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Abstract. Finding a set of nodes in a network, whose removal frag-
ments the network below some target size at minimal cost is called net-
work dismantling problem and it belongs to the NP-hard computational
class. In this paper, we explore the (generalized) network dismantling
problem by exploring the spectral approximation with the variant of the
power-iteration method. In particular, we explore the network disman-
tling solution landscape by creating the ensemble of possible solutions
from different initial conditions and a different number of iterations of
the spectral approximation.
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1 Introduction

The process of network (graph) fragmentation by removing nodes or edges has a
long history [1,2,3,4,5,6] due to its practical relevance for maintaining the robust-
ness of real-world systems [7,8,9,10,11], containing contagion processes [12,13,14]
or identification of node importance [15]. In case of vertex or edge separators, we
want to find a small separator S whose removal results in the partition to two
roughly equal size [16] sets. Finding the minimum vertex or edge separator for
general graphs is an NP-hard problem [4], and it was approximated by different
methods of linear programming [17], semidefinite programming [18,19,20], and
spectral partitioning [1,3,5].

In this paper, we will study the network dismantling problem [21,22,23,24,25].
A set S is called a C-dismantling set if the largest/giant connected compo-
nent (GCC) of a network contains at most C nodes after removing the nodes
in set S [21,22]. Finding a minimum C-dismantling set is called network dis-
mantling problem [26]. Similarly, for a given network G(V,E) with nodal costs
W = (w1, . . . , w|V |), the generalized network dismantling [27] aims to find a set
of nodes S(G,W,C) ⊆ V with the minimum dismantling cost, which will result
in a fragmentation of the network into components of size at most C. The net-
work dismantling problem belongs to the NP-hard class [26] and can not have a
fully polynomial-time approximation scheme (FPTAS) [27] because of the the-
orem about the hardness approximating minimum vertex cover [28]. This has
motivated us to explore the ensemble of the dismantling solutions, instead of
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focusing on the (over)optimization within the vicinity of one potential point in
the optimization function. Furthermore, our approach is also motivated by the
studies of analyzing energy landscapes of highly non-linear optimization (loss)
functions in machine learning [29] and modularity maximization in network sci-
ence [30,31]. In this paper, the exploration of dismantling landscape will be done
by different initial conditions in the spectral partitioning method of generalized
network dismantling method [27].

2 Network dismantling approaches

To solve the network dismantling problems, many efforts have been devoted
recently. We will briefly introduce several representative algorithms we compared
in this paper below.

Mugisha and Zhou [32] related the network dismantling problem to the feed-
back vertex set problem and applied the belief propagation-guided decimation
(BPD) algorithm [33] to solve it. BPD algorithm is a loop-focused global algo-
rithm which removes the nodes with the highest probability to break most loops
in the network.

Braunsteina et al. [26] introduced a very efficient algorithm, Min-Sum,
which consisted of three stages: (1) Using Min-Sum message passing to break
all the loops in the network, then only trees are left. (2) Breaking all the trees
whose size are bigger than the target dismantling size (threshold). (3) Greedily
reinsert [34] the removed nodes that had been removed from the network in the
previous two stages.

More recently, Ren et al. [27] studied the generalized network dismantling
problem, which aims at finding a set of nodes with minimal dismantling cost.
The dismantling cost can be any arbitrary non-negative real values. To solve
this expanded problem, they proposed the GND algorithm which is based on
the iterative node-weighted spectral approximation and a fine-tuning weighted
vertex cover method [35]. Please find more details in Fig. 1 and Section 3.

Fan et al. [36] reformulated the network dismantling problem as a Markov de-
cision process and employed deep reinforcement learning to train the GraphDQN
agent to efficiently solve the problem. To the best of our knowledge, this is the
first practice to solve the (generalized) network dismantling problem by using
deep reinforcement learning approach.

In addition to the algorithms introduced above, there are also many other
commonly used algorithms, such as equal graph partitioning (EGP) [37], Col-
lective Influence (CI) [34], CoreHD [38], and so on [39]. Detailed comparisons of
these algorithms can be found in ref. [27,36].

3 Ensemble-GND algorithm

More iterations or more random tries? The detailed procedure of the
standard GND algorithm was elaborated in the paper [27]. The standard GND
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Reinsertion

Fig. 1. A brief explanation of the procedure of the standard GND algorithm, see more
details in ref. [27]. When the size of the gaint connected components (GCC) is smaller
than the target size, the algorithm will stop to remove more nodes and start to reinsert
the removed nodes. This figure comes from ref. [27].

algorithm uses a variant of the power-iteration method to calculate the eigen-
vector of the second smallest eigenvalue of the weighted Laplacian matrix of the
network. The spectral approximation uses the deterministic initialization with
the pseudorandom Mersenne Twister generator [40] with default seed. The au-
thors showed that in every bisection, it usually takes P = O(log(n)∗

√
(log(n)))

iterations to get an effective eigenvector so that it can get a good partition. In
particular, they have used P = 30 ∗ log(n) ∗

√
(log(n)) iterations.

The following question arises: Is it possible to obtain better results by al-
lowing more iterations in the power method? Here we test the results when the
number of iterations is D ∗ P (other conditions and parameters keep the same).
The result on Petster-hamster network dataset [41] is shown below in Fig. 2.
The blue curves in this figure are the standard/original GND(R) algorithms
published in paper [27]. The green curves are the results of the tested procedure
with D = 1000 times more iteration. This result suggests that more iterations
in the power method doesn’t necessary produce better dismantling result in the
GND algorithm.

It is not surprising that being more accurate in approximating eigenvec-
tors does not lead to better dismantling solution. After all, the problem is
NP-hard, and the spectral formulation is just the integer relaxation [5] with-
out strict bounds on the optimality. To contrast, we also tested another ap-
proach. As we know, every time before calculating the eigenvector in every bi-
section, the GND algorithm need to produce an initial vector v. Then after
P = 30 ∗ log(n) ∗

√
(log(n)) iterations the power method will get the approx-

imation of the eigenvector. According to this approximation, all the nodes in
the GCC of the network will be partition into two parts, M and M̄ . Then the
weighted vertex cover method will be applied and GND can get the set of nodes
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Fig. 2. Comparison of the standard GND(R) algorithms with its variants. The blue
curves are the standard GND and GNDR algorithms published in ref. [27]. The green
curves are the standard GND(R) algorithms with D = 1000 times more iterations in
the power method when computing the eigenvector in every bisection.

that should be removed in this bisection. As we can see, the result of the bisec-
tion is based on the the initial vector v which is always deterministic, due to the
default seed of the pseudorandom number generator. Default seed is used for the
reproducibility purposes.

Alternative approach of using single initialization with D ∗P iterations is to
use K different initialization with P iterations, which we call ensemble approach.
In order to have the same run-time complexity, we will fix K = D. In the en-
semble approach, we will produce K different dismantling solutions S1,S2,...SK ,
and take the one with the with the minimum cost

S∗ = min {S1, S2, ..., SK}.

The statistical behavior of the minimum cost is given by the extreme value dis-
tribution, however, in this paper we only use deterministic approach. Different
initializations are produced with the pseudorandom number generator with de-
fault seed, which results with deterministic method. This approach has the same
computational complexity and similar running time with the method we tried
above (green curves). The results of this approach are the red curves shown in
Fig. 2. We can see that this variant GND and its GNDR algorithm (red curves)
have much better performances than the standard GND and GNDR algorithms.
In Fig. 3, we show the variability of the ensemble approach that was explored
with K = 10 different initializations.
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Fig. 3. Variability of the ensemble approach of GND. (A)-(C) show numerical
results for 10 different initializations: (A) with P iterations for each initialization, (B)
with 200 ∗ P iterations for each initialization, (C) with 500 ∗ P iterations for each

initialization, where P = 30 ∗ log(n) ∗
√

log(n). When number of iterations D ∗ P
exceeds D = 500, we no longer see the variability from different initializations. (D)
We measure the difference in the dismantling performance GCC500∗P (c) − GCCP (c),
where GCCx(c) denotes the GND algorithm with x spectral approximation iterations
for cost c. The graphic shows the histogram of differences in GCC over all possible
costs for different seeds. We observe that the majority of differences is positive, which
implies having a smaller GCC for the same cost for setting with P iterations.

Fine-tuning of the initial partition in every bisection of the GND
algorithm. In the standard GND algorithm, after getting the eigenvector cor-
responding to the second smallest eigenvalue of the weighted Laplacian matrix,
all the nodes will be partition into two groups, M and M̄ , according to their
values in the eigenvector. More specifically, the nodes with a value smaller than
0 will be put in group M , else group M̄ . After this, the links between the two
groups should be removed to partition the network into two disconnected parts
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(see Fig. 1A(4) and ref. [27]). Then the weighted vertex cover method will be
applied to fine-tuning the dismantling set.

Fig. 4. An example of partitioning the nodes in Petster-hamster network [41] into two
groups according to their values in the eigenvector. The green nodes have values smaller
than 0 (group M) while the red nodes have values equal to or bigger than 0 (group
M̄).

However, the initial partition of the two groups exactly according to nodes’
value in its eigenvector is not always a perfect choice. We exemplify this fact
in Fig. 4, which shows an instance of partitioning the nodes in Petster-hamster
network into two groups according to their values in its eigenvector. All the
green nodes have values smaller than 0 (group M) while all the red nodes have
values equal to or bigger than 0 (group M̄). Thus the edges between the two
groups should be removed to make the group disconnected. Then the vertex
cover method will be employed to find the fine-tuning dismantling set of nodes
based on this step. Please note that there are N = 2, 000 nodes in the Petster-
hamster network and the target size of the dismantling is C = 1% ∗N = 20. In
this example, removing nodes {919, 1274, 1049, 1048, 1051} does not reduce the
size of GCC below the target but is increasing the dismantling cost. To improve
the performance of the standard GND algorithm, the partition of the nodes
should be adjusted in the above examples. Thus we will adjust the ascription
(i.e., M or M̄) of a node if all of its neighbors are belonging to another group.
For example, the nodes {919, 1049, 1048, 1051} will be adjusted to red while the
node {1274} will become green after adjustment and all these nodes do not need
to be removed. The spectral fine-tuning can be formalized as the following
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rule. For an arbitrary node v belonging to group M with cardinality |M | > 1, if
all its neighbors belong to the opposite group M̄ , we change v’s group label to
the M̄ . Intuitively, this rule filters the noise from numerical approximation of
spectral partitioning.

The Ensemble-GND and Ensemble-GNDR algorithm. We propose a
variant of the standard GND(R) algorithm called Ensemble-GND and Ensemble-
GNDR which consider the upper two issues in this section, that is, based on the
standard GND algorithm [27], the Ensemble-GND(R) algorithm will (1) adjust
the partition of the nodes in group M and M̄ according to their surrounding
connectivity for specific target size (see details from the previous paragraphs of
this section), and (2) select the result with the best performance in the ensemble
with D (D = 1000 in this paper) results produced with D different initializations
(instead of one initialization with the default seed, see details from the previous
parts of this section).

Table 1. Properties of the networks we used in this paper.

Crime Petster-hamster RoadEU Political-blogs Crime2 HI-II-14 DBLP

Nodes 754 2000 1177 1222 829 4165 12495
Links 2127 16714 1305 16714 1473 13087 49563

In this paper we use seven popular real world network datasets [41,38,36] to
compare the performance of the existing algorithms and the proposed Ensemble-
GND and Ensemble-GNDR algorithms. The properties of the networks are listed
in Table 1. For all the dismantling tasks, we set the dismantling target size as
the 1% of the original network size, i.e., when the GCC of the remaining network
is smaller than the target size, the algorithm will stop to remove more nodes.
In addition, for the unweighted cost case, the dismantling cost of any arbitrary
nodes is the same. For the weighted cost case, the removal cost of any arbitrary
nodes is equal to its remaining degree in the network. The running time of the
one initialization of the GND algorithm are summarized in Table 2.

Table 2. The running time for one round of Ensemble-GND algorithm.

Running time(s) Crime Petster-hamster RoadEU Political-blogs Crime2 HI-II-14 DBLP

Unweighted 0.147 1.200 0.193 1.184 0.146 1.047 23.551
Weighted case 0.407 3.798 0.374 4.151 0.426 4.730 53.399

The results of the Ensemble-GND(R) algorithm are listed in Table 3 and
Table 4. In Table 3, we compared our Ensemble-GND(R) algorithm with the
state-of-the-art algorithms, including BPD, Min-Sum, and GND(R) algorithms,
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for weighted dismantling cost case and uniform cost (unweighted) case, respec-
tively. We can clearly see that for all the weighted case and almost all the un-
weighted case (except the Political-blogs network), the Ensemble-GNDR can
obtain the best performance.

Table 3. Comparison of the standard GND(R) and Ensemble-GND(R) algorithm by
the dismantling cost. The better results are highlighted with bold text.

Unweighted case BPD Min-Sum GND Ensemble-GND GNDR Ensemble-GNDR

Crime Network 101 120 110 103 103 99
Petster Network 474 485 601 510 467 441
RoadEU Network 151 160 193 159 171 144
Political-blogs 375 380 494 435 404 386

Weighted case BPD Min-Sum GND Ensemble-GND GNDR Ensemble-GNDR

Crime Network 0.594 0.644 0.642 0.624 0.584 0.572
Petster Network 0.829 0.837 0.914 0.873 0.810 0.792
RoadEU Network 0.463 0.491 0.523 0.470 0.464 0.417
Political-blogs 0.978 0.979 0.995 0.993 0.984 0.977

Further more, we also compared our algorithm with the deep reinforcement
learning approach GraphDQN. The code of the GraphDQN method was not
available at the time of writing of this paper. Therefore, we have made compar-
isons only on part of the networks, for which we had GraphDQN dismantling
solutions (provided by the authors of study [36]). Based on all the five results
in Table 4, we can conclude that the proposed Ensemble-GNDR algorithm has
better performance than the deep reinforcement learning approach in both un-
weighted and weighted cost cases.

Table 4. Comparison of the Ensemble-GND(R) and the deep reinforcement learning-
based algorithm GraphDQN. The dismantling results of the GraphDQN were obtained
from the authors of the paper [36] (The code of the GraphDQN algorithm was not
available at time we were writing this paper, but only the solutions on several datasets
that we have used). The better results are highlighted with bold text.

Unweighted case GraphDQN Ensemble-GND Ensemble-GNDR

Crime2 Network 185 183 161
HI-II-14 Network 553 483 412
DBLP Network 2496 2499 2064

Weighted case GraphDQN Ensemble-GND Ensemble-GNDR

Crime2 Network 0.989 0.802 0.718
HI-II-14 Network 0.977 0.942 0.831
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4 Conclusion

In this paper, we briefly reviewed the recent progress in the study of the net-
work dismantling problem and explored the solution landscape of (generalized)
network dismantling problem by proposing the Ensemble-GND and Ensemble-
GNDR algorithm. We compared the proposed Ensemble-GND(R) algorithm
with the state-of-the-art algorithms, including BPD, Min-Sum, and the standard
GND(R) algorithms, as well as a recently proposed deep reinforcement learning-
based algorithm GraphDQN. The results show that our Ensemble-GND(R) has
a better performance both in the weighted case and the unweighted case of the
network dismantling problem. Which opens new research directions of exploring
the ensemble of dismantling solutions in the objective landscape by different
methods of perturbations, initializations, and other modern machine learning
optimizations techniques for highly non-linear and non-convex objective func-
tions.
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