Skip to main content

Network Entropy Reveals that Cancer Resistance to MEK Inhibitors Is Driven by the Resilience of Proliferative Signaling

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 882))

Included in the following conference series:

  • 2776 Accesses

Abstract

Recently MEK kinase inhibitors emerged as a promising treatment for KRAS-mutant tumors. However, clinical success remains elusive due to drug resistance. To better understand the mechanism of such resistance, we consider drug response as a transition from proliferative to apoptotic state of the molecular network and search for network metrics linked to likelihood of such transition. We focus on the dynamic network entropy – a statistical property related to stability and robustness of network states. We calculate network entropy metrics for approximately 400 cell lines from the Cancer Cell Line Encyclopedia, representing a broad variety of cancers. We investigate correlation between these metrics and cellular response to a MEK-kinase inhibitor drug PD-0325901. We find that network entropy rates of proteins and pathways related to the cell cycle exhibit the most significant differences between groups of sensitive and resistant cell lines. Our results suggest that resistance to MEK kinase inhibition is driven by the overall resilience of the network of proliferative signaling. We confirm this experimentally by observing synergy between MEK and CDK4/6 inhibitors in select cancer cell lines with high network entropy rates of the G2/M transition pathway. Our findings show that network entropy metrics can become a promising predictor of drug sensitivity. They can be used where gene-level markers are not available, provide insights into functional mechanisms of resistance and guide combination therapy selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zeitouni, D., Pylayeva-Gupta, Y., Der, C., Bryant, K.: KRAS mutant pancreatic cancer: no lone path to an effective treatment. Cancers (Basel) 8(4), 45 (2016)

    Article  Google Scholar 

  2. Cancer Genome Atlas Network: Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407), 330–337 (2012)

    Google Scholar 

  3. Ferrer, I., Zugazagoitia, J., Herbertz, S., John, W., Paz-Ares, L., Schmid-Bindert, G.: KRAS-mutant non-small cell lung cancer: from biology to therapy. Lung Cancer 124, 53–64 (2018)

    Article  Google Scholar 

  4. Baines, A., Xu, D., Der, C.: Inhibition of Ras for cancer treatment: the search continues. Future Med. Chem. 3(14), 1787–1808 (2011)

    Article  Google Scholar 

  5. Migliardi, G., Sassi, F., Torti, D., et al.: Inhibition of MEK and PI3 K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas. Clin. Cancer Res. 18(9), 2515–2525 (2012)

    Article  Google Scholar 

  6. Infante, J., Fecher, L., Falchook, G., et al.: Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. Lancet Oncol. 13(8), 773–781 (2012)

    Article  Google Scholar 

  7. Lee, M., Helms, T., Feng, N., et al.: Efficacy of the combination of MEK and CDK4/6 inhibitors in vitro and in vivo in KRAS mutant colorectal cancer models. Oncotarget 7(26), 39595–39608 (2016)

    Article  Google Scholar 

  8. Ziemke, E., Dosch, J., Maust, J., Shettigar, A., Sen, A., Welling, T., Hardiman, K., Sebolt-Leopold, J.: Sensitivity of KRAS-mutant colorectal cancers to combination therapy that cotargets MEK and CDK4/6. Clin. Cancer Res. 22(2), 405–414 (2016)

    Article  Google Scholar 

  9. Pek, M., Yatim, S., Chen, Y., Li, J., Gong, M., Jiang, X., Zhang, F., Zheng, J., Wu, X., Yu, Q.: Oncogenic KRAS-associated gene signature defines co-targeting of CDK4/6 and MEK as a viable therapeutic strategy in colorectal cancer. Oncogene 36(35), 4975–4986 (2017)

    Article  Google Scholar 

  10. Zhou, J., Zhang, S., Chen, X., Zheng, X., Yao, Y., Lu, G., Zhou, J.: Palbociclib, a selective CDK4/6 inhibitor, enhances the effect of selumetinib in RAS-driven non-small cell lung cancer. Cancer Lett. 408, 130–137 (2017)

    Article  Google Scholar 

  11. Remacle, F., Levine, R.: Statistical thermodynamics of transcription profiles in normal development and tumorigeneses in cohorts of patients. Eur. Biophys. J. 244(8), 709–726 (2015)

    Article  Google Scholar 

  12. Rietman, E., Platig, J., Tuszynski, J., Lakka Klement, G.: Thermodynamic measures of cancer: gibbs free energy and entropy of protein-protein interactions. J. Biol. Phys. 42(3), 339–350 (2016)

    Article  Google Scholar 

  13. Rietman, E., Scott, J., Tuszynski, J., Klement, G.: Personalized anticancer therapy selection using molecular landscape topology and thermodynamics. Oncotarget 8(12), 18735–18745 (2017)

    Article  Google Scholar 

  14. Atkins, P., De Paula, J.: Atkins’ Physical Chemistry, 6th edn. Oxford University Press, Oxford (2006)

    Google Scholar 

  15. Dueck, H., Khaladkar, M., Kim, T., et al.: Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation. Genome Biol. 16(1), 122 (2015)

    Article  Google Scholar 

  16. Eberwine, J., Kim, J.: Cellular deconstruction: finding meaning in individual cell variation. Trends Cell Biol. 25(10), 569–578 (2015)

    Article  Google Scholar 

  17. Marinov, G., Williams, B., McCue, K., et al.: From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 24(3), 496–510 (2014)

    Article  Google Scholar 

  18. Shalek, A., Satija, R., Adiconis, X., et al.: Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498(7453), 236–240 (2013)

    Article  Google Scholar 

  19. Davies, P., Demetrius, L., Tuszynski, J.: Cancer as a dynamical phase transition. Theor. Biol. Med. Model. 8, 30 (2011)

    Article  Google Scholar 

  20. Manke, T., Demetrius, L., Vingron, M.: An entropic characterization of protein interaction networks and cellular robustness. J. R. Soc. Interface 3(11), 843–850 (2006)

    Article  Google Scholar 

  21. Manke, T., Demetrius, L., Vingron, M.: Lethality and entropy of protein interaction networks. Genome Inform. 16(1), 159–163 (2005)

    Google Scholar 

  22. Teschendorff, A., Sollich, P., Kuehn, R.: Signalling entropy: a novel network-theoretical framework for systems analysis and interpretation of functional omic data. Methods 67(3), 282–293 (2014)

    Article  Google Scholar 

  23. Teschendorff, A., Banerji, C., Severini, S., Kuehn, R., Sollich, P.: Increased signaling entropy in cancer requires the scale-free property of protein interaction networks. Sci. Rep. 5, 9646 (2015)

    Article  Google Scholar 

  24. Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A., et al.: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012)

    Article  Google Scholar 

  25. Keshava Prasad, T., Goel, R., Kandasamy, K., et al.: Human protein reference database–2009 update. Nucl. Acids Res. 37, D767–D772 (2009)

    Article  Google Scholar 

  26. Cancer Cell Line Encyclopedia. https://portals.broadinstitute.org/ccle/home

  27. Teschendorff, A., Severini, S.: Increased entropy of signal transduction in the cancer metastasis phenotype. BMC Syst. Biol. 4, 104 (2010)

    Article  Google Scholar 

  28. Yu, G., He, Q.: ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol. BioSyst. 12(2), 477–479 (2016)

    Article  Google Scholar 

  29. LoRusso, P., Krishnamurthi, S., Rinehart, J., et al.: Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin. Cancer Res. 16(6), 1924–1937 (2010)

    Article  Google Scholar 

  30. Haura, E., Ricart, A., Larson, T., et al.: A phase II study of PD-0325901, an oral MEK inhibitor, in previously treated patients with advanced non-small cell lung cancer. Clin. Cancer Res. 16(8), 2450–2457 (2010)

    Article  Google Scholar 

  31. Vidal, M., Cusick, M., Barabási, A.: Interactome networks and human disease. Cell 144(6), 986–998 (2011)

    Article  Google Scholar 

  32. Tényi, Á., Cano, I., Marabita, F., et al.: Network modules uncover mechanisms of skeletal muscle dysfunction in COPD patients. J. Transl. Med. 16(1), 34 (2018)

    Article  Google Scholar 

  33. Yue, Z., Arora, I., Zhang, E., Laufer, V., Bridges, S., Chen, J.: Repositioning drugs by targeting network modules: a Parkinson’s disease case study. BMC Bioinform. 18(Suppl. 14), 532 (2017)

    Article  Google Scholar 

  34. Zhang, S.: Comparisons of gene coexpression network modules in breast cancer and ovarian cancer. BMC Syst. Biol. 12(Suppl 1), 8 (2018)

    Article  Google Scholar 

  35. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998)

    Article  Google Scholar 

  36. Wee, S., Jagani, Z., Xiang, K., Loo, A., Dorsch, M., Yao, Y., Sellers, W., Lengauer, C., Stegmeier, F.: PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res. 69(10), 4286–4293 (2009)

    Article  Google Scholar 

  37. Xu, Y., Dong, Q., Li, F., et al.: Identifying subpathway signatures for individualized anticancer drug response by integrating multi-omics data. J. Transl. Med. 17(1), 255 (2019)

    Article  Google Scholar 

  38. Wang, X., Sun, Z., Zimmermann, M., Bugrim, A., Kocher, J.: Predict drug sensitivity of cancer cells with pathway activity inference. BMC Med. Genomics 12(Suppl. 1), 15 (2019)

    Article  Google Scholar 

  39. Strunz, S., Wolkenhauer, O., de la Fuente, A.: Network-assisted disease classification and biomarker discovery. Methods Mol. Biol. 1386, 353–374 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the NIH Cancer Center Support Grant to the Rogel Cancer Center at the University of Michigan (P30 CA046592-29).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Bugrim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maust, J., Leopold, J., Bugrim, A. (2020). Network Entropy Reveals that Cancer Resistance to MEK Inhibitors Is Driven by the Resilience of Proliferative Signaling. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 882. Springer, Cham. https://doi.org/10.1007/978-3-030-36683-4_60

Download citation

Publish with us

Policies and ethics