Skip to main content

Topological Properties of Brain Networks Underlying Deception: fMRI Study of Psychophysiological Interactions

  • Conference paper
  • First Online:
  • 2860 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 882))

Abstract

In the current study, we used topological data analysis of fMRI data for exploring neurophysiological mechanisms underlying the execution of deceptive actions. We used the results of the analysis of psychophysiological interactions (PPI) of fMRI data, obtained during an earlier experiment where subjects were required to mislead an opponent through sequential execution of deceptive and honest claims. A connectivity matrix based on PPI analysis was processed with the methods of algebraic topology. With this approach, we confirmed our previous findings that the increase in local activity and psychophysiological interactions of the left caudate nucleus is associated with the execution of deceptive actions. It is also in line with our hypothesis that involvement of the left caudate nucleus in brain processing of deception reflects the process of activation of error detection mechanism. In contrast to this finding, the right caudate nucleus was most frequently observed in the selected cliques associated with honest actions in comparison with deceptive ones. This observation points to possible differential role of left and right caudate nuclei in processing deceptive and honest actions, so it can be further investigated in future research. Topological analysis of higher-order organization of functional interactions revealed three cycles encompassing different sets of brain regions. Those regions are associated with executive control, error detection and sociocognitive processes, involvement of which in deception execution was hypothesized in previous studies. The fact of observation of such loops of functionally integrated brain regions demonstrates the possibility of parallel functioning of above-mentioned mechanisms and substantially extends the current view on neurobiological basics of deceptive behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abe, N., Greene, J.D., Kiehl, K.A.: Reduced engagement of the anterior cingulate cortex in the dishonest decision-making of incarcerated psychopaths. Soc. Cogn. Affect. Neurosci. 13(8), 797–807 (2018)

    Article  Google Scholar 

  2. Abu-Akel, A., Shamay-Tsoory, S.: Neuroanatomical and neurochemical bases of theory of mind. Neuropsychologia 49(11), 2971–2984 (2011)

    Article  Google Scholar 

  3. Bassett, D.S., Zurn, P., Gold, J.I.: On the nature and use of models in network neuroscience. Nat. Rev. Neurosci. 19(9), 566–578 (2018). https://www.nature.com/articles/s41583-018-0038-8

    Article  Google Scholar 

  4. Bechtereva, N., Gretchin, V.: Physiological foundations of mental activity. In: International review of neurobiology, vol. 11, pp. 329–352. Elsevier (1969)

    Google Scholar 

  5. Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16(1), 77–102 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Cisler, J.M., Bush, K., Steele, J.S.: A comparison of statistical methods for detecting context-modulated functional connectivity in fMRI. Neuroimage 84, 1042–1052 (2014)

    Article  Google Scholar 

  7. Debey, E., Ridderinkhof, R.K., De Houwer, J., De Schryver, M., Verschuere, B.: Suppressing the truth as a mechanism of deception: delta plots reveal the role of response inhibition in lying. Conscious. Cogn. 37, 148–159 (2015)

    Article  Google Scholar 

  8. Di, X., Reynolds, R.C., Biswal, B.B.: Imperfect (de)convolution may introduce spurious psychophysiological interactions and how to avoid it. Hum. Brain Mapp. 38(4), 1723–1740 (2017)

    Article  Google Scholar 

  9. Ding, X.P., Wu, S.J., Liu, J., Fu, G., Lee, K.: Functional neural networks of honesty and dishonesty in children: evidence from graph theory analysis. Sci. Rep. 7(1), 12085 (2017)

    Article  Google Scholar 

  10. Gao, J.F., Yang, Y., Huang, W.T., Lin, P., Ge, S., Zheng, H.M., Gu, L.Y., Zhou, H., Li, C.H., Rao, N.N.: Exploring time-and frequency-dependent functional connectivity and brain networks during deception with single-trial event-related potentials. Sci. Rep. 6, 37065 (2016)

    Article  Google Scholar 

  11. Gitelman, D.R., Penny, W.D., Ashburner, J., Friston, K.J.: Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution. Neuroimage 19(1), 200–207 (2003)

    Article  Google Scholar 

  12. Giusti, C., Ghrist, R., Bassett, D.S.: Two’s company, three (or more) is a simplex. J. Comput. Neurosci. 41(1), 1–14 (2016). https://doi.org/10.1007/s10827-016-0608-6

    Article  MathSciNet  Google Scholar 

  13. Havel, P., Braun, B., Rau, S., Tonn, J.C., Fesl, G., Brückmann, H., Ilmberger, J.: Reproducibility of activation in four motor paradigms. J. Neurol. 253(4), 471–476 (2006)

    Article  Google Scholar 

  14. Kireev, M., Korotkov, A., Medvedeva, N., Masharipov, R., Medvedev, S.: Deceptive but not honest manipulative actions are associated with increased interaction between middle and inferior frontal gyri. Front. Neurosci. 11, 482 (2017). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5583606/

    Article  Google Scholar 

  15. Kireev, M., Korotkov, A., Medvedeva, N., Medvedev, S.: Possible role of an error detection mechanism in brain processing of deception: PET-fMRI study. Int. J. Psychophysiol. 90(3), 291–299 (2013)

    Article  Google Scholar 

  16. Kireev, M., Medvedeva, N., Korotkov, A., Medvedev, S.: Functional interactions between the caudate nuclei and inferior frontal gyrus providing deliberate deception. Hum. Physiol. 41(1), 22–26 (2015)

    Article  Google Scholar 

  17. Knyazeva, I., Poyda, A., Orlov, V., Verkhlyutov, V., Makarenko, N., Kozlov, S., Velichkovsky, B., Ushakov, V.: Resting state dynamic functional connectivity: network topology analysis. Biol. Inspired Cogn. Archit. 23, 43–53 (2018)

    Google Scholar 

  18. Lisofsky, N., Kazzer, P., Heekeren, H.R., Prehn, K.: Investigating socio-cognitive processes in deception: a quantitative meta-analysis of neuroimaging studies. Neuropsychologia 61, 113–122 (2014)

    Article  Google Scholar 

  19. Luo, Q., Ma, Y., Bhatt, M.A., Montague, P.R., Feng, J.: The functional architecture of the brain underlies strategic deception in impression management. Front. Hum. Neurosci. 11, 513 (2017)

    Article  Google Scholar 

  20. Mar, R.A.: The neural bases of social cognition and story comprehension. Annu. Rev. Psychol. 62, 103–134 (2011)

    Article  Google Scholar 

  21. McLaren, D.G., Ries, M.L., Xu, G., Johnson, S.C.: A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. Neuroimage 61(4), 1277–1286 (2012). http://www.sciencedirect.com/science/article/pii/S1053811912003497

    Article  Google Scholar 

  22. Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E 70, 056131 (2004). https://doi.org/10.1103/PhysRevE.70.056131

    Article  Google Scholar 

  23. Oldfield, R.C.: The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1), 97–113 (1971)

    Article  Google Scholar 

  24. Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap for the computation of persistent homology. EPJ Data Sci. 6(1), 17 (2017)

    Article  Google Scholar 

  25. Saxe, R.: Theory of mind (neural basis). Encycl. Conscious. 2, 401–410 (2009)

    Article  Google Scholar 

  26. Seitzman, B.A., Gratton, C., Marek, S., Raut, R.V., Dosenbach, N.U., Schlaggar, B.L., Petersen, S.E., Greene, D.J.: A set of functionally-defined brain regions with improved representation of the subcortex and cerebellum. bioRxiv p. 450452 (2018)

    Google Scholar 

  27. Sizemore, A.E., Giusti, C., Kahn, A., Vettel, J.M., Betzel, R.F., Bassett, D.S.: Cliques and cavities in the human connectome. J. Comput. Neurosci. 44(1), 115–145 (2018). https://doi.org/10.1007/s10827-017-0672-6

    Article  MathSciNet  MATH  Google Scholar 

  28. Sizemore, A.E., Phillips-Cremins, J.E., Ghrist, R., Bassett, D.S.: The importance of the whole: topological data analysis for the network neuroscientist. Netw. Neurosci. 3(3), 656–673 (2018). https://doi.org/10.1162/netn_a_00073

    Article  Google Scholar 

  29. Tausz, A., Vejdemo-Johansson, M., Adams, H.: JavaPlex: a research software package for persistent (co)homology. In: Hong, H., Yap, C. (eds.) Proceedings of ICMS 2014. LNCS, vol. 8592, pp. 129–136 (2014). http://appliedtopology.github.io/javaplex/

  30. Volz, K.G., Vogeley, K., Tittgemeyer, M., von Cramon, D.Y., Sutter, M.: The neural basis of deception in strategic interactions. Front. Behav. Neurosci. 9, 27 (2015)

    Article  Google Scholar 

  31. Wang, Y., Ng, W.C., Ng, K.S., Yu, K., Wu, T., Li, X.: An electroencephalography network and connectivity analysis for deception in instructed lying tasks. PLoS One 10(2), e0116522 (2015)

    Article  Google Scholar 

  32. Yin, L., Weber, B.: I lie, why don’t you: neural mechanisms of individual differences in self-serving lying. Hum. Brain Mapp. 40(4), 1101–1113 (2019)

    Article  Google Scholar 

  33. Lin, X., Fu, G., Sai, L., Chen, H., Yang, J., Wang, M., Liu, Q., Yang, G., Zhang, J., Zhang, J., et al.: Mapping the small-world properties of brain networks in deception with functional near-infrared spectroscopy. Sci. Rep. 6, 25297 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support of Saint-Petersburg State University (project ID 35544669), N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences and financial support of Institute of Information and Computational Technologies (Grant AR05134227, Kazakhstan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Knyazeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Knyazeva, I. et al. (2020). Topological Properties of Brain Networks Underlying Deception: fMRI Study of Psychophysiological Interactions. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 882. Springer, Cham. https://doi.org/10.1007/978-3-030-36683-4_69

Download citation

Publish with us

Policies and ethics