opt(v) to the minimum of its current value
and the optimal value of a newly computed walk, that is, opt(v) = min{opt(v), δ1 ·

15

t+ δ3 · (t− T) + optt(v)} (Line 6). Herein, we have to add the arrival time t that
has not been taken into account in the calculation of the optimal value because
it is the same for all walks found at time step t. Add the tuple (optt(v), t) to
list L(v) (Line 7).

After the Update step for time step t, the list L(v) contains all tuples (optar, ar) such
that there exists a walk from s to v that arrives in ar ∈ [t − β(v), t] with its optimal
value optar. We want to have constant-time access to the optimal value of a walk that
arrives in v within time interval [t − β(v), t]. This can be achieved by deleting tuples
from list L(v) that are redundant, that is these tuples are nonmeaningful for the correct
computation of optimal walks. Let

L(v) = [(opta1 , a1), . . . , (optak , ak)]

be such a list for a time step t with t − β(v) ≤ a1 < . . . < ak ≤ t. A tuple (optar, ar)
is redundant if there exists a tuple with an arrival time greater than ar such that its
optimal value smaller than optar plus the additional waiting time. This is shown with
the following lemma:

Lemma 1. For a time step t ∈ {1, . . . , T} and a vertex v ∈ V , if there are two tuples
(optai , ai), (optaj , aj) ∈ L(v) with ai < aj and

optaj ≤ optai +δ7 · ind(v) · (aj − ai),

then (optai , ai) is redundant and can be removed from L(v).

Proof. After all time-arcs with time stamp t have been processed, Algorithm 1 only
considers time-arcs with time stamp t′ > t. In the generated graph G (Line 3), the
algorithm adds an arc from s to v ∈ Vt′ if a walk from s arrives in v within [t′−β(v), t′].
If ai ∈ [t′ − β(v), t′], then aj ∈ [t′ − β(v), t′] because ai < aj < t′. Furthermore,
let (opt, a) be the optimal value and the arrival time of a walk from s to v that arrives
within [t′ − β(v), t′] that minimizes

opt+δ7 · ind(v)(t
′ − a+A(v)).

Then, the weight of the arc (s, v) is set to this value. Due to ai < aj ∈ [t′− β(v), t′] and
optai +δ7 · ind(v) · (aj − ai) ≥ optaj , we know that

optaj +δ7 · ind(v)(t
′ − aj +A(v)) ≤ optai +δ7 · ind(v)(t

′ − ai +A(v)).

Hence, the tuple (optai , ai) is not needed in the list L(v) at time step t and can be
removed.

If L(v) does not contain any redundant tuples, then it also holds that

opta1 +δ7 · ind(v) · (a2 − a1) < · · · < optak .

16

Hence, (a1, opta1) contains the optimal value and arrival time of a walk that arrives
within time interval [t− β(v), t] and minimizes opt+δ7 · ind(v)(t

′ − a+A(v)). It follows
that finding opta = min{opta | (opta, a) ∈ L(v)} in Line 18 takes constant time. The
deletion of redundant tuples takes O(|E|) time during the whole run of Algorithm 1.
With these considerations at hand, we can derive the following lemma.

Lemma 2. Algorithm 1 runs in O(|V |+ |E| log |E|) time.

Proof. The initialization in Algorithm 1 can be done in O(|V |) time. Furthermore, the
time-arcs have to be sorted by time stamps which takes O(|E| log |E|) time. Then, for
each time step t ∈ [T], Algorithm 1 generates a static directed graph G = (Vt ∪{s}, Et ∪
Er) with O(|Vt|) vertices and O(|Et|+ |Vt|) arcs which takes O(|Et|+ |Vt|) time.

For each generated graphs G, modDijkstra is executed in O(|Et| log |Et|) time. The
updates of opt and L afterwards run in O(|Vt|) time. Note that |Vt| is the number of ver-
tices that have at least one in-going or out-going time-arc at time step t. Consequently,
it holds that |Vt| ≤ 2|Et|.

Due to the sorting of L(v) as shown Lemma 1, maintaining these lists in Lines 7 and 15
takes only O(|E|) time during the whole run of the algorithm. In the list L(v), we delete
at most as many elements as there are time-arcs in the temporal graph. Recall that if
(opta, a) ∈ L(v), then there exists a time-arc (w, v, a) ∈ E.

We can add up the running time by

O
(

|V |+ |E|+
T
∑

t=1

(|Et|) + (|Vt| log |Vt|)
)

= O
(

|V |+ |E|+
T
∑

t=1

(|Et|) + (|Et| log |Et|)
)

= O
(

|V |+ |E|+
T
∑

t=1

|Et| log |Et|
)

⊆ O
(

|V |+ |E| log |E|
)

Hence, Algorithm 1 runs in O
(

|V |+ |E| log |E|
)

time.

Next, we show the correctness of Algorithm 1. We show that for every time step t
and for every vertex v, Algorithm 1 computes an optimal walk from s to v that arrives
at time step t (if it exists).

Lemma 3. For a time step t ∈ [T], Algorithm 1 computes the optimal value of a temporal
walk from s to v ∈ V that arrives exactly in time step t.

Proof. The proof is by induction on the time step t ∈ {1, . . . , T}.
In the beginning, L(v) is empty. For t = 1, the algorithm generates a graph G =

(V1 ∪ {s}, E1). For all arcs (s,w) ∈ E1 the weights are set to

d1(s,w) = (δ2 + δ3) · (T − 1) + δ4 · cλ((v,w, 1)) + δ5 · c((v,w, 1)) + δ6;

17

for the other arcs (v,w) ∈ E1 the weights are set to

d1(v,w) = δ4 · cλ(v,w) + δ5 · c((v,w, 1)) + δ6.

Note that if there is an optimal temporal walk arriving in time step 1, then there also
exists an optimal temporal path arriving at time step 1. Now if there is an optimal
path P = ((vi−1, vi, 1))

k
i=1 = (ei)

k
i=1 from s to a vertex v ∈ V that arrives exactly in

time step 1, then there exists a path P ′ = ((vi−1, vi))
k
i=1 = (ai)

k
i=1 from s to v in G with

value

k
∑

i=1

dt(ai) = (δ2 + δ3) · (T − 1) +

k
∑

i=1

δ4 · cλ(vi−1, vi) + δ5 · c(vi−1, vi) + δ6

= opt1(v)

Algorithm 1 finds in modDijkstra the path P ′, adds (opt1(v), 1) to L(v) and sets

opt(v) = δ1 · 1− δ2 · T + δ3 · (1− T) + opt1(v)

= δ1 · 1− δ2 · T + δ3 · (1− T) + (δ2 + δ3) · (T − 1) +

k
∑

i=1

δ4 · cλ(vi−1, vi)

+ δ5 · c(vi−1, vi) + δ6 · k

= δ1 · 1− δ2 · 1 + δ3 · 0 + δ4 ·
k
∑

i=1

cλ(ei)

+ δ5 ·
k
∑

i=1

c(ei) + δ6 · k + δ7 ·
k−1
∑

i=1

(ti+1 − ti +A(vi)) · ind(vi)

= linT(P).

Note that A(vi) = 0 for i ∈ [k−1] by Transformation 1 in time step 1. If there exists an
optimal path P ∗ in G, then this directly translates to the existence of a temporal path P ′

that arrives also in time step 1 with a smaller optimal value than P , contradicting the
assumption that P is optimal.

Now, let us assume that for all time steps t′ ∈ {1, . . . , t} Algorithm 1 computed the
optimal value opt of a walk from s to v ∈ V that arrives exactly in time step t′ and added
(opt−δ1 · t

′ + δ2 ·T − δ3 · (t
′−T), t′) to L(v). If for time step t+1 a vertex v ∈ V has no

in-going time-arc with time step t+ 1, then there cannot exist a temporal walk from s
to v that arrives exactly in time step t + 1. Thus, only vertices in Vt+1 are candidates
for a temporal walk that arrives exactly in time step t+ 1.

Let v ∈ Vt+1 be a vertex such that there is a temporal walk from s to v that arrives
exactly in time step t+1. Let P = ((vi−1, vi, 1))

k
i=1 = (ei)

k
i=1 be an optimal walk from s

18

to v that arrives exactly in time step t+ 1 with the optimal value

linT(P) = δ1 · t1 − δ2 · tk + δ3 · (tk − t1) + δ4 ·
k
∑

i=1

cλ(ei)

+ δ5 ·
k
∑

i=1

c(ei) + δ6 · k + δ7 ·
k−1
∑

i=1

(ti+1 − ti +A(vi)) · ind(vi)

Assume towards a contradiction that Algorithm 1 does not find a walk from s to v with
optimal value linT(P).

First consider the case that ti = t + 1 for all i ∈ [k], that is, all time-arcs of the
temporal walk P have time stamp t + 1. Then, we can assume that P is a temporal
path. Hence there exists a path P ′ = ((vi−1, vi))

k
i=1 = (ai)

k
i=1 from s to v in Gt+1 and

therefore in G with optimal value

k
∑

i=1

dt(ai) = (δ2 + δ3) · (T − (t+ 1)) +

k
∑

i=1

δ4 · cλ(vi−1, vi) + δ5 · c(vi−1, vi) + δ6

= optt+1(v).

Algorithm 1 finds in modDijkstra the path P ′, adds (optt+1(v), t + 1) to L(v) and
updates opt(v) to the minimum of opt(v) and

δ1 · (t+ 1)− δ2 · T + δ3 · (t+ 1− T) + optt+1(v)

= δ1 · (t+ 1)− δ2 · T + δ3 · (t+ 1− T) + (δ2 + δ3) · (T − (t+ 1))

+

k
∑

i=1

δ4 · cλ(vi−1, vi) + δ5 · c(vi−1, vi) + δ6 · k

= δ1 · t1 − δ2 · tk + δ3 · (tk − t1) + δ4 ·
k
∑

i=1

cλ(ei)

+ δ5 ·
k
∑

i=1

c(ei) + δ6 · k + δ7 ·
k−1
∑

i=1

(ti+1 − ti +A(vi)) · ind(vi)

= linT(P)

Note again that A(vi) = 0 for i ∈ [k−1] if ti−1 = ti by Transformation 1. Hence, we find
a walk from s to v at time step t+ 1 with optimal value linT(P), this is a contradiction
to our assumption.

Now assume for P that there exists an ℓ ∈ {1, . . . , k − 1} such that for j ∈ [ℓ] it
holds that tj < t+ 1 and for j′ ∈ {i+ 1, . . . , k} it holds that tj′ = t+ 1. The temporal

walk Pℓ = ((vi−1, vi, ti))
ℓ
i=1 = (ei)

k
i=1 is an optimal subwalk from s to vℓ that arrives

exactly in tℓ, otherwise P is not optimal because it could be improved by replacing Pℓ.

19

It has an optimal value

linT(Pℓ) = δ1 · t1 − δ2 · tℓ + δ3 · (tℓ − t1) + δ4 ·
k
∑

i=1

cλ(ei)

+ δ5 ·
ℓ
∑

i=1

c(ei) + δ6 · k + δ7 ·
ℓ−1
∑

i=1

(ti+1 − ti +A(vi)) · ind(vi).

Then

opttℓ(vℓ) = optPℓ
−δ1 · tℓ + δ2 · T − δ3 · (tℓ − T)

= (δ2 + δ3) · (T − tℓ) + δ4 ·
ℓ
∑

i=1

cλ(ei)

+ δ5 ·
ℓ
∑

i=1

c(ei) + δ6 · k + δ7 ·
ℓ−1
∑

i=1

(ti+1 − ti +A(vi)) · ind(vi).

By our induction hypothesis, the tuple (opttℓ(vℓ), tℓ) was added to L(vℓ). If the tu-
ple (opttℓ(vℓ), tℓ) is not in L(vℓ) in time step t + 1, then there must be another tu-

ple (optt̂(vℓ), t̂) in L(vℓ) with tℓ < t̂ < t+ 1 < tℓ + β(vℓ) ≤ t̂+ β(vℓ) and

opttℓ(vℓ) + δ7 · ind(vℓ)(t+ 1− tℓ +A(vℓ)) = optt̂(vℓ) + δ7 · ind(vℓ)(t+ 1− t̂+A(vℓ))

due to Lemma 1. Otherwise P is not optimal because it could be improved by replac-
ing Pℓ by the temporal walk represented by (optt̂(vℓ), t̂).

Now consider the generated graphG = (Vt+1∪{s}, Et+1∪Er). The arc sequence Pt+1 =
((vi−1, vi))

k
i=ℓ+1 = (ai)

k
i=ℓ+1 is a path in Gt+1 = (Vt+1, Et+1) and, thus, contained in G.

The arc aℓ = (s, vℓ) is contained in Er with weight

dr(s, vℓ) = opttℓ(vℓ) + (t+ 1− tℓ +A(vℓ)) · ind(vℓ).

Thus, there is a walk from s to v in G and modDijkstra on G returns the vertex v

20

because ak ∈ Et+1 with an optimal value

dr(aℓ) +

k
∑

i=ℓ+1

dt(ai) = opttℓ(vi) + ind(vℓ) · (t+ 1− tℓ +A(vℓ))

+
k
∑

i=ℓ+1

δ4 · cλ(vi−1, vi, t+ 1) + δ5 · c(vi−1, vi, t+ 1) + δ6

= (δ2 + δ3) · (T − tℓ) +

ℓ
∑

i=1

(

δ4 · cλ(ei) + δ5 · c(ei) + δ6
)

+ δ7 ·
ℓ−1
∑

i=1

ind(vi) · (ti+1 − ti +A(vi))

+ ind(vℓ) · (t+ 1− tℓ +A(vℓ))

+
k
∑

i=ℓ+1

(

δ4 · cλ(vi−1, vi) + δ5 · c(vi−1, vi) + δ6
)

= (δ2 + δ3) · (T − tℓ) + δ4 ·
k
∑

i=1

cλ(ei)

+ δ5 ·
k
∑

i=1

c(ei) + δ6 · k + δ7 ·
ℓ
∑

i=1

(ti+1 − ti +A(vi)) · ind(vi)

= (δ2 + δ3) · (T − tℓ) + δ4 ·
k
∑

i=1

cλ(ei)

+ δ5 ·
k
∑

i=1

c(ei) + δ6 · k + δ7 ·
k−1
∑

i=1

(ti+1 − ti +A(vi)) · ind(vi)

= optt+1(v).

Note that A(vi) = 0 for i ∈ [ℓ+1, k− 1] if ti−1 = ti by Transformation 1. Consequently,
the tuple (optt+1(v), t + 1) is added to L(v) and opt(v) is set to the minimum of its

21

current value and

δ1 · (t+ 1)− δ2 · T + δ3(t+ 1− T) + optt+1(v)

= δ1 · (t+ 1)− δ2 · T + δ3(t+ 1− T)

+ (δ2 + δ3) · (T − t1) + δ4 ·
k
∑

i=1

cλ(ei)

+ δ5 ·
k
∑

i=1

c(ei) + δ6 · k + δ7 ·
k−1
∑

i=1

(ti+1 − ti +A(vi)) · ind(vi)

= δ · (t+ 1) + δ2 · (tk) + δ3(t+ 1− t1) + δ4 ·
k
∑

i=1

cλ(ei)

+ δ5 ·
k
∑

i=1

c(ei) + δ6 · k + δ7 ·
k−1
∑

i=1

(ti+1 − ti +A(vi)) · ind(vi)

= linT(P).

This is a contradiction to our assumption.
Lastly, observe that the algorithm only computes temporal walks that are contained

in G as it only uses arcs from Gt which all correspond to temporal walks in G (single
arcs or longer walks starting in s). Thus, for t ∈ {1, . . . , T}, Algorithm 1 computes an
optimal temporal walk from s to v ∈ V that arrives exactly in time step t.

Based on this statement, we can finally prove the correctness of Algorithm 1. This
concludes the proof of Theorem 1.

Lemma 4. Algorithm 1 computes a optimal walk from a source vertex s to all vertices.

Proof. Let P = ((vi−1, vi, 1))
k
i=1 = (ei)

k
i=1 be a walk with minimum linT(P) among all

temporal walks from s to a vertex v. The walk P is also an optimal walk from s to v
that arrives exactly in tk. This is computed by Algorithm 1 in time step tk as shown in
Lemma 3.

6 Experimental Results

We implemented Algorithm 1 and performed experimental studies including comparisons
to existing state-of-the-art algorithms by Wu et al. [30]. We show that our algorithm—
while being able to solve a much more general problem—can compete with these al-
gorithms on real-world instances when computing temporal walks with no maximum-
waiting-time constraints. We further examine the influence of different maximum-
waiting-time values on the existence and structure (e.g., number of cycles) of optimal
temporal walks and on the running time of Algorithm 1.

22

Table 2: Statistics for the real-world data sets used in our experiments (same freely
available data sets as Wu et al. [30] from the KONECT library [19]).

File |V | |E| T

elec 7,118 1 · 105 1.19 · 108

facebook-wosn-links 63,731 8.2 · 105 1.23 · 109

epinions 1.3 · 105 8.4 · 105 8.16 · 107

enron 87,273 1.1 · 106 1.4 · 109

digg-friends 2.8 · 105 1.7 · 106 1.25 · 109

ca-cit-HepPh 28,093 4.6 · 106 3.15 · 108

youtube-u-growth 3.2 · 106 9.4 · 106 1.94 · 107

dblp-coauthor 1.3 · 106 1.8 · 107 2.4 · 109

flickr-growth 2.3 · 106 3.3 · 107 1.7 · 107

wikipedia-growth 1.9 · 106 4 · 107 1.93 · 108

6.1 Setup and Statics

We implemented Algorithm 1 in C++ (v11) and performed our experiments on an Intel
Xeon E5-1620 computer with 64GB of RAM and four cores clocked at 3.6GHz each.
The operating system was Debian GNU/Linux 7.0 where we we compiled the program
with GCC v7.3.0 on optimization level -O3. We compare Algorithm 1 to the algorithms
of Wu et al. [30] using their C++ code and testing it on the same hardware and with
the same compiler. We tested our algorithm on the same freely available data sets as
Wu et al. [30] from the well-established KONECT library [19]. The graphs are listed in
Table 2 with some relevant statistics. For each optimization criterion, each β ≡ c, c ∈
{1, 2, 4, 8, . . . , 2⌈log T ⌉}, and each data set, Algorithm 1 ran for 100 fixed source vertices of
the data set chosen independently and uniformly at random to ensure comparability. Our
open source code is freely available at https://fpt.akt.tu-berlin.de/temporalwalks.

6.2 Findings

In the following, we first compare Algorithm 1 to the algorithm by Wu et al. [30] in
terms of running times in our experiments. In the second part, we analyze the effect
that different maximum-waiting-time values β have on Algorithm 1.

6.2.1 Comparison

When comparing with the algorithms by Wu et al. [30], we only use the runs with no
maximum-waiting-time constraints (β ≡ T) and we tested all algorithms on the same
set of randomly chosen starting vertices. In the experiments, we could only measure a
very small effect of the optimization criteria on the running time. This even holds for
linear combinations. The only exception was the computation of foremost which was a
bit faster in comparison to the computation of the other criteria. For this reason we only
include two examples here. We chose foremost and shortest as these are the two criteria

23

https://fpt.akt.tu-berlin.de/temporalwalks

ele
c

fa
ce
bo
ok
-w
os
n-
lin
ks

ep
in
ion

s

en
ro
n

di
gg
-fr
ien
ds

ca
-ci
t-H

ep
Ph

yo
ut
ub
e-u

-g
ro
wt
h

db
lp
-co
au
th
or

fli
ck
r-g
ro
wt
h

wi
ki
pe
di
a-
gr
ow
th

10−6

10−4

10−2

100

102

T
im

e
in

se
co
n
d
s

Wu et al.’s read-in Wu et al.’s foremost Wu et al.’s shortest
Our read-in Our foremost Our shortest

Figure 3: Running time comparison for computing foremost and shortest walks. For
each graph there are four box plots. From left to right these correspond to the
following algorithms: foremost of Wu et al., our foremost, shortest of Wu et
al., our shortest. The boxes represent the 25% to 75% percentile of running
times over the 100 runs for different sources on the respective temporal graph
and the line within the boxes illustrates the 50% percentile (the median). The
whiskers on the top and the bottom represent the best and worst running times,
respectively. We here only depict the running times of the algorithms after the
data has been read in and was preprocessed as we use Transformation 1 to be
able to cope with λ = 0. The two plots with the crosses show the running time
of reading in the input and preprocessing it.

where Algorithm 1 performed the best and the worst compared to the algorithms by Wu
et al. [30], respectively. The respective findings are illustrated in the box plots in Fig. 3.
As one can observe in Fig. 3, Algorithm 1 has a larger variance and is therefore more
dependent on the choice of starting vertices. This is due to the fact that Algorithm 1
only considers arcs that start in vertices that were already visited while the algorithm
by Wu et al. [30] always considers the whole sorted time-arc list and therefore has
almost no variance in the running time. We mention in passing that we observed that
even for β ≡ T , not all vertices can reach all other vertices by temporal walks in the
considered graphs. If one takes the running time of an average run of each algorithm, that
is, the median value of running times, then both algorithms have comparable running
times. If one takes the average running time of each algorithm, then the running time
of Algorithm 1 is higher than the running time of the algorithm by Wu et al. [30] by a

24

ele
c

fa
ce
bo
ok
-w
os
n-
lin
ks

ep
in
ion

s

en
ro
n

di
gg
-fr
ien
ds

ca
-ci
t-H

ep
Ph

yo
ut
ub
e-u

-g
ro
wt
h

db
lp
-co
au
th
or

fli
ck
r-g
ro
wt
h

wi
ki
pe
di
a-
gr
ow
th

10−5

10−4

10−3

10−2

10−1

100

101
T
im

e
in

se
co
n
d
s

Linear Combination
Cheapest

Figure 4: Running time comparison for computing optimal walks with respect to a lin-
ear combination of different optimization criteria (black) and with respect to
cheapest walks (red) for β ≡ T . The (upper) lines with crosses illustrate the
average running time and the (lower) lines with boxes show the median running
time.

factor of roughly ten (averaged over all optimization criteria). Despite the fact that this
is a weakness of our algorithm, we believe it to be a valuable contribution as it solves
more general problems: it can easily combine multiple optimization criteria and it can
cope with maximum waiting times and instantaneous arcs, that is, arcs with λ = 0.

When looking at the time to read the data we can observe that our algorithm takes
roughly twice to thrice the time for preprocessing. This is due to the fact that for each
edge in the input graph Transformation 1 constructs a new vertex and a new edge and
so the resulting graph is almost thrice the size. The time to read in the data is much
larger than the time of the actual algorithm and so Algorithm 1 takes roughly thrice the
time of the algorithm by Wu et al. [30] if preprocessing is taken into account.

Finally, we compared the running time of Algorithm 1 with a single optimization
criterion against the same algorithm with a linear combination of all criteria considered.
Fig. 4 displays the average and median running time for β ≡ T on all considered data
sets. As expected, the linear combination of optimization criteria does not change the
running time compared to a single criterion.

25

6.2.2 Effect of different β-values

We next analyze the impact that the maximum-waiting-time constraint β has on Algorithm 1.
Decreasing β can have two different effects: First, it can make temporal walks invalid as
the maximum allowed waiting time in a vertex is exceeded. Thus, with small β-values
certain vertices can only reach few vertices by temporal walks. The second effect is that
a temporal walk is invalidated but can be fixed by a detour that starts and ends in the
vertex in which the maximal waiting time was exceeded.

We first investigate the second effect. To this end, we partition the optimization
criteria in two categories: The first category contains all optimization criteria for which
a detour has no negative effect on the solution. These are foremost, reverse-foremost,
fastest, and minimum waiting time. Since the solution for, e. g., fastest is only depending
on the first and last edge of the temporal walk, adding a cycle somewhere in between
does not change the solution. Minimum waiting time plays a special role here as its
solution can actually improve by an additional cycle. The second category contains all
other optimization criteria, that is, those for which a detour has a negative effect on
the solution. These are minimum hop count, cheapest, and shortest. Since we could not
measure significant differences for the different optimization criteria within a category,
we only display one figure for each category in Fig. 5.4

We remark that in the first category we implemented the algorithm such that cycles,
which can be used but can also be omitted, are kept in the solution. Hence Fig. 5 (top
left plot) displays values close to the upper bound on the number of cycles in an optimal
solution.

Fig. 5 (two bottom plots) show that the different categories behave very similarly when
it comes to the running-time dependence on the value of β. It seems to be more likely
that the first effect we described in the beginning (that decreasing β-values can make
temporal walks invalid as the maximum allowed waiting time in a vertex is exceeded) is
more important for explaining the running times. With very small β-values, a vertex can
only reach few other vertices and hence only few edges are considered by Algorithm 1.
With increasing β-values, there seems to be a critical value (around 0.1% − 10% of
the lifetime of the temporal graph) where suddenly much more connections appear and
hence the running time increases drastically. This observation is affirmed by Fig. 6,
which shows that (almost) independently of the input graph, the running time is linearly
depending on the number of vertices that are visited. We believe that the difference for
small β-values comes from the initialization which is again more depending on the input
graph. This would also confirm our explanation why our algorithm has a higher variance
in running time compared to the algorithm by [30].

4We omitted the data sets facebook-wosn-links, flickr-growth, ca-cit-HepPh, and youtube-u-growth in
Fig. 5 to keep the figure clear. There are no additional information gains in displaying these data
sets.

26

10−3 10−2 10−1 100 101 102 103
10−2

10−1

100

101

102

103

104

105

106

#
C
y
cl
es

(A
v
er
a
g
e)

elec epinions enron

digg-friends dblp-coauthor wikipedia-growth

10−3 10−2 10−1 100 101 102 103
10−2

10−1

100

101

102

103

104

105

106

10−3 10−2 10−1 100 101 102 103
10−5

10−4

10−3

10−2

10−1

100

101

β-value / Lifetime in %

R
u
n
n
in
g
T
im

e
(A

v
er
a
g
e)

foremost walk

10−3 10−2 10−1 100 101 102 103
10−5

10−4

10−3

10−2

10−1

100

101

β-value / Lifetime in %

cheapest walk

101 102 103 104 105

Visited Vertices (Average)

Figure 5: Impact of different β-values on the number of cycles, running time, and on
the number of vertices that can be reached by temporal walks from the chosen
starting vertices. All plots use the same color bar. Two plots on left side:
results for a foremost walk. Two plots on right side: results for a cheapest
walk.

7 Conclusion

Building on and widening previous work of Wu et al. [30], we provided a theoretical and
experimental study of computing optimal temporal walks under waiting-time constraints.

27

100 101 102 103 104 105 106
10−5

10−4

10−3

10−2

10−1

100

101

Visited Vertices (Average)

R
u
n
n
in
g
ti
m
e
(A

ve
ra
ge
)

elec
epinions
enron
digg-friends
dblp-coauthor
wikipedia-growth

Figure 6: Average number of visited vertices and its influence on the average running
time for foremost.

The performed experiments indicate the practical relevance of our approach. As to future
challenges, recall that moving from walks to paths would yield NP-hard optimization
problems [6]. Hence, for the path scenario the study of approximation, fixed-parameter,
or heuristic algorithms is a natural next step. For the scenario considered in this work,
note that we did not study the natural extension to Pareto-optimal walks (under several
optimization criteria). Moreover, for (temporal) network centrality measures based on
shortest paths and walks, counting or even listing all temporal walks or paths would be
of interest.

Acknowledgment We thank Fabian Jacobs for his programming work helping to enable
our experimental studies and the anonymous reviewers of COMPLEX NETWORKS
2019 for their constructive feedback.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, , 1993.

[2] K. Axiotis and D. Fotakis. On the size and the approximability of minimum tempo-
rally connected subgraphs. In Proceedings of the 43rd International Colloquium on
Automata, Languages, and Programming (ICALP ’16), pages 149:1–149:14, , 2016.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

28

[3] A.-L. Barabási. Network Science. Cambridge University Press, , 2016.

[4] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders,
D. Wagner, and R. F. Werneck. Route planning in transportation networks, pages
19–80. Springer, , 2016.

[5] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs
and dynamic networks. International Journal of Parallel, Emergent and Distributed
Systems, 27(5):387–408, 2012.

[6] A. Casteigts, P. Flocchini, E. Godard, N. Santoro, and M. Yamashita. On the
expressivity of time-varying graphs. Theoretical Computer Science, 590:27–37, 2015.

[7] A. Casteigts, A.-S. Himmel, H. Molter, and P. Zschoche. The computational com-
plexity of finding temporal paths under waiting time constraints. arXiv preprint
arXiv:1909.06437, 2019.

[8] B. C. Dean. Algorithms for minimum-cost paths in time-dependent networks with
waiting policies. Networks, 44:41–46, 2004.

[9] T. Fluschnik, H. Molter, R. Niedermeier, M. Renken, and P. Zschoche. Temporal
graph classes: A view through temporal separators. Theoretical Computer Science,
806:197–218, 2020.

[10] T. Fluschnik, R. Niedermeier, C. Schubert, and P. Zschoche. Multistage s-t path:
Confronting similarity with dissimilarity. arXiv preprint arXiv:2002.07569, 2020.

[11] P. Holme. Modern temporal network theory: a colloquium. The European Physical
Journal B, 88(9):234, 2015.

[12] P. Holme. Temporal network structures controlling disease spreading. Physical
Review E, 94.2:022305, 2016.

[13] P. Holme and J. Saramäki. Temporal networks. Physics Reports, 519(3):97–125,
2012.

[14] P. Holme and J. Saramäki. Temporal networks as a modeling framework. In
P. Holme and J. Saramäki, editors, Temporal networks, pages 1–14. Springer, ,
2013.

[15] P. Holme and J. Saramäki. Temporal Network Theory. Springer, , 2019.

[16] D. Kempe, J. Kleinberg, and A. Kumar. Connectivity and inference problems for
temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002.

[17] H. Kim and R. Anderson. Temporal node centrality in complex networks. Physical
Review E, 85.2:026107, 2012.

[18] M. Kivelä, J. Cambe, J. Saramäki, and M. Karsai. Mapping temporal-network
percolation to weighted, static event graphs. Scientific Reports, 8(1):12357, 2018.

29

[19] KONECT. Dnc emails network dataset, 2017. URL
http://konect.uni-koblenz.de/networks/dnc-temporalGraph.

[20] W. Lightenberg, Y. Pei, G. Fletcher, and M. Pechenizkiy. Tink: A temporal graph
analytics library for Apache Flink. In Proc. of WWW ’18, pages 71–72, , 2018.
International World Wide Web Conferences Steering Committee.

[21] N. Masuda and P. Holme. Predicting and controlling infectious disease epidemics
using temporal networks. F1000prime Reports, 5, 2013.

[22] G. B. Mertzios, O. Michail, and P. G. Spirakis. Temporal network optimization
subject to connectivity constraints. Algorithmica, 81(4):1416–1449, 2019.

[23] A. B. Modiri, M. Karsai, and M. Kivelä. Efficient limited time reachability estima-
tion in temporal networks. arXiv preprint arXiv:1908.11831, 2019.

[24] M. E. J. Newman. Networks. Oxford University Press, , 2018.

[25] V. Nicosia, J. Tang, M. Musolesi, G. Russo, C. Mascolo, and V. Latora. Components
in time-varying graphs. Chaos: An Interdisciplinary Journal of Nonlinear Science,
22(2):023101, 2012.

[26] V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, and V. Latora. Graph
Metrics for Temporal Networks, pages 15–40. Springer, , 2013.

[27] R. K. Pan and J. Saramäki. Path lengths, correlations, and centrality in temporal
networks. Physical Review E, 84.1:016105, 2011.

[28] M. Salathé, M. Kazandjieva, J. W. Lee, P. Levis, M. W. Feldman, and J. H. Jones.
A high-resolution human contact network for infectious disease transmission. Pro-
ceedings of the National Academy of Sciences, 107(51):22020–22025, 2010.

[29] N. Santoro, W. Quattrociocchi, P. Flocchini, A. Casteigts, and F. Amblard. Time-
varying graphs and social network analysis: Temporal indicators and metrics.
Proceedings of the 3rd AISB Social Networks and Multiagent Systems Symposium
(SNAMAS ’11), pages 32–38, 02 2011.

[30] H. Wu, J. Cheng, Y. Ke, S. Huang, Y. Huang, and H. Wu. Efficient algorithms for
temporal path computation. IEEE Transactions on Knowledge and Data Engineer-
ing, 28(11):2927–2942, 2016.

[31] B. B. Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and foremost
journeys in dynamic networks. International Journal of Foundations of Computer
Science, 14(02):267–285, 2003.

[32] P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier. The complexity of finding
small separators in temporal graphs. Journal of Computer and System Sciences,
107:72–92, 2020.

30

http://konect.uni-koblenz.de/networks/dnc-temporalGraph

	1 Introduction
	2 Modeling of Optimal Temporal Walks
	3 Formal Definitions
	4 Transformations
	5 Algorithm
	6 Experimental Results
	6.1 Setup and Statics
	6.2 Findings
	6.2.1 Comparison
	6.2.2 Effect of different -values

	7 Conclusion

