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Abstract. Network inference is the reverse-engineering problem of in-
fering graphs from data. With the always increasing availability of data,
methods based on probability assumptions that infer multiple inter-
twined networks have been proposed in literature. These methods, while
being extremely flexible, have the major drawback of presenting a high
number of hyper-parameters that need to be tuned. The tuning of hyper-
parameters, in unsupervised settings, can be performed through criteria
based on likelihood or stability. Likelihood-based scores can be easily
generalised to the multi hyper-parameters setting, but their computa-
tion is feasible only under certain probability assumptions. Differently,
stability-based methods are of general application and, on single hyper-
parameter, they have been proved to outperform likelihood-based scores.
In this work we present a multi-parameters extension to stability-based
methods that can be easily applied on complex models. We extensively
compared this extension with likelihood-based scores on synthetic Gaus-
sian data. Experiments show that our extension provides a better esti-
mate of models of increasing complexity providing a valuable alternative
of existing likelihood-based model selection methods.
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1 Introduction

Networks are present in the majority of natural phenomena [2] comprising physics
[4, 28], biology [14,43] and social sciences [6, 41]. The underlying network struc-
ture may sometimes be available, but, in general, network inference methods
shall be used to infer it from data. Here, we focus on inference methods based
on a probability assumption, probabilistic graphical models (PGMs), in which the
connections in the network encode conditional dependencies between the nodes.
These methods, typically, embed prior knowledge to guide the inference pro-
cess and ease the computational burden. Usually, the models we are considering,
assume sparsity of the solution, achieved by imposing an `1 penalty. This con-
straint reduces the original search space size of 2d(d−1)/2 (where d is the number
of nodes) by forcing to zero the weaker connections [1, 13, 24, 32, 45, 46]. Other
priors may be used to include more complex hypothesis such latent variables,
multiple classes, multi-levels, dynamism and more [8,11,15,16,38,48]. All priors



2 Tozzo and Barla

are imposed through penalty functions, each of them regulated by a correspond-
ing hyper-parameter. The problem of choosing the best set of hyper-parameters,
also known as model selection, is one of the most challenging task in machine
learning. Indeed, even if theoretical bounds exist for some statistical models of-
ten these do not work in practice as the estimation depends on a sample size
that is usually not available (n� d). The optimal models are therefore selected
by empirically evaluating the performance on data. In the context of network
inference this task is particularly difficult given the unsupervised nature of the
problem, which therefore relies on likelihood scores [5, 7, 9–12, 17, 35] or stabil-
ity measures [22,23,27]. Likelihood and penalised likelihood scores (BIC [15] or
AIC [11]) are typically nested in a cross-validation schema that may possibly
lead to overfit [21, 40, 42]. Moreover, such scores may be conditionally applied
based on the assumed probability distributions as the computation of the nor-
malization constant of the joint distribution may be infeasible [1, 32, 46]. As an
alternative, one can consider stability-based methods whose aim is to find the
optimal value of the hyper-parameters that maximises stability of the inferred
graph at multiple resampling of the data [22, 23]. These criteria have proved to
be more effective than likelihood-based scores [22] and with some distribution
assumptions are the only possible choice. Such methods were later extended to
consider graphlets stability i.e. to verify the presence of non-isomorphic sub-
graphs across experimental subsampling [27,31].
The aim of this paper is twofold, on one hand we provide a comprehensive de-
scription of the available likelihood-based scores for multi-parameters model se-
lection; on the other, we extend stability-based methods to the multi-parameters
case, also including graphlets stability in the context of sparse network infer-
nece [22,23,27]. The key of our extension lies in considering the possible combi-
nations of hyper-parameters as a unique parameter Λ defined as a tuple. Such
tuple is formed in such a way that the first entry is the parameter that mostly
regulates sparsity followed by the other parameters ordered, again, with respect
to their impact on sparsity. We compared the general stability-based method,
both with and without graphlets, with the general likelihood-based scores on
three possible multi-parameters extension of the graphical lasso [13] in the con-
text of Gaussian Graphical Models (GGMs). This is due to the fact that only
with Gaussian data we can explictly compute the likelihood. Results show that
our stability-based extension always overcome likelihood-based selection meth-
ods as its single hyper-parameter counterpart did in the single-network inference
case. The remainder of this paper is organised as follows: in Section 2 we present
the problem of network inference; in Section 3 we list our definition of generalised
likelihood-based scores for model selection; Section 4 contains our main constri-
bution as a general multi-parameters stability-based model selection method; in
Section 5 we show synthetic experiments. Lastly, in Section 6 we conclude with
a brief recap and we suggest possible future work in this area of research.

2 Network inference

Probability-based multiple network inference aims at estimating K graphs Gk =
(V,Ek) for k = 1, . . . ,K where V = {1, . . . , d} are the nodes and Ek ⊆ V × V
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is the set of edges that connect such nodes in the network k. The inference of
the weighted adjacency matrices of such graphs Θ = (Θ1, . . . , ΘK) is performed
from observationsX = (X1, . . . , XK) ∈ Rn1×d×· · ·×RnK×d. We define a generic
form for the inference problem as

minimize
Θ1,...,ΘK

K∑
k=1

[
− `(Θk, Xk) + α‖Θk‖1,od

]
+

P∑
p=1

βpPp(Θ1, . . . , ΘK) (1)

where ‖Θk‖1,od is the off-diagonal `1 norm that enforces sparsity on the off-
diagonal elements of each adjacency matrix Θk and Pp is typically a sum of
penalties, controlled by the hyper-parameter βp, applied on combinations of the
precision matrices. The main hyper-parameter, α, regulates the sparsity of the
solution, a fundamental assumption to reduce the complexity of the problem at
hand.

As previously mentioned for the rest of the paper we will use GGMs, as they
allow to compute the likelihood of the model. In this case, data are assumed to be
sampled from a multivariate normal distribution. Each graph k is inferred from
samples Xk ∈ Rnk×d ∼ N (0, Θ−1

k ) where each precision matrix Θk is the inverse
of the covariance matrix that encodes the conditional dependencies between
variables, i.e., is the weighted adjacency matrix of the graph Gk [13,19,24]. The
related log-likelihood is defined as `(Θk, Sk) = log det(Θk) + tr(ΘkSk) where
Sk = 1

nk
X>k Xk is the empirical covariance matrix. We instantiate the functional

in Equation (1) to provide example of possibly multiple GGMs that we will later
use for the analysis.

– by taking K = 1 and P = 0 Equation (1) has the same form of the standard
graphical lasso problem [13];

– by taking K to be the number of classes present in the problem P = 1 and
the related penalty P1 =

∑K
k=1

∑
k′ 6=k ψ(Θk − Θk′) we are considering

the Joint Graphical Lasso problem [11,15]. Where ψ is the distance function
among the precision matrices of the classes;

– by taking K as the number of time points in a time series, P = 1 and
the related penalty P1 =

∑K−1
k=1 ψ(Θk+1 − Θk) we are considering the

Time-Varying Graphical Lasso. Here, again, the function ψ is a distance
function [16,17].

In the rest of the paper we will denote with ζ the solver for a generic network
inference method that takes in input the set of matrices X and gives as output
the set of adjacency matrix of the graph Θ.

3 Likelihood scores for multi-parameters model selection

Likelihood-based model selection methods rely on the possibility of computing
the likelihood of the model under analysis. Therefore, as previously mentioned
it is not possible to use the rest of the definition for some PGMs (e.g., Ising,
Poisson, Exponential [1, 45, 46]). When possible, likelihood is used as a score
and inserted in a cross validation schema as K-Fold, Monte Carlo or Gaussian



4 Tozzo and Barla

process-based Bayesian optimisation procedures [26, 36]. Such scores are easily
extendible to the multi-parameters multi-networks case as it suffices to take
the mean of the scores on the single networks. Let us consider K graphs in d
variables, for which we haveX = (X1, . . . , XK) observations each of them having
nk samples and the related empirical covariance matrices S = (S1, . . . , SK).
We denote Λ the generic hyper-parameters tuple of the model in consideration
and the inferred precision matrices inferred with the specific choice of hyper-
parameters as ΘΛ. Then, the generalised scores are:

– Generalized likelihood score. We define the generalized likelihood score as

``(ΘΛ,S) =
1

K

K∑
k=1

[
1

nk
`(ΘkΛ, Sk)

]
(2)

such score was used in [17,38] to perform model selection on multi-parameter
multi-network inference.

– Generalised Bayesian Information Criterion (BIC) [37]. It considers the de-
grees of freedom of the model in order to prevent overfitting for an increasing
complexity of the model in analysis. In a graphical model selection problem
the degree of freedom are the number of non-zero elements in the matrix [50].
Here, we take into account for the incremented number of degree of freedom
given by the K graphs.

BIC(ΘΛ,S) = ``(ΘΛ,S)−
( K∑
k=1

log(nk)

nk

)
‖ΘΛ‖od,0 (3)

where ‖ΘΛ‖od,0 is the number of non-zero elements in the off-diagonal of the
matrix ΘΛ. The BIC is a common score method for unsupervised problem
as it leads to asymptotically consistent model selection when the number
of variables d is fixed and the number of samples nk increases. The AIC
method for multi-networks [11,33] differs from this formulation only for the
penalty that, instead of being proportional to the number of samples, is
simply multiplied by 2. Due to this resemblence, we do not include it in the
following comparison.

– Generalised Extended BIC (EBIC), defined as

EBIC(ΘΛ,S, ε) = ``(ΘΛ,S)−
K∑
k=1

(
log(nk)

nk
+ 4ε

log(d)

nk

)
‖ΘΛ‖od,0. (4)

This score proposes a trade-off between the positive selection rate and the
false discovery rate based on the choice of the positive parameters ε, which
following the literature is selected as ε = 0.5 [5,7,9,12,35]. A further extension
that furtherly penalises the degree of freedom (suitable when analysing large
graphs) is defined as [10]

EBICm(ΘΛ,S, ε) = ``(ΘΛ,S)−
K∑
k=1

(
log(nk)

nk
+ 4ε

log(Kd(d− 1)/2)

nk

)
‖ΘΛ‖od,0

(5)

where Kd(d − 1)/2 is the total number of off-diagonal elements in the K
precision matrices.
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Algorithm 1 Bernoulli indicator variance (BV)
for Λ ∈ {Λ1, Λ2, . . . } do

for m = 1, . . . ,M do
Xm = (X

z1
1 , . . . , X

zK
K )

ΘmΛ = ζ(Xm)

(Θ̄mΛ )kij =

{
1 if (ΘmΛ )kij 6= 0
0 otherwise

for k = 1, . . . , K and i, j = 1, . . . , d

end for
Θ̂z
Λ = 1

M

∑M
m=1 Θ̄

m
Λ

ξz
Λ = 2Θ̂z

Λ(1− Θ̂z
Λ)

end for
return [ξz

Λ1
,ξz
Λ2
, . . . ]

4 Stability based multi-parameters model selection

Model selection approaches based on stability of the result are widely used in
unsupervised settings as clustering [18, 39]. In the context of graphical models
they were proposed in [22, 23], the most used is called Stability Approach to
Regularisation Selection (StARS), in which the best model is selected as the one
that uses the minimum amount of regularisation still producing a sparse and
stable graph under random sub-sampling of the initial dataset. StARS selects
the best value for the hyper-parameter α by analysing the trend of stability as
α varies. Indeed, as α → ∞ the inferred graph is completely sparse, i.e., no
edges are present. Therefore for α → ∞ the graph is stable under random sub-
sampling of the data. On the other hand, the same holds when α = 0 as the
graph is complete and therefore there is no variation in the inferred edges. StARS
selects the best α based on the possibility to order the regularisation parameters
from the strongest regularisation to the weakest. The goal is to choose α∗ such
that the true graph E is contained in the inferred E(α∗), i.e. the graph is over-
selected [22].

Multi-parameters relation order. In the context of multi-parameters the order-
ing is trickier as different parameters act on different part of the inference which
may or may not impact sparsity and stability. Here, we define a single param-
eter Λ = (α, βI , βII , . . . , βP−th) as a tuple of hyper-parameters. Such hyper-
parameters are not randomly positioned within the tuple but according to their
impact on the sparsity of the problem. Therefore, α that directly acts on the `1
penalty is the most important hyper-parameter, followed by a certain order of
the remaining hyper-parameters such that βI acts on edges sparsity more than
βII and so on and so forth. Note that in this case βI is not necessarily associated
to P1 but to the the penalty that has the most impact on sparsity.

When performing model selection, given the possible ranges for all the hyper-
parameters and their order, we compute a grid of values naming each point of
the grid as Λi = (αi, βiI , . . . , β

i
P−th). We sort the tuples Λi following the inverse

lexicographic order so that αi is the parameter that changes less frequently. In
this way to the first tuple Λ1 corresponds the most regularised (and therefore
sparse) graph. With this choice we give more emphasis to the hyper-parameter
α which governs the sparsity of the solution. Note that, the inverse lexicographic
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Algorithm 2 m-StARS stability computations
[ξz
Λ1
,ξz
Λ2
, . . . ] = BV(X, ζ, (Λ1, Λ2, . . . ))

for Λ ∈ {Λ1, Λ2, . . . } do

Dz
Λ =

∑K
k=1

∑
i<j(ξ̂

z
Λ)kij

/
K

(
d
2

)
Dz
Λ = sup

λ≤Λ
{Dλ}

end for
return Λ∗ = arg min

Λ
[Dz
Λ ≤ 0.05].

order is arbitrary and there may be other types of ordering applied on the βs
that may lead to the same stability solutions. We remark that, similarly to the
choice of the search interval, this sorting criterion is guided by domain knowledge
on the model in use.

Re-sampling In order to perform re-sampling it is necessary to define how many
samples to randomly drawn from each dataset and how many time we should
perform this procedure. We define z = (zk)Kk=1 as a tuple containing the amount
of sub-samples drawn at random without replacement from each dataset Xk.
Each value zk ∈ [1, nk] is taken proportionally to the original number of samples
in such a way that if nk′ ≥ nk then zk′ ≥ zk. The suggested choice for zk
is zk = min(10

√
nk, 0.9nk) which allows to select a reasonable amount of sub-

sample from the original dataset even when the original sample size is low [22].

Given zk there are Mk =

(
nk
zk

)
sets of possible sub-samples without repetitions.

Ideally, one would sub-sample all the possible sub-sets M = min(Mk)Kk=1, but,
for computational reasons, this is often unfeasible. In the experiments we will
present, the sample size is in the order of hundreds therefore we opt to sub-
sample for M = 100 times with the guarantee of reaching the same stability
results [29].

Single edge stability Given the solver ζ and the set of sorted hyper-parameters
Λi, we perform the procedure described in Algorithm 2 that we call multiple-
StARS (m-StARS) following the original naming. The instabilities, DzΛi , are
computed by m-StARS for each Λi as the mean of the how much the edges vary
across the M sub-samples. The variance is computed as the Bernoulli indicator
variance (see Algorithm 1), and its mean across edges gives us a global indicator
of the instability of the graph. If the inference is stable the edge variance is 0,
whereas when the inference is random, the variance is 1

2 which is the maximum
possible value. Given the instabilities for all Λs, we force the curve as Λi varies
to be monotone and then select the best Λ∗ as the one that provides the sparser
graph under the accepted stability threshold of instability (0.05) [22]. Note that
Λ∗ depends on the block sizes z and therefore this method has some efficiency
loss in low dimension [22].

Graphlet stability The m-StARS procedure is based on single edge stability
which, by definition, ignore higher-order structures. It is possible to extend the
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Algorithm 3 mg-StARS stability computations
[ξz
Λ1
,ξz
Λ2
, . . . ] = BV(X, ζ, (Λ1, Λ2, . . . ))

Λub = arg min
Λ

min

∑Kk=1
∑
i<j 4(ξz

Λ)kij(1−
(
ξz
Λ)kij

)
K

(
D
2

)
 ≤ 0.05


Λlb = arg min

Λ

min

∑Kk=1
∑
i<j(ξ

z
Λ)kij

K

(
D
2

)
 ≤ 0.05


for Λ ∈ [Λlb, Λub] do

(ρmΛ )k = GCV ((ΘmΛ )k) for k = 1, . . . , K and m = 1, . . . ,M

d̂zΛ = 2
KM(M−1)

∑K
k=1

∑
m>m′ ‖(ρ

m
Λ )k − (ρm

′
Λ )k‖2

end for
return Λ∗ = argmin

Λ
d̂zΛ

0.0

0.2

0.4
Instabilities

Upper bound instabilities

Lower bound

Upper bound

1

2 Graphlet instabilities

Parameters

Fig. 1. An example of instabilities obtained applying our method for for a specific
range of Λ values on the Joint Graphical Lasso. The top panel depicts the upper and
lower bound and the interval of interested where to choose the most stable network.
The bottom panel shows the graphlets instabilities curve.

concept to include graphlets [27] which are small (typically 4 or 5 nodes) con-
nected non-isomorphic sub-graphs of a network widely used to characterize or
compare networks [25, 30, 31]. We exploit the concept of Graphlet Correlation
Vector (GCV) [34] that is used as a method to compute distances between net-
works.

Graphlets instability, similarly to single edge instability, is computed as the
mean of the distances of the GCVs on the K graphs across all M repetitions.
The main drawback of this instability, though, is that it is highly variable and
it cannot easily be monotonised. Therefore, we select an interval of interest by
observing the behaviour of the single edge instabilities and then we select, in this
interval, the network with the lowest graphlets instability [27]. The procedure
for the selection of the hyper-parameters, that we call multi graphlets StARS
(mg-StARS), is described in Algorithm 3.
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5 Experiments and results

We designed four experiments to assess the efficacy of the proposed model selec-
tion methods testing m-StARS and mg-StARS against likelihood-based scores.
For the model selection with likelihood-based scores we used a 3-fold cross-
validation schema training the model on a subset of data and testing it on
the remaining part. We tested all model selection strategies on three GGMs
model with multiple hyper-parameters, in particular the Joint Graphical Lasso
(JGL) [11], the Time-varying Graphical Lasso (TGL) [17] and the Latent Graph-
ical Lasso (LGL) [8]. For JGL we generated a random graph of 20 nodes which
is the common set of edges of the three graph classes (K = 3) that we gener-
ated by randomly adding some edges. For TGL we devised two experiments in
which we generated 10 time-evolving networks of 100 variables (K = 10) with
two different evolution schema: smooth changes (TGL-`2) and punctual changes
(TGL-`1). Both JGL and TGL have two hyper-parameters α that regulates spar-
sity and β that regulates the similarity of the network across classes/times, we
sorted them as Λ = (α, β). For LGL we generated a perturbed observed net-
work on 100 observed variables with 5 latent (K = 1) following the generation
schema presented in [47]. LGL has two hyper-parameters α that regulates spar-
sity and τ that controls the amount of estimated latent variables, we ordered
them as Λ = (α, τ). For all the experiments and all the classes/times we gener-
ated n = 100 samples. We adapted the range of parameters to the specific case
and we used 4-nodes graphlets in the mg-StARS computation. For all experi-
ments we computed Precision-Recall (PR) and ROC curves by considering the
edges of the graphs as binary classes and computing the thresholds by looking
at the weights of the edges. All the code and the experiments are available for
reproducibility in a general Python library for graphical models inference1.

In Figure 1 an example of instabilities obtained applying our method for the
experiment on JGL. It is noticeable that the instabilities assume a sort of step as-
cendance, which assesses the validity of ordering the hyper-parameters according
to their impact to sparsity. We can observe that in this case the model selected
with m-StARS or with mg-StARS is different. In the other experiments (not
reported for space constraints) both algorithms selected the same model. The
performance of m-StARS, mg-StARS, and likelihood-based scores is reported in
the of Figure 2. Looking at the curves we observe that the model selected for
mg-StARS performs worse than likelihood-based scores, while, if we simply use
m-StARS we obtain better results.
In the remaining Figure 3, 4, and 5 we show the curves obtained for LGL, TGL-`1
and TGL-`2, respectively. In all cases m-StARS (which, in this case, is equiva-
lent to mg-StARS) performs better than likelihood-based strategies. None of the
likelihood-based scores outstands with respect to the others across experiments.

1 https://github.com/veronicatozzo/regain/
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Fig. 2. ROC and Precision-Recall curves of different model selection methods for the
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6 Conclusion

We presented an extension for model selection based on stability of the result
for network inference methods that present more than one hyper-parameter.
We showed the validity of the proposed method on Gaussian Graphical Mod-
els comparing m-StARS and mg-StARS with likelihood-based cross validation
schema noticing that m-StARS always provides a better estimate of the model.
We remark that, in cases of non-Gaussian data, stability-based model selection
criteria are the only possible choice. Therefore, a suitable method for multi hyper-
parameters selection is necessary for further exploring more complex models on
other distributions [20, 44, 49]. From the methodological perspective, graphlets
stability has proved to be less effective than single edge stability. For future
work it would be interesting to exploit other types of stability possibly looking
at topological descriptors capturing higher order relations such as persistent ho-
mology [3] and to explore other type of sorting for the hyper-paramters other
than inverse lexicographic order.
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24. Nicolai Meinshausen, Peter Bühlmann, et al. High-dimensional graphs and variable
selection with the lasso. The annals of statistics, 34(3):1436–1462, 2006.
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