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2 Univ Lyon, Université Lyon 1, CNRS, LIRIS UMR5205, F-69622 France
remy.cazabet@univ-lyon1.fr

Abstract. The statistical inference of stochastic block models as emerged
as a mathematicaly principled method for identifying communities inside
networks. Its objective is to find the node partition and the block-to-block
adjacency matrix of maximum likelihood i.e. the one which has most
probably generated the observed network. In practice, in the so-called
microcanonical ensemble, it is frequently assumed that when comparing
two models which have the same number and sizes of communities, the
best one is the one of minimum entropy i.e. the one which can gener-
ate the less different networks. In this paper, we show that there are
situations in which the minimum entropy model does not identify the
most significant communities in terms of edge distribution, even though
it generates the observed graph with a higher probability.
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Since the seminal paper by Girvan and Newman [1], a lot of work has been
devoted to finding community structure in networks [2]. The objective is to
exploit the heterogeneity of connections in graphs to partition its nodes into
groups and obtain a coarser description, which may be simpler to analyze. Yet,
the absence of a universally accepted formal definition of what a community
is has favored the development of diverse methods to partition the nodes of a
graph, such as the famous modularity function [3], and the statistical inference
of a stochastic block model [4].

This second method relies on the hypothesis that there exists an original
partition of the nodes, and that the graph under study was generated by picking
edges at random with a probability that depends only on the communities to
which its extremities belong. The idea is then to infer the original node partition
based on the observed edge distribution in the graph. This method has two
main advantages with respect to modularity maximization: first, it is able to
detect non-assortative connectivity pattern, i.e. groups of nodes that are not
necessarily characterized by an internal density higher than the external density,
and second it can be performed in a statistically significant way, while it has been
shown that modularity may detect communities even in random graphs [5]. In
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particular, a bayesian stochastic blockmodeling approach has been developed in
[6], which finds the most likely original partition for a SBM with respect to a
graph by maximizing simultaneously the probability to choose this partition and
the probability to generate this graph, given the partition.

To perform the second maximization, this method assumes that all graphs
are generated with the same probability and it thus searches a partition of min-
imal entropy, in the sense that the cardinal of its microcanonical ensemble (i.e.
the number of graphs the corresponding SBM can theoretically generate [7]) is
minimal, which is equivalent to maximizing its likelihood[8]. In this paper, we
show that even when the number and the size of the communities are fixed, the
node partition which corresponds to the sharper communities is not always the
one with the lower entropy. We then demonstrate that when community sizes and
edge distribution are heterogeneous enough, a node partition which places small
communities where there are the most edges will always have a lower entropy.
Finally, we illustrate how this issue implies that such heterogeneous stochas-
tic block models cannot be identified correctly by this model selection method
and discuss the relevance of assuming an equal probability for all graphs in this
context.

1 Entropy based stochastic block model selection

The stochastic block model is a generative model for random graphs. It takes as
parameters a set of nodes V = [1;n] partitioned in p blocks (or communities) C =
(ci)i∈[1;p] and a block-to-block adjacency matrix M whose entries correspond to
the number of edges between two blocks. The corresponding set of generable
graphs G = (V,E) with weight matrix W is defined as:

ΩC,M =

G | ∀c1, c2 ∈ C, ∑
i∈ci,j∈cj

W(i,j) = M(c1,c2)


It is called the microcanonical ensemble (a vocabulary borrowed to statistical

physics [7]) and it can be refined to impose that all graphs are simple, undirected
(in which case M must be symmetric) and to allow or not self loops. In this paper
we will consider multigraphs with self loops, because they allow for simpler
computations. Generating a graph with the stochastic block model associated to
C,M amounts to drawing at random G ∈ ΩC,M . The probability distribution
P[G|C,M ] on this ensemble is defined as the one which maximizes Shanon’s
entropy

S =
∑

G∈ΩC,M

P[G|C,M ]× ln(P[G|C,M ])

In the absence of other restriction, the maximum entropy distribution is the flat
one:

P[G|C,M ] =
1

|ΩC,M |
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whose entropy equals S = ln(|ΩC,M |). It has been computed for different SBM
flavours in [8]. It measures the number of different graphs a SBM can generate
with a given set of parameters. The lower it is, the higher the probability to
generate any specific graph G.

On the other hand, given a graph G = (V,E), with a weight matrix W , it
may have been generated by many different stochastic block models. For any
partition C = (ci)i∈[1;p] of V , there exists one and only one matrix M such that
G ∈ ΩC,M , and it is defined as:

∀c1, c2 ∈ C,M(c1,c2) =
∑

i∈c1,j∈c2

W(i,j)

Therefore, when there is no ambiguity about the graph G, we will consider
indifferently a partition and the associated SBM in the following.

The objective of stochastic block model inference is to find the partition C
that best describes G. To do so, bayesian inference relies on the Bayes theorem
which stands that:

P[C,M |G] =
P[G|C,M ]× P[C,M ]

P[G]
(1)

As P[G] is the same whatever C, it is sufficient to maximize P[G|C,M ] ×
P[C,M ]. The naive approach which consists in using a maximum-entropy uni-
form prior distribution for P[C,M ] simplifies the computation to maximizing
directly P[G|C] (the so called likelihood function) but it will always lead to the
trivial partition ∀i ∈ V, ci = {i}, which is of no use because the corresponding
SBM reproduces G exactly: M = W and P[G|C] = 1. To overcome this overfit-
ting problem, another prior distribution was proposed in [9], which assigns lower
probabilities to the partitions with many communities. Yet, when comparing
two models C1,M1 and C2,M2 with equal probability, the one which is chosen
is still the one minimizing |ΩC,M | or equivalently the entropy S = ln(|ΩC,M |),
as logarithm is a monotonous function.

2 The issue with heavily populated graph regions

In this paper, we focus on the consequence of minimizing the entropy to dis-
criminate between node partitions. To do so, we need to work on a domain of
partitions on which the prior distribution is uniform. As suggested by [9], we
restrict ourselves to finding the best partition when the number p and the sizes
(si)i∈[1;p] of communities are fixed because in this case, both P [C] and P [M |C]
are constant. This is a problem of node classification, and in this situation the
maximization of equation 1 boils down to minimizing the entropy of ΩC,M , which
can be written as:

S =
∑

i,j∈[1;p]

ln

[(
sisj +M(i,j) − 1

M(i,j)

)]
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as shown in [8].
Yet, even within this restricted domain (p and (si)i are fixed), the lower en-

tropy partition for a given graphG is not always the one which corresponds to the
sharper communities. To illustrate this phenomena, let’s consider the stochas-
tic block models whose matrices M are shown on figure 1, and a multigraph
G ∈ ΩSBM1

∩ΩSBM2
.

– SBM1 corresponds to C1 = {ca1 : {0, 1, 2, 3, 4, 5}, cb1 : {6, 7, 8}, cc1 : {9, 10, 11}}
– SBM2 corresponds to C2 = {ca2 : {0, 1, 2}, cb2 : {3, 4, 5}, cc2 : {6, 7, 8, 9, 10, 11}}.

As G ∈ ΩSBM1 ∩ΩSBM2 , it could have been generated using SBM1 or SBM2.
Yet, the point of inferring a stochastic block model to understand the structure
of a graph is that it is supposed to identify groups of nodes (blocks) such that the
edge distribution between any two of them is homogeneous and characterized by
a specific density. From this point of view C1 seems a better partition than C2:

– The density of edges inside and between ca2 and cb2 is the same (10), so there
is no justification for dividing ca1 in two.

– On the other hand, cb1 and cc1 have an internal density of 1 and there is no
edge between them, so it is logical to separate them rather than merge them
into cc2.

Yet, if we compute the entropy of SBM1 and SBM2:

S1 = ln

[(
395

360

)]
+ 2× ln

[(
17

9

)]
= 136

S2 = ln

[(
53

18

)]
+ 4× ln

[(
98

90

)]
= 135

The entropy of SBM2 is lower and thus partition C2 will be the one selected.
Of course, as |ΩSBM2

| < |ΩSBM1
|, the probability to generate G with SBM2 is

higher than the probability to generate it with SBM1. But this increased proba-
bility is not due to a better identification of the edge distribution heterogeneity,
it is a mechanical effect of imposing smaller communities in the groups of nodes
which contain the more edges, even if their distribution is homogeneous. Doing
so reduces the number of possible positions for each edge and thus the number
of different graphs the model can generate.

This problem can also occur with smaller densities, as illustrated by the
stochastic block models whose block-to-block adjacency matrices are shown on
figure 2. SBM3, defined as one community of 128 nodes and density 0.6 and 32
communities of 4 nodes and density 0.4 has an entropy of 17851. SBM4 which
merges all small communities into one big and splits the big one into 32 small
ones has an entropy of 16403.
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Fig. 1. Block-to-block adjacency matrices of two overlapping stochastic
block models. Even though the communities of SBM1 are better defined, SBM2

can generate less different graphs and thus generates them with higher probability.

Fig. 2. Block-to-block adjacency matrices of two overlapping stochastic
block models with lower densities. Once again, even though SBM3 has better
defined communities, SBM4 is more likely a model for graphs G ∈ ΩSBM3 ∩ΩSBM4
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3 The density threshold

More generally, let’s consider a SBM (C1,M1) with one big community of size s,
containing c×m0 edges and q small communities of size s

q containing (mi)i∈[1;q]
edges each, as illustrated on figure 3. Its entropy is equal to:

S1(c) = ln

[(
s2 + c×m0 − 1

c×m0

)]
+

q∑
i=1

ln

[( s2

q2 +mi − 1

mi

)]

On the other hand, the entropy of the SBM (C2,M2) which splits the big com-
munity into q small ones of size s

q and merges the q small communities into one
big is:

S2(c) = ln

[(
s2 +

∑q
i=1mi − 1∑q
i=1mi

)]
+ q2ln

[( s2+c×m0

q2 − 1
c×m0

q2

)]

Fig. 3. Theoretical pair of stochastic block models. The right-side partition splits
the big community in q = 3 small ones and merges the small communities in one big.
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So, with C1 =
∑q
i=1 ln

[( s2

q2
+mi−1
mi

)]
and C2 = ln

[(s2+∑q
i=1mi−1∑q
i=1mi

)]
, which

are constants with respect to c:

S1(c)− S2(c) = ln

[(
s2 + c×m0 − 1

c×m0

)]
− q2ln

[( s2+c×m0

q2 − 1
c×m0

q2

)]
+ C1 − C2

= ln

[
c×m0∏
k=1

k + s2 − 1

k

]
− ln




c×m0
q2∏
k=1

k + s2

q2 − 1

k


q2
+ C1 − C2

= ln


c×m0

q2∏
k=1

∏q2−1
i=0 (k + s2 − 1 + i× c×m0

q2 )

(k + s2

q2 − 1)q2

+ C1 − C2

> ln


c×m0

q2∏
k=1

(
k + s2 − 1

k + s2

q2 − 1

)q2+ C1 − C2

> q2

c×m0
q2∑
k=1

ln

[
1 +

(q2 − 1)s2

q2k + s2 − q2

]
+ C1 − C2 (2)

Now, as

ln

[
1 +

(q2 − 1)s2

q2k + s2 − q2

]
∼

k→∞

(q2 − 1)s2

q2k + s2 − q2

and
c×m0

q2∑
k=1

(q2 − 1)s2

q2k + s2 − q2
→
c→∞

∞

we have that

q2

c×m0
q2∑
k=1

ln

[
1 +

(q2 − 1)s2

q2k + s2 − q2

]
→
c→∞

∞ (3)

and thus, by injecting equation 3 inside 2, ∃c,∀c′ > c, S2(c′) < S1(c′). Which
means that for any such pair of stochastic block models, there exists some density
threshold for the big community in C1 above which (C2,M2) will be identified
as the most likely model for all graphs G ∈ Ω(C1,M1) ∩Ω(C2,M2).

4 Consequences on model selection

In practice, this phenomena implies that a model selection technique based on
the minimization of entropy will not be able to identify correctly some SBM
when they are used as generative models for synthetic graphs. To illustrate this,
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we generate graphs and try to recover the original partition. The experiment
is conducted on two series of stochastic block models, one with relatively large
communities and another one with smaller but more sharply defined communi-
ties:

– SBM7(d) is made of 5 blocks (1 of 40 nodes, and 4 of 10 nodes). Its density
matrix D is given on figure 4 (left) (one can deduce the block adjacency
matrix by M(ci,cj) = |ci||cj | ×D(ci,cj)).

– SBM8(d) is made of 11 blocks (1 of 100 nodes, and 10 of 10 nodes). The
internal density of the big community is d, it is 0.15 for the small ones and
0.01 between communities.

For each of those two models, and for various internal densities d of the largest
community, we generate 1000 random graphs. For each of these graphs, we com-
pute the entropy of the original partition (correct partition) and the entropy
of the partition obtained by inverting the big community with the small ones
(incorrect partition). Then, we compute the percentage of graphs for which the
correct partition has a lower entropy than the incorrect one and plot it against
the density d. Results are shown on figure 4 and 5.

Fig. 4. Block-to-block adjacency matrix of SBM7(d) (left) and percentage of graphs
generated using SBM7(d) for which the original partition has a lower entropy than the
inverted one against the density d of the big community (right).

We observe that as soon as d reaches a given density threshold (about 0.08 for
SBM7(d) and 0.18 for SBM8(d)), the percentage of correct match drops quickly
to 0. As d rises over 0.25, the correct partition is never the one selected. It should
be highlighted that in these experiments we only compared two partitions among
the Bn possible, so the percentage of correct match is actually an upper bound on
the percentage of graphs for which the correct partition is identified. This means
that if SBM7(d) or SBM8(d) are used as generative models for random graphs,
with d > 0.25, and one wants to use bayesian inference for determining the
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Fig. 5. Percentage of graphs generated using SBM8(d) for which the original partition
has a lower entropy than the inverted one against the density d of the big community.

original partition, it will almost never return the correct one. What is more, the
results of section 3 show that this will occur for any SBM of the form described
in figure 3, as soon as the big community contains enough edges.

5 Discussion

We have seen in section 1 that model selection techniques that rely on the max-
imization of the likelihood function to find the best node partition given an ob-
served graph boils down to the minimization of the entropy of the corresponding
ensemble of generable graphs in the microcanonical framework. Even in the case
of bayesian inference, when a non-uniform prior distribution is defined on the set
of possible partitions, entropy remains the criterion of choice between equiprob-
able partitions. Yet, as shown in section 2 and 3, entropy behaves counter intu-
itively when a large part of the edges are concentrated inside one big community.
In this situation, a partition that splits this community in small ones will have a
lower entropy, even though the edge density is homogeneous. Furthermore, this
happens even when the number and sizes of communities are known. Practically,
as explained in section 4, this phenomena implies that stochastic block models
of this form cannot be recovered using model selection techniques based on the
mere minimization of the cardinal of the associated microcanonical ensemble.
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Let’s stress that contrary to the resolution limit described in [10] or [11],
the problem is not about being able or not to detect small communities with
no prior knowledge about the graph, it occurs even though the number and
sizes of communities are known. It is also different from the phase transition
issue that has been investigated in [12] [13] [14] [15] for communities detection
or recovery because it happens even when communities are dense and perfectly
separated. Entropy minimization fails at classifying correctly the nodes between
communities because it only aims at identifying the SBM that can generate
the lowest number of different graphs. A model which enforces more constraints
on edge positions will necessarily perform better from this point of view, but
this is a form of overfitting, in the sense that the additional constraints on edge
placement are not justified by an heterogeneity in the observed edge distribution.

The results presented in this paper were obtained for a particular class of
stochastic block models. First of all, they were obtained for the multigraph
flavour of stochastic block models. As the node classification issue occurs also
for densities below 1, they can probably be extended to simple graphs, but this
would need to be checked, as well as the case of degree-corrected stochastic block
models. Furthermore, the reason why the log-likelihood of a stochastic block
model C,M for a graph G is equal to the entropy of ΩC,M is that we consider
the microcanonical ensemble, in which all graphs have an equal probability to
be generated. It would be interesting to check if similar results can be obtained
when computing P[G|C,M ] in the canonical ensemble [8]. Finally, we assumed
that for a graph G and two partitions C1 and C2 with the same number and sizes
of blocks, the associated block-to-block adjacency matrices M1 and M2 have the
same probability to be generated, and this assumption too could be questioned.

Yet, within this specific class of SBM, our results illustrate a fundamental
issue with the stochastic block model statistical inference process. Since the ran-
dom variable whose distribution we are trying to infer is the whole graph itself,
we are performing statistical inference on a single observation. This is why fre-
quentist inference is impossible, but bayesian inference also has strong limitations
in this context. In particular, the only tool to counterbalance the observation
and avoid overfitting is to specify the kind of communities we are looking for
through the prior distribution. If it is agnostic about the distribution of edge
densities among these communities, the mere minimization of the entropy of the
posterior distribution fails to identify the heterogeneity in the edge distribution.
Beside refining even more the prior distribution, another approach could be to
consider a graph as the aggregated result of a series of edge positioning. If the
considered random variable is the position of an edge, a single graph observation
contains information about many of its realizations, which reduces the risk of
overfitting.
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