
Inductive representation learning on feature rich
complex networks for churn prediction in telco

Maŕıa Óskarsdóttir1, Sander Cornette2, Floris Deseure2, and Bart Baesens2,3

1 Dept. of Computer Science, Reykjav́ık University,
Menntavegi 1, 101, Reykjav́ık, Iceland,

mariaoskars@ru.is,
2 Dept. of Decision Sciences and Information Management, KU Leuven,

Naamsestraat 69, 3000 Leuven, Belgium,
3 Dept. of Decision Analytics and Risk, University of Southampton, United Kingdom

Abstract. In the mobile telecommunication industry, call networks have
been used with great success to predict customer churn. These social
networks are complex and rich in features, because the telecommunica-
tions operators have a lot of information about their customers. In this
paper we leverage a novel framework called GraphSAGE for inductive
representation learning on networks with the goal of predicting customer
churn. The technique has an advantage over previously proposed repre-
sentation learning techniques because it leverages node features in the
learning process. It also features a supervised learning process, which
can be used to predict churn directly, as well as an unsupervised variant
which produces an embedding. We study the impact that including node
features has when predicting churn as well as the benefit of a complete
learning process, compared to an embedding with supervised machine
learning techniques. Finally, compare the performance of GraphSAGE
to that of standard local models.

Keywords: Call network, churn prediction, representation learning, su-
pervised learning

1 Introduction

The mobile telecommunication (telco) industry is a competitive market as cell
phone ownership has reached saturation in the developed world and customers
can easily change telco providers. Because attracting new customers is more
expensive than retaining current ones, telcos focus their customer relationship
management on keeping their existing customers happy and making offers to
customers whom they think are at a risk of leaving —or churning— in order to
persuade them to stay. These potential churners are usually identified by means
of churn prediction models which are typically binary classifiers based on input
features provided by the telco . The goal of the classification is to identify which
customers are most likely to churn.



2 Maŕıa Óskarsdóttir et al.

In recent years, social influence has been shown to affect churn, in the sense
that if someone churns they are likely to persuade others to churn as well [5].
There are various ways to predict churn with social networks. One can extract
network features from the social network and use them in a traditional binary
classifier, such as logistic regression. These features describe the neighborhood of
a customer and their position in the network using various numerical attributes.
The features are added to the customer dataset and can positively influence the
performance of a churn prediction model. Relational learners, on the other hand,
simulate the spread of churn influence through the network and thus learn churn
probabilities for customers directly from the network [5],[9]. Research shows that
combining relational learners with network and local features gives the optimal
performance [7]. Because the type of churners detected by non-relational and
relational classifiers are different, more churners can be detected by combin-
ing both classifiers in a single combined model. Although these approaches are
capable of incorporating social network effects, yielding higher predictive per-
formance, they do require sophisticated feature engineering in order to capture
the desired effects. However, this process can be time consuming, unfeasible on
large networks and the resulting features not capable of encapsulating the social
networks effects completely.

An alternative approach, that overcomes this downside, is representation
learning, where the idea is to encode the nodes’ characteristics and their po-
sition in the network in a low dimensional vector space. Instead of trying to
encode network information through feature engineering, such techniques learn
this information directly from the network. The main idea behind these state-
of-the-art methods is that similar nodes should have a similar representation.
In recent years some new scalable ways to transform data into network features
have arisen. DeepWalk, for example, applies the skip-gram approach of word2vec
to random walks on networks [8]. The idea of word2vec is to gather information
of a word by representing the it with a vector of strongly related words. More-
over, in node2vec, customizable two-step random walks allow for an intelligent
sampling of the nodes’ neighborhoods before generating the embeddings [2]. Re-
cently, node2vec was applied for customer churn prediction in telco and adapted
to the dynamic aspect of churn [6]. These methods are called shallow embedding
approaches, meaning that a big matrix is created, containing all the embedding
vectors of all the nodes [4]. The encoding function can be compared to a simple
lookup function. This approach has a couple of downsides. Firstly, no trainable
parameters are shared which can be inefficient, both statistically and compu-
tationally. Secondly, the methods do not incorporate local node features, while
these might contain valuable information. Finally, shallow embedding approaches
such as DeepWalk and node2vec are inherently transductive which mean that
they are not able to generalize over unseen nodes.

GraphSAGE, however, is a novel framework for inductive representation
learning that is capable of generating node representations based on node at-
tribute information [4]. In this paper, we apply GraphSAGE to the call networks
of telco customers with the goal of predicting churn. GraphSAGE has both an



Inductive representation learning for churn prediction 3

unsupervised and a supervised variant. The unsupervised variant learns a node
embedding that can be supplied to a downstream machine learning algoritm,
such as decision trees or k-means clustering. GraphSAGE can also be trained in
a fully supervised way, thus producing a prediction for each node. GraphSAGE
is novel in the the sense that it incorporates node features when learning the em-
bedding functions. It therefore works particularly well for feature rich networks
but it can also be applied to networks without any features. In this paper we
demonstrate that including even just a handful of features can improve the per-
formance greatly. We explore the efficiency o the two variants of GraphSAGE,
supervised and unsupervised, in this regard, as well and investigating how many
node features are needed in addition to the network structure, to obtain good
predictive performance.

The rest of this paper is organized as follows. In the next section we explain
the GraphSAGE framework. In Sect. 3 we describe the setup of our experiments
and report the results in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 GraphSAGE

Fig. 1. The GraphSAGE framework. Image source [4].

The GraphSAGE framework was developed as an inductive alternative to
DeepWalk and node2vec that is furthermore able to learn functions of node
embeddings and hence generalize across different networks and unseen nodes [4].
It simultaneously learns the topological structure of each node’s neighborhood
and the distribution of node features in the neighborhood. It trains a set of
aggregator functions that learn to collect and combine feature information from
a node’s neighborhood. These aggregator functions can then be applied to unseen
data.

The GraphSAGE framework, seen in Fig. 1, consists of two parts. Firstly,
the forward propagation or embedding generation algorithm. This algorithm
generates embeddings for nodes assuming that the different GraphSAGE model
parameters have already been learned. Secondly, the learning of the Graph-
SAGE model parameters. For the embedding generation, two sets of parameters



4 Maŕıa Óskarsdóttir et al.

are assumed to be learned. The first set of parameters are those from the K
aggregator functions that aggregate the information of a node’s neighborhood.
Theoretically, the neighborhood of a node could be all the nodes which are con-
nected with an edge to that node. However, this means that the neighborhood
of a node can be very large and could increase the computation time substan-
tially. Therefore, GraphSAGE uniformly samples a fixed amount of neighbors
for each node by using random walks through the networks. The second set of
parameters are a set of weight matrices, W k,∀k ∈ {1, . . . ,K}. These weight
matrices are used to propagate information between the different search depths,
or to put it more plainly, to propagate node information to the preceding node
in the random walk. At the start of the embedding generation algorithm, the
representation of each node is the features that are provided as input. At each
depth k in the search depth (k ∈ {1, . . . ,K}) and for each node v we aggregate
and concatenate the information from the neighborhood of that node v. At the
aggregation step, the neighborhood of each node is aggregated by an aggrega-
tion function, represented as a vector hk

N (v). However, it should be noted that
the representations of the nodes in the neighborhood of node v depend on the
representations generated in the previous search depth (k − 1) . After this ag-
gregation, the representation of the node’s neighborhood hk

N (v) and the node’s

current representation hk−1
(v) are concatenated. Using σ as a nonlinear activation

function and passed through a fully connected layer. This results in the repre-
sentations of each node hk−1

(v) which can be used in the next step of the iteration.

Lastly, at depth K the node representation hK
(v) is denoted as zv for notational

convenience. The GraphSAGE algorithm can also run without any local features
where instead it uses only structural features, such as the node’s degree.

The learning of the parameters is different for the unsupervised and super-
vised variant. For the unsupervised variant, a graph-based loss function is ap-
plied to the node representation zv. This loss function ensures that nearby nodes
have a similar representation and nodes further away are distinct. In the super-
vised variant of GraphSAGE, the unsupervised loss function is replaced with
the supervised cross-entropy loss function, although other supervised loss func-
tions could also be implemented. The difference between these loss functions is
the main difference between the unsupervised and supervised variant of Graph-
SAGE. The unsupervised loss function returns representations, which can be
used with other classifiers and are useful for multiple prediction settings. The
supervised loss function, on the other hand, only works for one specific classifica-
tion setting, namely the target that is provided for the learning. Nevertheless, for
both the unsupervised and supervised setting the parameters of the aggregators
and the weight matrices are tuned by using stochastic gradient descent.

There are three types of aggregator functions in the GraphSAGE algorithm.
The first type is the mean aggregator. Two different aggregators are included
for this type. The first aggregator takes the elementwise mean of the different
features for each node. The second aggregator is the graph convolutional net-
work or GCN aggregator. This aggregator is closely related to the first one, but
is a convolutional aggregator. This is also the only aggregator that does not



Inductive representation learning for churn prediction 5

have concatenation step despite the fact that this step leads to significant per-
formance gains The second type of aggregator is the long short-term memory
or LSTM aggregator. This aggregator is based on an LSTM architecture. Com-
pared to the mean aggregator this aggregator is more complex and has more
expressive power. The third type of aggregators are the pooling aggregators. For
this aggregator the representation vectors of the neighbors of a node are inde-
pendently passed through a fully-connected neural network which transforms
these representations, after which an elementwise pooling operation is done for
the whole neighborhood in order to aggregate the information. The two different
pooling operators included in GraphSAGE are max- and mean-pooling. Where
max-pooling takes the elementwise maximum, the mean-pooling operation takes
the elementwise mean. Ideally, all these aggregators should be symmetric. The
ordering of the neighbors of a node should not matter because these are by
default unordered. Aggregators should also be trainable and have high represen-
tation power. However, only the pooling aggregators are both symmetric and
trainable, the mean aggregators are obviously not trainable because they take
the elementwise mean and the LSTM aggregator is not symmetric because it
sequentially processes its inputs.

The advantage of using GraphSAGE is that it solves problems that arise
when working with large networks and that it is an inductive approach. Because
the number of parameters is fixed, the process is scalable. The model is also
independent of the network structure. Once the parameters are learned, the
model can be applied on different dynamic or even unseen networks by using the
learned aggregator functions.

3 Experimental Setup

3.1 Preprocessing the data

For our study we used call detail records (CDR) of over a million customers
with a prepaid contract provided by a Belgian telco. The data spans a total
of six months and describes the calls made and received by the customers. In
addition we have local customer features that provide more information about
the customers present in the CDR data. The local features are aggregated at a
monthly level.

The first step in applying GraphSAGE on a social network, is constructing
the networks themselves. A social network is created from nodes and edges. In
our case each node represents a customer of the telco and each edge represents
a phone call between two customers. We consider undirected networks, meaning
that the relationship between two customers goes both ways instead of only from
the calling customer to the receiving customer. In line with the literature, we
disregard calls that last less than four seconds. For our experiments, we created
a separate network for each month from the CDR data. For each customer we
also include the local features and the label for each month. A description of
each network can be found in Table 1.



6 Maŕıa Óskarsdóttir et al.

Table 1. Network description

Month Number of nodes Number of edges Churn rate

M1 772 895 4 590 812 17.44%
M2 771 690 4 501 831 20.62%
M3 738 639 4 140 595 15.73%
M4 736 309 4 015 522 16.69%

We use a binary label that indicates whether or not the customer churns
in the following month. For customers with prepaid contracts, churn is often
passive, i.e., the customers do not cancel their subscription but instead simply
stop using their numbers, and as a result the date of churn is not known exactly.
We adopt a churn definition that is common in the literature where a customer is
labeled as a churner if they do not make or receive a phone call for 30 consecutive
days, and then churn date is then the first day in which they are inactive [7].
This means, that to generate the churn label for the first month, we need the
data from the next two months. In order for a customer to be labelled as a
churner, 30 days of inactivity are required. Since the churn date is in M2, we
need to check in M3 whether the 30-day inactivity period is met. As a result, we
are able to generate four networks from six months of data. The first two will
be used as training data, the third as validation set and the fourth as test set.

We create various sets of feature to test the effect node features have on the
predictive performance. For both the unsupervised and the supervised variant of
GraphSAGE, we consider 3, 5, 7, 10, 15, 30 ,50 ,70 and 90 features. The feature
selection method used is the recursive feature elimination or RFE [3]. It selects
features by recursively eliminating the least important feature using Logistic
Regression and eliminating that feature from the entire set of features until only
the desired amount of features is left. At the end of this process we have the
rank of each feature which can then be selected to be used in the GraphSAGE
algorithm depending on the amount of features that should be

3.2 GraphSAGE setup

In the GraphSAGE framework, there are various hyper-parameters that need to
be set. First are the number of random walks and the depth, which have default
values 50 and 5, respectively. However, to avoid excessively long runtimes we
use 25 walks with depth 2, as higher values only result in marginal performance
gains [4]. For the mini batches of the random walks we use the default setting of
sample sizes S1 = 25 and S2 = 10. Both unsupervised and supervised Graph-
SAGE use an aggregator function to concatenate the information from the local
neighborhood of each node and generate the node embeddings. As part of our
experiment we test all the aggregator function but only report the best result in
each case.

The supervised GraphSAGE learns churn probabilities directly from the net-
works using a task specific cross-entropy loss function. In contrast, the unsuper-



Inductive representation learning for churn prediction 7

vised GraphSAGE applies a graph-based loss function that ensures that nearby
nodes have a similar representation that is distinct from the representation of
nodes that are further away. The representation can then be used by super-
vised learning techniques to predict churn. We use logistic regression, random
forests and neural networks, as they provide alternative view on the trade-off
between model complexity and predictability and are widely used in the churn
prediction literature and industry [7]. We tune the hyper-parameters of these
techniques using the validation set. Instead of using a graph-based loss function,
the supervised GraphSAGE uses a cross-entropy loss function. Contrary to the
unsupervised variant, the supervised variant does not learn representations but
it immediately classifies the nodes by using this task specific

3.3 Benchmark models

To create a benchmark for the results we obtain with GraphSAGE, we build
models with local features only. More specifically, we use the same classifiers
as those used in the unsupervised version of GraphSAGE. These are logistic
regression, random forests and a neural networks. These models are built in the
same manner as we built the GraphSAGE models, whereby M1 and M2 are two
independent networks and are used as training data. The third month is used
for validation purposes and the fourth month for testing purposes. However, the
local features are loaded in directly. Instead of generating these feature vectors,
which also incorporate social network effects, with GraphSAGE. In order to be
able to make a fair comparison we tune the hyper-parameters for these models
using grid search on the validation set.

3.4 Performance measurement

We use three commonly used performance measures to evaluate the performance
of our churn prediction models [7]. The lift measure represents how much better
a model is at identifying churners than one would find in a random sample. We
choose lift at 0.5% and 5% to obtain a slightly alternative view on the perfor-
mance. The first lift measure considers only a very small fraction of the customers
who have the highest predicted probability of churn giving a more realistic view
for large customer bases. In contrast, the latter lift measure considers a larger
sample and gives a more holistic view on the performance. We also consider the
well known area under the receiver operating characteristics curve (AUC) which
represents in a single number the trade off between specificity and sensitivity of
the model.

4 Results

4.1 Comparison of feature performance

First we study the effect of including features when learning the embedding
function. Figure 2 shows the performance of the supervised GraphSAGE (yellow)



8 Maŕıa Óskarsdóttir et al.

Fig. 2. Impact of features on the performance of GraphSAGE.

as well as the unsupervised GraphSAGE together with logistic regression(blue),
random forests(orange) and neural networks(gray) as a function of number of
features. The performance is measure in AUC, lift at 5% and lift at 0.5% These
results were obtained using embeddings generated by GraphSAGE mean-based
aggregator. For these results the unseen test network was used for the first time.

Noticeably, the performance of GraphSAGE without any features is much
lower than with even a single feature. For example, the AUC of the supervised
GraphSAGE goes from 0.538 to 0.764 when adding three node features. Similarly,
the 0.5% lift of the unsupervised GraphSAGE with random forest is 1.473 with
no node features and 3.817 with three. After this initial significant jump in
performance when adding features, the performance keeps increasing slightly
when adding more features, but decreases again in some cases. This shows that
more features are not always better, but a certain number of good features help
the churn prediction significantly. Additionally, including more features increases
the computation times so it is important to find a good balance between number
of features and the associated performance gain. Based on these results, we can
estimate that including five to fifteen features is sufficient.

4.2 Comparison of model performance

Table 2. The performance of GraphSAGE models and local models.

Model Variant AUC 5% lift 0.5% lift

GraphSAGE
Unsupervised 0.614 3.857 4.644
Supervised 0.794 3.892 4.797

Local
Neural Network 0.5 3.128 3.902
Random Forest 0.709 3.796 4.407
Logistic Regression 0.653 1.582 3.843



Inductive representation learning for churn prediction 9

We also look at the performance of the two variants of GraphSAGE with
respect to each other and in comparison to local models. Table 2 shows the
performance of both GraphSAGE models and the performance of three models,
that is, neural networks, random forests and logistic regression trained with
local features. The performance is measured in AUC and lift at 5% and 0.5%.
Evidently, the supervised GraphSAGE has the highest predictive performance
according to all evaluation measures. The second best model is the unsupervised
graphSAGE when measured by the two lift measures. The best local model is
the random forest.

The fundamental difference between the local and the unsupervised Graph-
SAGE models is that the features in the first case are local, that is, specific
for each customer without taking into account the feature values of neighbors.
In contrast, the embedding that the unsupervised GraphSAGE learns, is rich
in information about the properties of neighbors, which evidently is important
in this context for homophily and social influence because of the increase in
performance.

5 Conclusion

GraphSAGE is a novel framework for inductive representation learning on net-
works that is furthermore capable of taking into account node features when
learning node embeddings. In this paper, we applied GraphSAGE to a feature
rich call network to predict customer churn in telco. It is evident from our results
that the node features add valuable information when learning node embeddings
as seen by the great leap in performance between models with and without local
features. We also saw that only a few features are needed for a high improve-
ment in performance. Furthermore, the supervised variant of GraphSAGE which
learns churn probabilities directly achieved the best performance. The unsuper-
vised variant performed better than the local models when measured in both lift
measures. This indicates that the embedding learnt by GraphSAGE possesses
more valuable information for this prediction task than the local features alone.
That is, the feature values of neighboring nodes are important. This furthermore
establishes the importance of social influence and homophily in churn prediction.
We have shown that GraphSAGE is a feasible approach for churn prediction with
call network.

In future work, we will apply the algorithm to call networks with a different
target variable, such as customer lifetime value. In that way we could leverage
the inductive nature of GraphSAGE to its full extent, and extract node embed-
dings to unseen nodes. We would also like to extend the framework for dynamic
networks.

References

1. Backiel A, Verbinnen Y, Baesens B, Claeskens G. Combining local and social net-
work classifiers to improve churn prediction. In: Proceedings of the 2015 IEEE/ACM



10 Maŕıa Óskarsdóttir et al.

international conference on Advances in Social Networks Analysis and Mining 2015,
pp. 651-658. ACM (2015).

2. Grover A, Leskovec J. node2vec: Scalable feature learning for networks. In: Proceed-
ings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining 2016 , pp. 855-864. ACM (2016).

3. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification
using support vector machines. Machine learning. 2002 Jan 1;46(1-3):389-422.

4. Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs.
In: Advances in Neural Information Processing Systems 2017, pp. 1024-1034 (2017).

5. Kim K, Jun CH, Lee J. Improved churn prediction in telecommunication industry
by analyzing a large network. Expert Systems with Applications. vol. 41, no. 15,
pp. 6575-6584 (2014).

6. Mitrovic S, Baesens B, Lemahieu W, De Weerdt J. tcc2vec: RFM-informed repre-
sentation learning on call graphs for churn prediction. Information Sciences. (2019).

7. Óskarsdóttir M, Bravo C, Verbeke W, Sarraute C, Baesens B, Vanthienen J. So-
cial network analytics for churn prediction in telco: Model building, evaluation and
network architecture. Expert Systems with Applications. vol. 85, pp. 204-20 (2017).

8. Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social representations.
In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining 2014, pp. 701-710. ACM (2014).

9. Verbeke W, Martens D, Baesens B. Social network analysis for customer churn
prediction. Applied Soft Computing. vol. 14, pp. 431-46 (2014).


