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Abstract. We model airport congestion contagion as an SIS spreading
process on an airport transportation network to explain airport vulner-
ability. The vulnerability of each airport is derived from the US Airport
Network data as its congestion probability. We construct three types of
airline networks to capture diverse features such as the frequency and
duration of flights. The weight of each link augments its infection rate in
SIS spreading process. The nodal infection probability in the meta-stable
state is used as estimate the vulnerability of the corresponding airport.
We illustrate that our model could reasonably capture the distribution
of nodal vulnerability and rank airports in vulnerability evidently better
than the random ranking, but not significantly better than using nodal
network properties. Such congestion contagion model not only allows
the identification of vulnerable airports but also opens the possibility to
reduce global congestion via congestion reduction in few airports.

Keywords: Airline transportation network, epidemic spreading, net-
work vulnerability

1 Introduction

Networks are ubiquitous in nature and support the flow of goods, propagation
of information and transmission of epidemic disease. Therefore, networks and
processes that unfold on them have been the subject of many studies in a wide
range of fields such as mathematics, engineering and social sciences [1-3,5]. The
Susceptible-Infected-Susceptible (SIS) epidemic spreading process is one of the
most widely studied dynamic processes on networks [4,6-11]. An individual is
either susceptible S or infected I at any time ¢t. Each infected node infects each
of its susceptible neighbors with an infection rate . Each infected node can
be recovered with a recovery rate §. Both infection and recovery processes are
independent Poisson processes. The ratio of the infection rate over recovery rate
r=8/5 is called the effective infection rate. In the SIS model on a given network,
a critical epidemic threshold 7. exists. When 7 > 7., a non-zero fraction of
nodes are infected in the meta-stable state. In contrast, the epidemic dies out if
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T < T.. The average fraction of infected nodes v(t), also known as the prevalence,
estimates the vulnerability of the network subject to an epidemic whereas the
infection probability v;(¢) of an individual ¢ indicates the vulnerability of node
i subject to an epidemic. Recent literature has focused on the understanding of
how network topology influences the epidemic threshold, the prevalence [12,13]
and the nodal infection probability [14]. However, it is still unknown to what
extent the SIS model can identify the vulnerability of a network or nodes subject
to other challenges such as traffic congestion.

From a complex network perspective on air transport, initial research fo-
cused on analyzing the topological structure of an air traffic system [15, 16]
demonstrating small-world and scale-free characteristics. Previous studies have
explored network topology by analyzing subsets of a network based on geogra-
phy and airlines/alliances [17, 18]. Recent research effort has been devoted to
network resilience or vulnerability with respect to delay propagation [3,19-21]
and random failures [22,23]. To date, there are few studies that have investi-
gated traffic congestion based on network dynamics, although queuing models
have been studied [24].

In this paper, we investigate the limits of modelling airport congestion con-
tagion as an SIS process on air transportation networks in identifying airport
vulnerability. The US Airport Network data [25] is considered. We construct
three types of airport networks to capture diverse features such as the frequency
and duration of flights. We perform the SIS spreading process with varying ef-
fective infection rate 7 upon each of these three types of networks. The nodal
infection probability in the meta-stable state is derived as an indicator of the
vulnerability of the corresponding airport. We define and derive the actual air-
port vulnerability as the duration of traffic congestion over the total operation
time using the US Airport Network data. An airport is congested if the number
of flight movements is greater than its declared capacity. Our model is evalu-
ated by comparing the nodal infection probabilities derived from the epidemic
spreading model with the actual airport vulnerability determined from day-to-
day operations.

The content of this paper is arranged as follows. Section 2 defines, derives
and characterizes the actual airport vulnerability. Section 3 describes the SIS
epidemic model and network construction. Section 4 evaluate our model via
its capability to reproduce the airport vulnerability distribution and ranking of
airports in vulnerability. Section 5 illustrates the possible generalization of the
model. Section 6 summarizes our key findings and discusses possible future work.

2 Traffic vulnerability of an airport

In this section, we first introduce the US Airport Network data. Afterwards,
we define and derive the airport vulnerability from the data and explore its
distribution. The actual vulnerability of each airport will be later used as a
benchmark to evaluate our SIS model.
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2.1 Data

The US Airport network data was obtained from the Bureau of Transportation
Statistics (BTS) which contains information regarding the flight schedule in the
U.S. from 1987 until present [25]. Flight schedules are further distinguished by
the computer reservation system (CRS), known as the planned schedule under
optimal operation conditions, and the actual schedule. To illustrate our meth-
ods, we use the data spanning two weeks’ high season period from July 1st 2019
until July 14th 2019 because flight schedule and rotations repeat. The data set
contains N = 349 airports and E = 645299 flights. Each flight contains addi-
tional information such as: Tail-Number, Date, Origin, Destination, the actual
and planned Departure/Arrival Times.

2.2 Definition and statistical properties

We define the vulnerability of an airport as its duration of traffic congestion over
its total operation time, i.e. the probability of an airport being congested. An air-
port is congested if the actual number of movements (the number of arrival and
departure flights during operation) per hour is greater than its declared capacity.
The declared capacity of an airport at a given hour is approximately the number
of movements scheduled/planned for that hour, at which a reasonable level of
service (LOS) can be provided. Typically, an airport declares a capacity up to
85-95% of the maximum throughput capacity, which is the expected number of
movements that can be achieved within one hour on a runway system without
violating air traffic management rules (assuming continuous aircraft demand).
From the U.S. airport network data, we derive the state of airport ¢ at any hour
t as congested X;(t) = 1 or not X;(¢) = 0 based on whether the actual number
of movements is larger than the scheduled number of movements at time ¢ or
not. Airport ¢’s vulnerability ¢; =1 S| x,(¢) is thus the fraction of hours that
airport 4 is congested. All time hours within the two week period were considered
(except for hours between 0 and 6 due to their low number of movements) and
indexed as [1,2,...,m|, where m = 18 - 14 = 252.

Figure 1 presents the probability density function of airport vulnerability.
The maximal vulnerability is less than 0.5 and the distribution is slightly het-
€rogeneous.

3 SIS Model on Airline Transportation Networks

We model the contagion of airport congestion as an SIS spreading process on an
airline transportation network. Section 3.1 introduces how we construct the three
types of airline transportation networks. Section 3.2 describes the individual-
based mean field approximation method to derive nodal infection probabilities
of the SIS model in the meta-stable state, given the underlying network, the
infection rate 8 and the recovery rate 9.
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Fig.1: The probability density func-
tion fg(x) of the vulnerability ¢ of an  Fig.2: Degree distribution of the air-
airport. port networks.

3.1 Network Construction

We propose to construct three types of networks from the data to capture diverse
domain information, because the SIS spreading process unfolds differently de-
pending on the underlying networks. All three types of networks are un-directed
and constructed from the Airport Network Data over the two weeks’ period.
Network G; is unweighted where two airports (nodes) are connected if there is
at least one direct flight between them. Hence, the weight of each link is w;; = 1.
Network G and G3 are both weighted and have the same network topology as
network GG1. We assume that the infection rate of a link is proportional to the
weight of that link. In Gg, the weight of the link between node ¢ and j equals
wfj = Fj; + Fj; the total number of flights F;; from 4 to j plus the number
of flights F}; from j to ¢ within the given two weeks’ period. This construction
is motivated by the hypothesis that the more frequent the flights between two
airports, the more likely that delay/congestion is transferred from one airport
to the other. Moreover, the flight time between airports may also affect the con-
gestion propagation. In order to compensate for a delayed departure, airplanes
can re-optimize their velocity to remain on schedule at the destination airport.
Network G3 aims to capture these effects by weighting each link by the inverse
of its average flight time, w;; ﬁ]] A smaller average flight time may sug-
gest that flights delayed at the departure airport likely affect the arrival time
at the destination airport, while a larger average flight time gives more room to
re-optimize the flight velocity.
Finally, we generalize the choice of the weights in Networks G5 and G3 as

[
*

4 . (1)

max w;
NN

w
wij =

*

The normalization of each initial link weight w; by the maximum in each
network ensures that the link weights remain in the range [0, 1]. The final choice
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of the weight w;; is generalized as a polynomial function of wy;, the normalized
number of flights in G4 and the normalized average flight duration in network Gs.
The infection rate of a link with weight w;; is 8 - w;;. Following our hypothesis,
a > 0.

3.2 Individual-Based mean-field approximation of SIS model

We derive nodal infection probabilities via mean-field approximations instead of
simulating the SIS stochastic processes for efficiency. The N-Intertwined Mean-
Field Approximation (NIMFA) is one of the most precise individual-based mean-
field approximations of the SIS model [5], assuming that the states of neighboring
nodes are uncorrelated. For the SIS model with the infection rate 8 and recovery
rate §, the single governing equation for a node i in NIMFA is

vy (¢) N
ét = —dv;(t) + B(1 —vi(t)) Zwijvj(t) (2)

j=1
where v;(t) is the infection probability of node i at time ¢, and each link weight
w;; augments the infection rate of link (¢,5). In the meta-stable state, d‘éit) =0,

where V(t) = [v1(t) va(t) - vn(®)]F, lim oo v3(t) = Vioo and limy o, V(¢) =
V. The infection probability of each node V,, in the meta-stable state can be
derived. The trivial, i.e. all-zero, solution indicates the absorbing state where
all nodes are susceptible. The non-zero solution of V., if exists, points to the
existence of a meta-stable state with a non-zero fraction of infected nodes. Or
else, the meta-stable state can be figured as 0 or not existing. The infection
probability of each node in the meta-stable state depends only on the effective
infection rate 7 = % and the underlying (weighted) network.

4 Results and Discussion

Since the network underlying the SIS spreading process influences the infection
probability of the nodes, we first analyze basic properties of the three types of
networks constructed, especially the effect of the scaling parameter « on link
weight distribution, in section 4.1. Furthermore, we evaluate our SIS spreading
model on an airport network (Gi, G2 or G3) in identifying airport vulnerabil-
ity using nodal infection probability via the model’s capability to capture the
airport vulnerability distribution (section 4.2) and the ranking of airports in
vulnerability (section 4.3).

4.1 Network Characteristics

All three types of networks have the same network topology. Their degree distri-
bution, as shown in fig. 2 approximates a power-law degree distribution Pr[D =
k] ~ k=Y. As introduced in section 3.1, the links weights in G2 and G3 are
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scaled w;; = ( by a scaling factor a. An increase in « results in a

T )
smaller link weight. The epidemic threshold 7. has been shown to approximate
Amaz(W)) ™1, where W is the weighted adjacency matrix of the underlying net-
work whose element w;; is the weight of link (4, j) as defined in section 3.1 [10,26].
Hence, the epidemic threshold tends to be larger as the scaling factor a increases.
As « increases, a similar average infection probability can be obtained by a larger
effective infection rate 7.

2000

200 = 1000

(a) G2,a=10.5

1000

600

fwlx)

400

(d) G, aa=0.5 (e) Gs,aa=1.0 (f) Gs,a =15

Fig.3: Probability density function fy (x) of the weight W of a random link
in Network G5 and G, when the link weight is scaled with a parameter a =
{1,0.5,1.5}.

The heterogeneous link weights in a network influences not only the average
probability of infection but also the infection probability of each node [8,14].
We explore further how the link weight definitions in G5 and G3, especially the
scaling of link weights, influence the link weight distribution. Our model would
be more general, if G5 and G3 could generate diverse link weight distributions.
Figure 3 shows the probability density function of link weights in G5 and Gj,
when o = 0.5,1 and 1.5. When link weights are not scaled, i.e. @ = 1, network
G5 and (G3 manifest different distributions: link weights in G5 are more hetero-
geneously distributed than those in G3. A scaling parameter o < 1 reduces the
heterogeneity whereas a scaling factor o > 1 increases the heterogeneity of link
weights. The construction of network G5 and G3 and the link weight scaling via
parameter o allow our model to capture diverse link weight distributions and
consequently diverse nodal infection probability distributions.



Network Vulnerability 7

4.2 Model evaluation via vulnerability distribution

We consider the scaling parameter a = 0,0.5,1.5 as examples. When a = 0,
all three networks are the same, i.e. G; = Ga(a = 0) = G3(a = 0). For each
network type, each scaling parameter a and each effective infection rate 7 €
(0,2] with step size 0.1, we compute the infection probability for each node in
the meta-stable state. Given the network type and «, we identify the 7 value
at which the average nodal infection probability is the closest to the average
airport vulnerability, denoted as 7, (see Table 1). In other words, the average
airport vulnerability is used to calibrate our model, i.e. to derive the optimal
effective infection rate 7,. As the scaling factor « of G or Gj3 increases, the
average link weight decreases and the epidemic threshold of the weighted network
)\ﬂwaj(VV))_1 increases, which requires a larger value of 7, to reproduce the target
average airport vulnerability. This has been confirmed by Table 1.

Table 1: The effective infection rate 7, when the average nodal infection proba-
bility is the closest to the average airport vulnerability and epidemic threshold
Amaz(W)) ™ for diverse network types and and link weight scaling parameter «
values.

To )\mMC(VV)71

a |Gl G2 G3| Gl G2 G3
0.50{0.10 0.20 0.10]0.200 0.057 0.049
1.00{0.10 0.50 0.20{0.200 0.123 0.115
1.50{0.10 1.40 0.50|0.200 0.216 0.254

Figure 4 demonstrates the probability density function of nodal infection
probability corresponding to the network type, link weight scaling parameter
«a and 7, combinations mentioned in table 1. The nodal infection probability
distribution in Network G5 and G3 better resemble the airport vulnerability
distribution shown in Figure 1 than that in G5, which is relatively homoge-
neous over a broad rang of infection probability. The maximal nodal infection
probability obtained in Network G3 better approximates the maximal airport
vulnerability than that in network G5. These findings support the initial hy-
pothesis that airport congestion spreads through airports that can be reached
in a short time. Still, the maximal infection probability in Gj3 is larger than
the maximal airport vulnerability. A possible explanation of this is that the SIS
model does not take into account operational measures implemented by airports.
Daily airport operations focuses on reducing long periods of infection because
they are detrimental.
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Fig. 4: Probability density function of the infection probability of a node in all
network type, link weight scaling parameter « and 7, combinations mentioned
in Table 1.

4.3 Model evaluation via airport ranking in vulnerability
distribution

Identifying the most vulnerable airports is crucial from operation point of view.
The quality of using nodal infection probability to rank airports in vulnerabil-
ity can be evaluated as follows. A node with a higher infection probability is
supposed to have a higher vulnerability. Nodal infection probability and airport
vulnerability are used, respectively, to rank the nodes/airports. The correspond-

ing rankings can be recorded by two vectors RY = | (1) Blays ...,R%’N)] and
R? = [Rfl), R‘(é), e R?N)] where R7(J1:) is the index of the node with the i — th

highest infection probability and R((bi) is the index of the i — th most vulnerable
airport. How precise nodal infection probability could be used to rank airports
in vulnerability can be quantified by the top f recognition rate

_ |R N RY|

3
7 3)

Tqﬁ'u
where R? and R}/ are the sets of nodes ranking in the top f fraction according

to their vulnerability and infection probability respectively and |R?\ = fN is

the number of nodes in R?. The recognition rate r4,(f) measures the quality of
using nodal infection probability to recognize or identify the top f fraction most
vulnerable airports. Given the fraction f, a higher recognition rate suggests that
the nodal infection probability could better rank the nodes in their vulnerability.
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We first evaluate the recognition rate of our model that is composed of the
network type, link weight scaling parameter o and the corresponding 7, as given
in Table 1. As shown in fig. 5b, the recognition rate 74,(f) in relation to f
is relatively stable as the network type, parameter o and 7, vary. Moreover,
our model performs better than the random strategy, that selects randomly f
fraction of nodes as the top f fraction most vulnerable ones and that leads to
the recognition rate r(f) = f.

80

<
60 =
N

(i

40 60

-8 Degree
20 8~ Clustering
—B— Betweenness

Closeness 0.0 0.2 0.4 0.6 038 1.0
—m— Eigenvector f

0.0 0.2 0.4 0.6 0.8 1.0
f —8— Gl —8— G2 (a=15)19=1.4 G3 (@=1.5)19=0.5
G2 (@=0.5)1p=0.2 -® G3(a=05)T9=0.1 ==~ Nodal Degree
~8— G2(a=1.0)1o=05 -® G3(a=1.0)190=0.2

(a) Network metrics for the unweighted
network. (b) Optimal cases depicted in Table 1.

Fig.5: Recognition rate r(f) using (a) network centrality metric and (b) nodal
infection probability where the model parameter «, 7, and network type are
given in Table 1.

We may also use network centrality metrics that quantifies diverse nodal
properties in a network [31] to identify the most vulnerable airports. Five cen-
trality metrics in network G; are considered: degree (number of links a node
possesses), clustering coefficient (the probability that two random neighbors of
a node are connected), betweenness (the number of shortest paths between any
pair of nodes that traverse the node), closeness (the average distance of a node
to any other node in number of links) and the principal eigenvector component
(the corresponding component of the node in the principal eigenvector of the
adjacency matrix). A node with a high centrality metric is supposed to have
a high vulnerability. The recognition rate when using each of these centrality
metric is given in fig. 5a. These centrality metrics perform mostly better than
the random strategy, i.e. r(f) > f. The degree and principal eigenvector com-
ponent perform the best and similarly. Their similar performance is due to the
fact that these two metrics are positively correlated in power-law networks and
the G indeed has a power-law degree distributions as shown in fig. 2. fig. 5b
shows that the recognition rate using nodal infection probability can be slightly
but not evidently higher than the degree (thus centrality metrics in general).
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Beyond the parameter sets given in Table 1, we explore systematically the
recognition rate of our model when the underlying network is either Ga or
G3, with all possible parameter combinations where @ = 0.5,1,1.5 and 7 =
0.1,0.2, ..., 2. The recognition rate r(f) in relation to f is relatively independent
of the choice of the underlying network and parameters 3 and is close to the
recognition rate of degree. fig. 6 shows that the nodal infection probability is
positively correlated with the degree of a node, independent of the choice of
the parameters. This explains why nodal infection probability achieves similar
recognition rate to the degree.
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Fig. 6: Scatter plot of the infection probability versus the degree of a node.
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Fig. 7: Scatter plot of the vulnerability versus degree of a node in (a) and of the
infection probability versus vulnerability of a node in (b).

The capacity of an airport can be represented by its maximal declared ca-
pacity, i.e. the maximal number of flights planned in an hour. As shown in
fig. 7b, airports with a large capacity tends to have a large vulnerability, degree

3 except that the recognition rate drops dramatically if the infection rate is low when

most nodes have an infection probability close to zero
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and nodal infection probability. Furthermore, the linear relation between nodal
infection probability and nodal vulnerability as shown in fig. 7b suggests that
nodal infection probability may better suggest the vulnerability level of a node
than the degree.

5 Model generalization
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Fig. 8: Generalized SIS model with heterogeneous recovery rates to identify the
generalized airport vulnerability ¢. The underlying network is Go, a = 0.5,
7 =10.02, 0 = 1.2 and ¢ = 0.02. (a) Probability density function of the gener-
alized airport vulnerability and the nodal infection probability respectively;(b)
Recognition rate using nodal infection probability and degree respectively; (c)
Scatter plot of the infection probability of node versus its degree and (d) Scatter
plot of nodal vulnerability versus its degree.

The declared capacity of an airport at a given hour can also be defined as e.g.
the number of scheduled flight movements divided by 90%, assuming airports
plan only 90% of their declared capacity to ensure their quality of service when
the number of movements amounts to 10% more than what has been scheduled.
In this case, the number of nodes with a high vulnerability around 0.4 is reduced
(see fig. 8a). The nodal vulnerability increases first and decreases afterwards
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with the degree, in contrast to the monotonic increase of the previously defined
vulnerability with degree (see fig. 8d and fig. 1). This suggests that large (degree)
airports may have a greater capability at dealing with operational delay due
to better infrastructure, motivating us to generalize our model by setting the
recovery rate positively dependent on its degree. The node strength (sum of the
link weights incident to a node) in a weighted network corresponds to the degree
in an unweighted network. Consider following heterogeneous recovery rate:

)’) (4)

Si

8 =68(c+(
Smam
where s;, Spmaz are respectively the strength of node i and the maximum node
strength in the network. With this generalization, nodal infection probability
may also increase and afterwards decreases with the degree (see fig. 8c), allowing
our model to better rank airport vulnerability than degree (see recognition rate
in fig. 8b).

This example illustrates that the SIS model with heterogeneous recovery rates
beyond heterogeneous infection rates could well address the fact that large air-
ports may have a higher capability at dealing with operational delay by changing
their operation through adjusting departure/arrival times of flights or assigning
optimal taxiing routes. Such generalized SIS model could also better identify
vulnerable airports than centrality metrics like the degree.

6 Conclusion

We model airport traffic congestion contagion as an SIS epidemic spreading
process on an airline transportation network, aiming to identify airport’s vul-
nerability (probability of being congested) using its infection probability derived
from our model. This model is evaluated via its capability to reproduce the dis-
tribution of nodal vulnerability and to rank airports in vulnerability. Our model
evidently outperforms the random ranking of airports in vulnerability but per-
forms only slightly better than (similarly to) airport vulnerability ranking using
airports’ topological properties such as the degree. We propose three methods
to construct the underlying weighted airline network to capture diverse infor-
mation such as flights frequency and duration and let the infection rate of each
link is proportional to its link weight. Still, such SIS model with heterogeneous
infection rate leads to a higher infection probability for a node with a higher
degree, which explains the similar performance between our model and nodal
degree in airport vulnerability ranking.

The definition of airport vulnerability can be generalized to take into account
various targeting service levels. We demonstrate that the vulnerability of an
airport is then not necessarily positively correlated with the degree anymore.
Correspondingly, we generalize our model to be heterogeneous in recovery rate.
The generalized SIS model, where the infection probability of a node does not
monotonically increases with nodal degree, performs evidently better than the
degree in airport vulnerability ranking.
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Beyond identifying vulnerable airports, which is of crucial operation rele-
vance, our congestion contagion model allows further development of optimiza-
tion strategies. Since the congestion in one airport may lead to the congestion of
other airports, which ones should we invest in vulnerability reduction in order
to minimize the global congestion? Such questions require further systematic
validation and construction of the model to taken into account e.g. the hetero-
geneous recovery rate and other operational factors.
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