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Abstract. Network visualization has established as a key complement
to network analysis since the large variety of existing network layouts
are able to graphically highlight different properties of networks. How-
ever, signed networks, i.e., networks whose edges are labeled as friendly
(positive) or antagonistic (negative), are target of few of such layouts
and none, to our knowledge, is able to show structural balance, i.e., the
tendency of cycles towards including an even number of negative edges,
which is a well-known theory for studying friction and polarization.

In this work we present Structural-balance-viz: a novel visualization
method showing whether a connected signed network is balanced or not
and, in the latter case, how close the network is to be balanced. Structural-
balance-viz exploits spectral computations of the signed Laplacian ma-
trix to place network’s nodes in a Cartesian coordinate system resem-
bling a balance (a scale). Moreover, it uses edge coloring and bundling
to distinguish positive and negative interactions. The proposed visu-
alization method has characteristics desirable in a variety of network
analysis tasks: Structural-balance-viz is able to provide indications of bal-
ance/polarization of the whole network and of each node, to identify two
factions of nodes on the basis of their polarization, and to show their cu-
mulative characteristics. Moreover, the layout is reproducible and easy
to compare. Structural-balance-viz is validated over synthetic-generated
networks and applied to a real-world dataset about political debates con-
firming that it is able to provide meaningful interpretations.

Keywords: network visualization, signed networks, structural balance,
spectral theory

1 Introduction

Signed networks are simple yet informative network representations in which
edges are annotated as positive or negative [11]. They are applied in a large
variety of domains in which interactions between entities are either friendly or
antagonistic, e.g., international relations [9], and online social media and social
networks [21]. The theory of structural balance has established as the standard
for studying, from a theoretical standpoint in sociology and psychology, the
formation of opinions in both individuals and social groups. Structural balance
is widely applied to signed networks, e.g., for the analysis of social media [18],
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balanced unbalanced

Fig. 1. Examples of balanced (left) and unbalanced (right) networks. Positive edges
are reported in blue, while negative edges in red.

and the study of opinion separation [22]. A signed network has been proved to
be structurally balanced or balanced if and only if all cycles are balanced, i.e.,
include an even number of negative edges [6]. As a consequence, network’s nodes
can be assigned to two different sets such that we find only positive ties between
nodes in the same set and all negative ones between nodes of different sets [10].
Figure 1 shows two simple examples of balanced and unbalanced networks. The
network on the left is balanced and has the two properties discussed above, i.e.,
all cycles are balanced and a clustering can be found in agreement to all edges’
signs. On the other hand, the network on the right is not balanced: there are
unbalanced cycles (e.g., the one composed by the node sequence [A4, B, D, C, A])
and there are edges disagreeing with the clustering (e.g., edge (B, E)). Even if a
balanced network represents the most natural configuration, structural balance
is not necessarily a “positive” configuration, e.g., it is observed in the alliance
network between European nations just before World War I [20]. Moreover, most
of the large real-world networks are expected to be unbalanced since a single
unbalanced cycle makes the whole network unbalanced. Therefore, it has also
been shown the importance of measuring to what extent an unbalanced signed
network is close to be balanced [17]. Structural balance is also linked with group
polarization, i.e., the division of a group of entities (e.g., nodes of a network)
into two subgroups each reaching consensus and having opposite opinions [5].

Network visualization has emerged as a key complement to standard network
analysis techniques to fill the gap between computation and interpretation, com-
municate findings, and deepen insight [16]. A large variety of network layouts
exists in literature [15] and, also, implemented for visualization applications, as,
e.g., Gephi and Cytoscape. Surprisingly, little attention has been paid to the
visualization of signed networks [17] and, to our knowledge, none of the existing
layouts highlights structural balance properties of signed networks.

In this work we tackle the task of identifying, through a visualization, whether
a connected signed network is balanced or unbalanced and, in the latter case, how
much the network is unbalanced. The proposed visualization method, Structural-
balance-viz, places nodes in a Cartesian coordinate system exploiting spectral
properties of the signed Laplacian matrix. Edges are colored and bundled to
make positive and negative signs distinguishable and to ease the understanding
of the global balance/polarization of the network. At a glance, it is possible to
catch if a network is balanced: no positive edges cross the y-axis and no negative
edges have both endpoints in the same quadrant, namely, the y-axis finds a
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partition of the nodes as explained in [10]. The visual perception of the portion
of edges “disagreeing” with the partitioning, i.e., the fraction of positive edges
crossing the y-axis and negative edges internal to a quadrant, gives an indication
of the level of balance of a network. Moreover, we utilize the x-axis as a scale to
show cumulative characteristics of the sets of nodes identified by the y-axis, and
include a textual indication of the level of balance of the network under analysis
in order to improve the comparability between different visualizations.

The layout produced by Structural-balance-viz has the following characteris-
tics that are useful in a variety of network analysis tasks: (i) it shows whether
the input network is balanced or not and, in the second case, how close the
network is to be balanced; (i7) by nodes’ z-coordinate, it provides an indication
of the contribute to the balance structure of the network and, also, of the indi-
vidual balance/polarization of each node (such information might be exploited,
e.g., for the task of finding non-polarized representatives [19]); (ii7) it identifies
two factions of nodes on the basis of their polarization which finds applications
in clustering problems, e.g., 2-correlation-clustering [7,2]; (iv) the scale repre-
sented by the x-axis shows cumulative characteristics of the identified factions,
e.g., size or internal clustering coefficient; and, (v) the resulting visualization are
reproducible (desirable feature but not common to all network layouts, e.g., force
based) and easy to compare in terms of balance structure. We verify such charac-
teristics by running Structural-balance-viz on synthetic networks and a real-world
dataset representing political debates.

The rest of the paper is structured as follows. Section 2 covers the related
work, in Section 3 we describe our visualization procedure, while Section 4 shows
the experimental validation and the real-world application. Finally, Section 5
concludes the paper.

2 Related work

Structural balance and signed networks. The concept of structural balance
first appears as psychological theory of balance in triangles of sentiments. Signed
networks are later introduced in the seminal work by Harary [11], who also gen-
eralizes the balance theory to signed networks [6]. Harary and Kabell develop
a simple algorithm to test whether a given signed network is balanced [12] by
enumerating the cycles in the network containing an even number of negative
edges. A complete signed network is balanced if and only if all its triangles are
balanced [10]. Akiyama et al. [1] study how to estimate the minimum number
of sign changes required so that a signed network satisfies the balance property.
Recent works link spectral properties of signed networks to the balance theory.
Hou et al. [14] prove that a signed network is balanced if and only if the smallest
eigenvalue of the signed Laplacian is 0. Moreover, [13] investigates the relation-
ship between the smallest eigenvalue of the signed Laplacian and the level of
balance of a signed network.

A fundamental problem studied in signed networks is correlation cluster-
ing [4], i.e., partition the nodes into clusters so as to maximize (minimize)
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the number of edges that “agree” (“disagree”) with the partitioning. The 2-
correlation-clustering problem [7], also known as the frustration-index prob-
lem [2], is also widely studied. Finally, a more recent line of work introduces
the problem of discovering antagonistic communities in signed networks [5].

Network visualization. Many network visualizations have been proposed in
literature in order to graphically express specific characteristics, properties, and
patterns of networks. Force-based visualizations map an energy function to the
desired layout and minimize it [15]. Hive plots [16] place nodes on radially ori-
ented linear axes according to a coordinate system defined by nodes charac-
teristics and/or network properties. Eigenvectors are exploited for visualizing
networks in different works. In particular, [17] studies the application of clus-
tering, prediction, and visualization methods to signed networks by using the
signed Laplacian and its eigenvalue decomposition. Despite using eigenvectors
to place nodes in a Cartesian coordinate system, the visualization algorithm
of [17] has different purposes and strongly differs from ours: (¢) it wants to high-
light clustering properties and not structural balance; (i) it does not provide
information about the contribute of each node to the balance/polarization struc-
ture; (¢it) it does not cluster nodes into two factions and, therefore, it cannot
show factions’ cumulative properties; and, (iv) the resulting layouts are hardly
comparable between each other.

3 Visualizing structural balance

In this section we describe the details of Structural-balance-viz, the proposed
visualization method whose main objective is to show whether a connected signed
network is balanced or unbalanced and, in the latter case, how much the network
is unbalanced.

First, we provide preliminary notations and definitions. We denote a signed
undirected network as G = (V, E;, E_), where V is a set of nodes, F, is a set
of positive edges, and E_ is a set of negative edges. In this work, we require
G to be connected. Let A be the signed adjacency matrix of G, i.e., for each
pair of nodes u,v € V, Afu,v] = 1if (u,v) € B4, Afu,v] = =1 if (u,v) € E_,

Alu,v] = 0 otherwise. Let also D = diag(dus,- - .,du,,) be the signed degree
matrix of G, where d, = Y, |A[u,v]| represents the signed degree, i.e., the
number of neighbors disregarding the sign, of a node u € V. Finally, we define

the signed Laplacian matrix of G as:

L=D-A.

We now describe our algorithm for visualizing structural balance in signed
networks, which is outlined as Algorithm 1. As mentioned beforehand, Structural-
balance-viz makes use of the signed Laplacian of the input network G. In fact, it
starts by computing the signed Laplacian together with its smallest eigenvalue
Am and the corresponding eigenvector v,,, (Line 2). At this point, we already
have all the information required for the visualization handy. At first, we identify
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Algorithm 1: Structural-balance-viz

Input: A signed network G = (V, E4, E_) and a network measure p (optional).
Output: A visualization of G.

/* Eigenvalue decomposition x/
compute the signed Laplacian L of G

compute the smallest eigenvalue A, of L and its corresponding eigenvector v,
/* Nodes coordinates x/
X+—0; Y+0

forall u € V do

L X[u] = vin[u]

Yul={veV|vnv] =vnlu] Av < u}

N =

(=23 )

/* Edge partitioning */
Ei ={e=(u,v) € E; | X[u] = X[v]}
8 B! ={e=(u,v) € E_ | X[u] = X[v]}
9 ES =F.\ E},
10 E¢ = FE_\ EX
/* Drawing x/
11 draw the Cartesian axes
12 draw the nodes in V' according to X and Y
13 draw the edges in EY} in blue with horizontal-external bundling

~

14 draw the edges in E% in red with horizontal-internal bundling
15 draw the edges in E in blue with vertical-upper bundling
16 draw the edges in E¢ in red with vertical-lower bundling
/* Additional features x/
17 if p # NULL then
18 Ci={ueV|Xu <0}; Cr={ueV|X[u] >0}
19 L let v = p(Ch) — u(Cr) be the angular coefficient of the z-axis

20 draw the label “y = \,,,”

the coordinates of the nodes in V' and store them in X and Y (cycle starting at
Line 4). The a-coordinate of each node w is directly obtained by the element of
vV, corresponding to u. Since more than a node might have the same abscissa
and we want to avoid nodes to overlap, the y-coordinates are computed in order
to distribute nodes having the same z-coordinate vertically. Next (Lines 7 - 10),
edges are divided into four sets since, on the basis of the coordinates of their
endpoints and of their sign, different layouts are applied:

— Ej_ contains the positive edges having two endpoint with the same z-
coordinate;

— E* contains the negative edges having two endpoint with the same z-
coordinate;

— E$ contains the positive edges having two endpoint with different z-
coordinate;

— FE° contains the negative edges having two endpoint with different z-
coordinate.
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Structural-balance-viz is then ready to draw the visualization (Lines 11 - 16). At
first, the Cartesian axes and the nodes are positioned. Then, the edges are drawn
exploiting coloring and bundling to highlight their sign. In particular, positive
edges are depicted in blue, while negative edges in red. A positive edge e, € E
is bundled towards the top of the visualization, if e, € E$, or externally, if
ey € EY; while a negative edge e_ € E_ is bundled towards the bottom, if
e_ € E°, or internally, if e_ € E*.

In order to improve the informativeness of our layout, we include two ad-
ditional features in Structural-balance-viz (from Line 17): one wants to provide
information about the two sets of nodes identified by the y-axis, while the latter
has the aim of making different visualizations more comparable.

Any eigenvector v of the signed Laplacian can be used to derive a partition
of network’s nodes into two sets on the basis of the sign of the corresponding
elements in v. Such partitioning is at the basis of spectral-clustering methods [8]
and it can identify polarized structures, i.e., two sets of nodes showing high inter-
nal consensus and warring between each other [5]. In the proposed visualization,
the two sets are identified by the nodes in the left and in the right quadrants,
i.e., C; and C,. computed at Line 18 of Structural-balance-viz, respectively. In
practical applications, it is often of interest to know (and visualize) network
measures of the two polarized sets, e.g., size, internal clustering coefficient, in-
ternal density of positive edges, ratio of positive edges, etc. We provide a simple
visual expedient based on the angular coefficient of the z-axis that resembles the
behavior of a scale. Let p be the network measure of interest. Note that p is an
optional input parameter of Structural-balance-viz and the lines corresponding to
this additional feature are executed if pu is actually provided in input. We define
the angular coeflicient of the z-axis as

v = pu(Cr) — u(Cr).

The work enclosed in [14,13] proves theoretical bounds on the smallest eigen-
value of the Laplacian of a signed network and investigates its relationship with
respect to the level of balance in the network. It is shown that a connected
signed network is structurally balanced if and only if A\,, = 0, i.e., the smallest
eigenvalue of the Laplacian is zero, and that the higher \,,, the lower the level
of balance of the network is. Therefore, \,, is the simplest indicator to take into
account for comparing structural balance in different networks (of equal densi-
ties). More complex indicators of balance could also be employed [3]. Ideally,
the y-coordinate where the z-axis crosses the y-axis would be a simple manner
to graphically show A,,. Unfortunately, we devoted consistent effort to visualize
such information in this way, but all attempts worsened the clarity of the layout
(e.g., cut off edges). To this extent, we include in Structural-balance-viz a label
reporting the value of A, on the top of the y-axis and leave the visualization of
Ay, without the label as future work.

The time complexity of Structural-balance-viz is governed by the time required
by the eigenvalue decomposition of L, while the space complexity is O(|V|?),
again imposed by L. Note that computational-intensive network measures u
might considerably extend the running time when drawing large networks.
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Fig. 2. Visualization by Structural-balance-viz of a balanced network: all the cycles are
balanced.

Fig. 3. Visualization by Structural-balance-viz of an unbalanced network: not all the
cycles are balanced.

Figures 2 and 3 show two examples of visualizations generated by Structural-
balance-viz for a balanced and an unbalanced network, respectively. For such
visualizations, we remove the label reporting A, to prove how obvious the dif-
ference between the two networks is even without textual information. Also, as
for all other examples in this paper, edge bundling is not applied; however, it
will be available in the tools we plan to publicly release. It is immediate to note
that the network represented in Figure 2 is balanced: all the nodes are at the
extremes of the z-axis and no blue (red) edge crosses the y-axis (lays in the same
quadrant). This configuration highlights the fact that all the cycles of the repre-
sented network are balanced. On the other hand, Figure 3 shows an unbalanced
network since there are positive edges in-between the two factions of nodes and
a negative edge within two nodes in the left quadrant; therefore, we easily find
the presence of unbalanced cycles.

Figure 4 shows the same network of Figure 3 with both the additional features
of Structural-balance-viz; in this case, the z-axis scale compares the size of the
two factions of nodes, i.e., u counts the number of nodes in the sets. At a glance,
it is possible to understand that the left faction is slightly larger than the right
one (six and four nodes, respectively) and that the smallest eigenvalue of the
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y=062

Fig. 4. Visualization by Structural-balance-viz of an unbalanced network with the the
additional features. The x-axis scale compares the size of the two factions of nodes.

signed Laplacian is not far from zero; this means that the network is not far
from being balanced (i.e., there are not many unbalanced cycles).

4 Validation and application

In this section we validate the proposed network layout by visualizing synthetic
networks. Also, we apply Structural-balance-viz to derive concrete insights from
a dataset representing political debates.

We develop Structural-balance-viz by using D3.js with a Java back-end. The
visualization is made available by a web interface that allows the selection of
the input dataset and of p (i.e., the network measure that defines the angular
coefficient of the m-axis)3. The current implementation can consider only the
size of the sets of nodes as u, but the code is easily extendable to consider
other characteristics. The time required by our implementation to produce each
visualization has always been less than a few seconds.

Validation: synthetic networks

We first focus our attention on synthetic-generated networks with the aim of
proving that the visualizations produced by Structural-balance-viz are easily com-
parable. The generative process for signed networks we follow requires in input
three parameters: n indicates the number of nodes, § defines the edge density,
while v is the ratio of unbalanced triangles in the network (which is another
indicator of how much a network is balanced [10]). The procedure works as
follows:

— generate a complete balanced network of n nodes (this can be achieved by
partitioning the n nodes into two and by assigning negative sign to the edges
connecting nodes in different sets while positive sign to all others edges);

— randomly remove edges that do not disconnect the network until the edge
density is less or equal than J;

3Code available at github.com/egalimberti/balance_visualization.
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Fig. 5. Visualization by Structural-balance-viz of synthetic networks for increasing val-
ues of v (n = 30, 6 = 0.3).

— randomly change signs of edges appearing in balanced triangles until the
ratio of unbalanced triangles is less or equal than v.

In Figure 5 we report our visualization for six networks generated by the
described procedure by progressively increasing v (v € [0,0.2,0.4,0.6,0.8,1])
while keeping n and § fixed (n = 30, § = 0.3). Therefore, we have the full
range of networks in terms of structural balance: on one extreme (v = 0) the
network is perfectly balanced, on the other (v = 1) the network has no balanced
triangles. When v = 0, as expected, we obtain the perfectly distinguishable
configuration of balanced networks, where all nodes are in either extremes of the
z-axis, no positive edge crosses the y-axis, and no negative edge entirely lies in
the same quadrant. Note that, for the balanced case, we do not provide in input
to Structural-balance-viz any network function p since the number of nodes in
the sets can be inferred by the height of the two stacks. As v grows, the most of
the nodes gradually moves from the extreme ordinates to the center of the plot;
nonetheless, even for v = 1, we note a few highly-polarized nodes at the margins
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—
— y=0.16

Fig. 6. Visualization by Structural-balance-viz of the United States Congress network.

Fig. 7. Visualization by Structural-balance-viz of the United States Congress network
after sign reshuffling.

of the horizontal domain. In addition, more and more both positive edges cross
the y-axis and negative edges are within one of the two quadrants. The additional
features result to be extremely useful in these cases. At first, the scale gives a
precise indication that the right faction is larger than the left one for all values of
v. Also, the smallest eigenvalue of the signed Laplancian, which grows coherently
with v, eases the comparison of visualizations that might appear similar (e.g.,
v = 0.8 and v = 1) and provides a definitive indication about the structural
balance of the visualized networks.

A case study: the United States Congress network

Next, we apply Structural-balance-viz to the analysis of a real-world network
obtained from data of the United States Congress modeling a political debate?.
Nodes (|V] = 219) are politicians speaking in the Congress, edges (|[E4 U E_| =
521) denote that a speaker mentions another speaker, while signs report whether
mentions are in support (positive) or opposition (negative).

Figure 6 shows the visualization of the original Congress network. It is easy
to notice that the members are divided into two (almost) equally-sized factions

4Dataset available at konect.cc.
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that are close to be balanced; in fact, there is only one negative edge within the
left faction and a relatively few positive edges crossing the y-axis. The z-axis can
be seen as the left-right political spectrum: the most of the politicians are quite
moderate, while there are some polarized members especially in the right, and
a few nodes close to = 0 (probably the mediators between the two factions).

To have a better understanding of the structural balance of the the Congress
network, we compare it to a null model. In particular, we maintain the same net-
work structure while reshuffling the edge signs, leaving the number of positive
and negative edges unchanged. The visualization of the resulting reshuffled net-
work is reported in Figure 7. In this case, the balance/polarization structure of
the network is destroyed since the majority of the nodes collapse close to the ori-
gin. All the negative edges (except one) lay between such nodes and are no more
visible in the layout. Only five members maintain their polarization in the right.
Moreover, the smallest eigenvalue of the signed Laplacian is greater than in the
original network. All this indications suggests that, the United States Congress
network is more balanced/polarized than what is expected by chance, according
to a reshuffled null model. The Congress is instead quite polarized, very close to
being structurally balanced, due to the political parties and alliances.

5 Conclusions

In this paper we introduce Structural-balance-viz: a novel algorithm that places
nodes in a Cartesian coordinate system, that resembles the behavior of a scale,
and exploits edge coloring and bundling for showing whether a connected signed
network is balance or unbalanced and, in the latter case, how far it is from
being balanced. Structural-balance-viz is validated by the analysis of synthetic
networks: it is proved to provide an indication of balance/polarization of the
whole network and individually of each node, to identify two factions of nodes
on the basis of their polarization and show their cumulative characteristics, and
to produce reproducible and easily comparable visualizations. An application to
a real-world dataset about political debates confirms that Structural-balance-viz
can provide meaningful insights about the polarization structure of the network.

As future work, we plan to devote more effort in embedding the value of
the smallest eigenvalue of the signed Laplacian in Structural-balance-viz without
textual supplement. Moreover, we want to deploy our implementation, including
edge bundling, to a public web interface and make it available for network visu-
alization tools, e.g., Cytoscape. Finally, we will employ Structural-balance-viz for
future analysis of real-world signed networks.
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