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Abstract. We present a new metric of link cohesion for measuring the
strength of edges in complex, highly connected graphs. Link cohesion ac-
counts for local small hop connections and associated node degrees and
can be used to support edge scoring and graph simplification. We also
present a novel graph density measure to estimate the average cohesion
across nodes. Link cohesion and the density measure are employed to
demonstrate community detection through graph sparsification by max-
imizing graph density. Link cohesion is also shown to be loosely correlated
with edge betweenness centrality.

Keywords: link cohesion, graph sparsification, graph density, central-
ity, community detection

1 Introduction

Real world networks, or graphs defined as a set of nodes and connecting edges,
tend to be highly connected, particularly in the cyber domain. Analysis of these
large, highly connected networks is generally computationally expensive. While
many techniques to analyze graphs have been developed (e.g., [9,16]), there are
very few metrics that score edges themselves, e.g., edge betweenness [10]. We
posit that edge scores, calculated from local graph properties, can be used to
help reduce complexity and analysis of large graphs.

One common graph analysis technique is community detection, where con-
nected nodes are clustered into communities. Community detection techniques
have been applied to social, mobile phone, biological, and legislative networks,
to name a few [21]. Community detection is known to be challenging unless
edges are sparse [7]. This is particularly true for real-world graphs, which tend
to become more dense with increasing degree and decreasing diameters over
time [14]. In light of this, as real-world graphs become larger and more intercon-
nected, community detection and other graph analysis become more challenging
and it is critical to identify techniques to help manage analysis of large graphs.
One approach, graph sparsification through edge removals, has been used to
simplify networks for community detection [22]; we seek to further explore the
advantages of sparsification using a new concept we refer to as link cohesion.

The main contributions of this paper are i) a new local edge cohesion cal-
culation to support edge scoring and graph simplification and ii) an automated
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pruning approach to sparsify the graph by optimizing the newly developed den-
sity metric that leverages link cohesion. The link cohesion of an edge is a new
concept that considers 1-, 2-, and 3-hop paths connecting end points while also
taking into account the degree of nodes involved on those paths. In the following
sections, we provide a description of the new metrics, their potential uses, and
accompanying results that demonstrate the value of link-cohesion-based pruning
in detecting communities on real world and synthetic data sets.

2 Link Cohesion Calculation

The expected number of edges between two nodes i and j is given by kikj/2|E|,
where |E| is the number of edges in the graph and ki is the degree of node i. In
a undirected graph with only one edge allowed between any two nodes, this is
equivalent to the likelihood of the edge. This likelihood concept can be expanded
to alternate paths created by triangles and quadrilaterals about each edge. We
posit that edges are more cohesive when they are supported by alternate paths
and that the value of those alternate paths is inversely proportional to their
likelihood. Using these concepts, we define link cohesion as a means to assess
how supported an edge is relative to other edges, accounting for the number of
nearby alternate paths and associated node degrees. We do this by calculating a
score using 1-, 2-, and 3-hop connections, where supporting links are valued based
on their inverse likelihood. That is, links with higher likelihood and therefore a
lower link cohesion score are presumed to provide less value to local connections.

The calculation for link cohesion is as follows:

1. Calculate hop-based link strengths

Let ki denote the degree of each vertex i. Consider 1-hop, 2-hop, and 3-hop
connections between connected nodes i and j.

The single link strength a1,ij of edge eij for each direct connection will be
measured as:

a1,ij =
1

kikj

Note that this is proportional to the inverse of the expected number edges be-
tween nodes i and j, kikj/2|E|. In this way, the single link strength places greater
strength on links with a lower likelihood.

The double link strength a2,ij of edge eij for each direct connection with
additional 2-hop connections will be measured as:

a2,ij =
1

(kikj)2

∑
2-hop paths thru node l from eij

1

k2l

This calculation is similar to single link evaluation in that it penalizes triangles
by the degree of the corners that form the triangle and places greater strength
on links supported by triangles with lower likelihood. The squared term is due
to the fact that each node participates in two links.
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Similarly, the triple link strength a3,ij of edge eij for each direct connection
with additional 3-hop connections will be measured as:

a3,ij =
1

(kikj)2

∑
Unique 3-hop paths thru nodes m,n from eij

1

(kmkn)2

Fig. 1: Link cohesion
uses 1-hop, 2-hop, and
3-hop connections

In carrying out this summation, we ensure that
there are no circular loops between pairs of nodes, fol-
lowing only 3-hop paths as shown by the path through
nodes m and n in Figure 1. While this third measure-
ment involves 3-hop paths, calculation needs to only
be performed for pairs in which a link exists by re-
using the 2-hop result. This leads to a significant de-
crease in the number of computations that are needed
for 3-hop links. The complexity this algorithm, as de-
scribed, is

∑
i(ki)

2; however, in implementing it by
binning edges based on low-degree adjacent vertices
allows the 3-cycle and 4-cycle contributions to be enu-
merated with worst case work of |E|3/2 [5].
2. “Normalize” hop-based link strengths

Since 1-, 2-, and 3-hop results each have their
own statistics, they must first be normalized to create
an aggregate score. To normalize the hop-based link
strengths, first, the average link strength µn for each
hop count n is computed: µn = 1

|E|
∑

eij∈E [an,ij ]. The

average link strength is then used to calculate a nor-
malized link cohesion cn,ij for all edges eij with associated n hop connections
for n ∈ {1, 2, 3}:

cn,ij =
an,ij

µn + an,ij

This formulation scales the hop-based edge strengths to the interval [0, 1).
3. Calculate link cohesion as a cumulative edge strength

The scaled link strengths for the three n-hop connections are averaged to
compute the aggregate scaled local edge strength, which we will call the link
cohesion cij :

cij =
1

3
[c1,ij + c2,ij + c3,ij ]

In the calculation of link cohesion, the three normalized hop-based link
strengths are weighted equally. We investigated inclusion of the three terms as
well as individual hop-based link strength contributions by assessing the associ-
ated performance of our edge-pruning community detection algorithm, defined
in the next section, on an open-source real-world dataset, the European Union
(EU) email data. The performance results for various binary weightings are pro-
vided in Table 1. Performance was measured using the remaining number of
edges, the number of communities detected, and F-score, that is the harmonic
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mean of precision and recall to assess community detection performance as dis-
cussed in [22]. Each of the three path lengths provide value toward the link
cohesion score. While some combinations yielded detection of more communities
or higher F-scores than others, there was not enough of a difference to justify
using a formula other than equal weighting or to justify removal of any term.
This example demonstrates that inclusion of all three hop-based link strengths
provides one of the highest F-scores with the most remaining edges intact by the
pruning algorithm. While only the first two hops could be leveraged for faster
performance, the third hop can be efficiently calculated using 2-hop results.

Table 1: Example evaluation of relative hop contributions on the EU email data
assessed using the remaining number of edges, number of communities detected,
and F-score with the pruning algorithm defined in the next section.

Binary inclusion of Remaining Communities
c1,ij c2,ij c3,ij Edges Detected F-score

1 1 1 2801 17 of 42 0.539
1 1 0 2118 17 of 42 0.530
1 0 1 2189 15 of 42 0.517
0 1 1 2120 18 of 42 0.517
1 0 0 1725 13 of 42 0.286
0 1 0 1645 22 of 42 0.469
0 0 1 1990 16 of 42 0.544

3 Using Link Cohesion

Link cohesion metrics have multiple applications as described in this section. We
specifically explore how link cohesion can be used to simplify graphs through a
pruning algorithm.

3.1 Link Cohesion Density & Pruning Algorithm

Density as a concept is commonly used in a broad array of statistical learning
algorithms, such as DBSCAN, Gaussian mixture models, and Galileo [24]. In a
similar way, we define a density concept here which we will use to support graph
pruning through maximization of graph density.

The motivation for the Maximum Density Core pruning algorithm, MDCore,
is two-fold: increase the average link cohesion weight in the graph while maxi-
mizing the number of connected vertices.

In order to accomplish this, we define a metric link cohesion density that
accounts for both:

ρ = vccaverage (1)

where vc is the number of vertices with degree greater than 0 and caverage is the
average cohesion score for the remaining edges. While our focus in this paper
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is a global density metric, this concept of density could be used to characterize
local density as well, for example, to generate a heatmap view of the graph.

In MDCore, edges are deleted, starting with the weakest cohesion score,
until ρ reaches a maximum density. Link cohesion scores are not recalculated
during the pruning process since they are informed by the original graph; this
also reduces computation time. Because weak edges are associated with high
degree vertices on both ends, their removal increases the average cohesion score
without initially decreasing the number of vertices. Continued link deletions
eventually lead to the optimal maximal average, after which it decreases as the
graph becomes more and more disconnected.

This behavior can be seen in the plot of ρ values for the EU email network
in Figure 2(a). This plot is used to identify a link cohesion score threshold,
corresponding to the number of weakest links removed, below which all other
links will be removed. In this example, we find that out of the original ∼16k
links, removal of ∼12k links provides the maximum density graph.
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Fig. 2: MDCore pruning algorithm applied to the EU email network: (a) graph
density ρ as a function of the number of weakest links removed and (b) number
of clusters found using various truss sizes; only one cluster could be found on
this network when links were not removed whereas a maximum of 17 clusters
were found at truss level 4 after pruning.

In order to demonstrate the benefit of removing edges, we compare truss-
finding on the base graph to truss-finding on the pruned graph, where a k-truss
is a sub-graph where each edge in the subgraph is supported by k − 2 triangles.
The truss-finding algorithm we employ identifies trusses at different levels [3–5]
and selects the truss level where the number of clusters is maximized. At the
lowest level, most of the graph is part of the truss while at the other extreme
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a minority of nodes are left in the truss. In between, there is an area where
the number of truss-based communities are maximized. Whenever the number
of clusters are equal between levels, the lower level is chosen to include a larger
segment of the graph. We refer to this algorithm as maximal-community truss-
finding. We specifically use truss-finding as an example of how this edge removal
method can help expedite community detection analysis. The relationship be-
tween the number of nodes in the cluster and the number of clusters can be seen
in Figure 2(b), an example applying a combination of MDCore and the maximal-
community truss-finding algorithm to the EU Email network dataset [20]; in
this case the number of communities is maximized to 17 at truss level 4. When
maximal-community truss-finding was applied to the original graph, without
pruning, only one cluster was found at every truss-level and no sub-communities
could be detected.

3.2 Other Potential Uses of Link Cohesion

Link cohesion is specifically useful for highly connected networks such as cyber
and social networks, where it can be used to pre-process and simplify datasets.
Link cohesion is unlikely to be useful for physical networks such as infrastructure
with low average degree. In considering available networks in the SNAP database
[15], nearly 40% of datasets have an average node degree greater than 10. We will
specifically explore performance for comparable highly connected conditions.

Link cohesion may also serve as a fast, inexpensive approximation of edge
betweenness since link cohesion accounts for the extent to which a degree is
central at least locally. We explore this correlation in Section 5.3.

Link cohesion may also be used as edge weights to support graph analysis
algorithms such as community detection. This application is not explored in this
paper, beyond the maximal-community truss-finding algorithm.

4 Relevant Literature

While multiple techniques have been developed to incorporate edge weights
(e.g. [18]), very few edge metrics exist. One popular nodal metric, betweenness
centrality, a measure based on the number of shortest paths that flow through
a node, was generalized to edges in 2002 by Girvan and Newman [10]. Newman
subsequently used another edge metric to support calculating the modularity of
communities [19]; he also specifically leveraged the expected number of edges
between nodes. De Meo et al. developed the κ-path edge centrality metric [6]
which uses fixed length random walks to efficiently compute the importance of
edges. Harel et al. developed a dissimilarity-based edge metric to model visual
saliency [12].

Edge removal techniques have been used in a variety of algorithms to help
simplify networks. For example, edge filtering (see [11] and [25]), uses edge
weights to remove edges to reduce graphs to a set of critical edges or a network
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backbone. These techniques rely on edge weights and do not support statistical
graph analysis since too many edges are removed.

As another example, similarity sparsification has been employed to inten-
tionally remove edges based on similarity of adjacent neighbors (i.e. considering
all 2-hop connections) local and global thresholds [22]. Similarity between nodes
i and j for edge eij is calculated as Sim(i, j) = |Adj(i)∩Adj(j)|/|Adj(i)∪Adj(j)|
where Adj(i) is the set of adjacent neighbors to node i. Satuluri et al. found that
sparsification of edges can enable both higher clustering accuracy and significant
speedups (10-50 fold). As such, we will leverage the local Sparsify algorithm [22]
as a performance benchmark.

Numerous community detection algorithms directly leverage edge removals.
The Girvan-Newman algorithm uses progressive edge removals, selected for high
edge betweenness, in order to perform community detection [10]. Bai et al. re-
cently introduced a community detection algorithm which uses networks sim-
plified through identification of nodes’ leading and following degrees [1]. Mod-
ularity, a concept that enables comparison of the actual and expected number
of edges between two communities, has also been used for community detec-
tion [19]. The Louvain algorithm expands on this concept using a heuristic to
optimize modularity [2].

5 Results

5.1 Experimental Datasets

To evaluate the utility of the link cohesion algorithm, we will consider both real
world and generated networks. Since our demonstration employs a community
detection algorithm, we focus on networks with non-overlapping communities.

Three real world network datasets have been selected, as listed in Table 2.
Zachary’s Karate Club [26] and the Students (community 4 only) [17] networks
provide relatively small baseline networks. The Karate Club network has two
underlying communities. The Students network has two schools with students in
six different grades, with some students not in a specified grade, as well as gender
and ethnicity attributes. As such, the number of ground truth communities (*)
is unclear for the Students network. One can study how to objectively define
communities for networks with multiple features in real-world networks; however,
this was not considered in this paper. The European (EU) email network [20]
provides a highly connected and thereby challenging example with its edge-to-
node ratio of 25. Datasets are available through [8] and [15].

Table 2: Example Real-world Networks
Dataset Nodes Edges Communities

Karate Club [26] 34 78 2
Students Comm 4 [17] 291 1396 2 or 7*
EU email core [20] 1005 25k 42
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We demonstrate the use of link cohesion on Lancichinetti-Fortunato-Radicchi
(LFR) generated networks as well [13]. LFR networks simulate real-world net-
works with variable community sizes and degrees. To generate LFR networks,
users can specify the number of nodes N , the average degree 〈k〉, the maximum
degree kmax, a degree distribution scaling parameter t1, a community size dis-
tribution scaling parameter t2, and the mixing parameter µ in order to perform
controlled evaluations of algorithms. The mixing parameter µ describes the av-
erage fraction of out-group connections and will be varied to study performance
under several mixing conditions. We will also examine how performance scales
with increasing graph size by varying N .

5.2 Edge Pruning Study

To demonstrate the use of edge removals, we first consider how our algorithm
performs when using the maximum density threshold to prune both real and
generated networks before applying a clustering algorithm. In these examples,
we employ our maximal-community truss-finding algorithm for clustering.

To evaluate the performance of edge pruning on real-world and LFR net-
works, two metrics will be used: number of detected communities (DC) and
F-score. We will also consider processing time for analysis of the LFR networks.

Table 3: Results of maximal-community truss-
finding with various pruning algorithms on
real-world networks

Dataset Pruning Algorithm DC F-score

Karate Club
Unpruned 2 0.52

Sparsify [22] 1 0.48
MDCore 0 –

Students
Unpruned 7 0.42
Sparsify 10 0.17
MDCore 13 0.24

EU email
Unpruned 1 0.19
Sparsify 17 0.28
MDCore 17 0.54

Results on the three real
data sets are provided in Ta-
ble 3. On the smaller graphs,
the MDCore algorithm has
the lowest F-score, indicating
poorer performance; however,
on the more highly connected
EU dataset, MDCore has the
highest F-score, showing better
performance.

While the F-score could not
be calculated when MDCore
was applied to the Karate Club
dataset, the graph divides most
cleanly with MDCore, as shown
in Figure 3, with colors rep-
resenting ground truth commu-
nity membership. On the EU
email dataset, as shown in Figure 4, we observe that link removals support the
identification of communities which could not be readily discerned by maximal-
community truss-finding on the original dataset; here different colors are used to
show the detected community membership. This analysis of real world datasets
shows that MDCore may provide an advantage when applied to highly connected
datasets, which we will further examine using generated LFR networks.

The same algorithms are applied to randomly generated LFR networks with
1000 nodes, as shown in Figures 5(a)–(c). For this analysis, performance metrics
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(a) (b) (c)

Fig. 3: The Karate dataset with various edge removals techniques applied: (a)
original edge set, (b) Sparsify edge set, and (c) MDCore edge set

(a) (b) (c)

Fig. 4: Clusters identified through maximal-community truss-finding on the EU
email dataset using (a) original edge set, (b) Sparsify edge set, and (c) MDCore
edge set

are F-score and algorithm time. For F-score, we observe that the performance of
maximal-community truss-finding with the MDCore algorithm using link cohe-
sion to identify removals outperforms both maximal-community truss-finding on
the original graph and on the sparsified graph in nearly all cases. This is partic-
ularly true for graphs with higher average degrees, in this case 30, as shown in
Figure 5(c). This is consistent with our working theory that link cohesion is most
interesting and of greatest potential use for highly connected graphs with high
average degrees. The Sparsify algorithm appears faster, although the MDCore
algorithm is comparable relative to the time required to perform truss-finding
on the original graph. Note that the Sparsify algorithm was written in C code
whereas the original and MDCore were implemented in Java, so timing results
are relative.

We further explore the impact of increasing the number of nodes to assess
how algorithm performance scales. Using aggregate results across five randomly
generated LFR networks, the F-score and timing performance results are shown
in Figure 5(d) with corresponding tabulated results for the averaged number of
communities detected in Table 4. We observe that the MDCore algorithm has
a consistently higher F-score for this parameter set. Similar to the EU network
analysis, the pruning of edges through density optimization leads to more com-
munities and yields a higher F-score. On this parameter set, we also observe
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Fig. 5: F-score and timing performance of maximal-community truss-finding al-
gorithm on the original (blue triangles), Sparsify (red squares), and MDCore
(green circles) networks for LFR networks generated with scaling parameters t1
of 2.0 and t2 of 1.5 with increasing average degree k and maximum degree kmax

over a span of mixing parameters µ. In (a)–(c), N=1000. In (d), µ=0.6.

that the Sparsify algorithm retains roughly 21% of edges whereas the MDCore
algorithm retains only about 5% of edges after removals are performed.

Table 4: Community detection scaling study for truss-finding applied to ran-
domly generated LFR networks average degree k of 30, maximum degree kmax

of N/3, scaling parameters t1 of 2.0 and t2 of 1.5, and mixing parameter µ of
0.6. The corresponding F-score performance results are provided in Figure 5(d).

Ground Average DC for
N Truth Original Sparsify MDCore

1000 19.8 1.2 13.2 13.2
2500 35.8 1 22.2 26.4
4000 53.2 1 25.4 34.4
5500 50.6 1 22.8 32.6
7000 87.4 1 34.8 42
8500 65.4 1.2 29 34.6
10000 80.2 1 38 43.4
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5.3 Edge Weights Study: Correlations with Edge Betweenness

To further demonstrate the use of link cohesion, this section considers how link
cohesion as edge weights relate to edge betweenness.

Edge betweenness is computationally expensive to compute. We consider the
correlation coefficient between link cohesion and edge betweenness for a sweep
of parameters on LFR graphs. Our sensitivity analysis of correlation is shown
in Figure 6. We observe that link cohesion and edge betweenness are positively
correlated, with no significant trends or differences in correlation among the
full factorial of parameter sets considered. Hence, in cases where only a relative
ranking of edges is needed, link cohesion may be useful as a surrogate score for
edge betweenness.
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Fig. 6: Sensitivity analysis of correlation between edge betweenness and link co-
hesion using LFR networks with 1000 nodes and all combinations of µ ∈ {0.3,
0.4, 0.5, 0.6, 0.7, 0.8}, k ∈ {10, 20, 30}, t1 ∈ {2, 2.5, 3}, and t2 ∈ {1, 1.5, 2}.

6 Conclusion

We have developed a new link cohesion metric as well as a new graph density-
based pruning criteria that can be used to simplify highly connected graphs. This
method can be leveraged to improve accuracy and speed of community finding
as well as other algorithms. Similarly, the density calculation is generalizable and
density-based pruning can be performed using metrics other than link cohesion.
The approach has been demonstrated using real as well as synthetic data sets
with promising results. Potential follow-on research would be to further study
the relative contributions of 1-, 2-, and 3-hop link strengths to link cohesion as
well as to explore other applications for density and edge pruning.
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