Skip to main content

Lightweight Modal Regression for Stand Alone Embedded Systems

  • Conference paper
  • First Online:
  • 1715 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11954))

Abstract

Although the CPU power of recent embedded systems has increased, their storage space is still limited. To overcome this limitation, most embedded devices are connected to a cloud server so they can outsource heavy calculations. However, some applications must handle private data, meaning internet connections are undesirable based on security concerns. Therefore, small devices that handle private data should be able to work without internet connections. This paper presents a limited modal regression model that restricts the number of internal units to a certain fixed number. Modal regression can be used for multivalued function approximation with limited sensory inputs. In this study, a kernel density estimator (KDE) with a fixed number of kernels called “limited KDE” was constructed. We will demonstrate how to implement the limited KDE and how to construct a lightweight algorithm for modal regression using a system-on-chip field-programmable gate array device.

A part of this research was supported by a Special grant of Chubu University.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that Gaussian kernel satisfies the condition for the reproduction kernel.

  2. 2.

    Remember that \(\varvec{X}\) in Eq. (2) includes the output dimension and \(\varvec{X} = [\varvec{x}, y]^T\).

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichiro Yamauchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Watanabe, T., Yamauchi, K. (2019). Lightweight Modal Regression for Stand Alone Embedded Systems. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11954. Springer, Cham. https://doi.org/10.1007/978-3-030-36711-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36711-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36710-7

  • Online ISBN: 978-3-030-36711-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics