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Abstract. Global pooling, such as max- or sum-pooling, is one of the key ingre-
dients in deep neural networks used for processing images, texts, graphs and other
types of structured data. Based on the recent DeepSets architecture proposed by
Zaheer et al. (NIPS 2017), we introduce a Set Aggregation Network (SAN) as
an alternative global pooling layer. In contrast to typical pooling operators, SAN
allows to embed a given set of features to a vector representation of arbitrary size.
We show that by adjusting the size of embedding, SAN is capable of preserving
the whole information from the input. In experiments, we demonstrate that re-
placing global pooling layer by SAN leads to the improvement of classification
accuracy. Moreover, it is less prone to overfitting and can be used as a regularizer.

Keywords: Global pooling - Structured data - Representation learning - Convo-
lutional neural networks - Set processing - Image processing.

1 Introduction

Deep neural networks are one of the most powerful machine learning tools for pro-
cessing structured data such as images, texts or graphs [11,23]. While convolutional or
recurrent neural networks allow to extract a set of meaningful features, it is not straight-
forward how to vectorize their output and pass it to the fully connected layers.

One typical approach to this problem relies on flattening the given tensor. However,
the flattened vector may contain a lot of redundant information, which in turn may lead
to overfitting. Moreover, flattening cannot be followed by a dense layer (e.g. in classi-
fication models), when the input has varied size [2, 13]. This situation often appears in
graphs and texts classification, but is also common in learning from images of different
resolutions [1,6,9].

In order to produce a fixed-length vector, a maximum or sum function may be ap-
plied to the learned data representations. This operation is commonly known as the
global pooling. In image recognition the data is frequently aggregated by computing
the average value over the channels of the feature map tensor obtained by the backbone
network. Such vector is then passed to the predictor head. This is the case in numer-
ous large scale networks such as ResNet [8], DenseNet [10] or, more recent, Amoeba-
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Net [22]. In Graph Neural Networks the representation of a given node is usually com-
puted by recursively mean-pooling the representations of its neighbours [15, 27]. De-
spite its wide applicability, the global pooling layer is not able to fully exploit the infor-
mation from the input data, because it does not contain trainable parameters. Moreover,
the global pooling cannot adjust the dimensionality of the representation, because the
size of its result is solely determined by the number of input channels.

An additional requirement often imposed on the aggregation function is the invari-
ance to the permutation of the input. This constraint arises as a consequence of set
processing, and is present, for instance, in 3D point cloud recognition [20] and graph
analysis [27]. The issue of efficiently learning a representation of permutation invariant
inputs was recently studied by Zaheer et al. [28], who proposed a unified methodol-
ogy for the processing of sets by neural networks. Their model, called DeepSets, is
based on the idea of summing the representations of the sets elements. This concept
was also further developed by [18] who define the pooling function as the average of
permutation-sensitive maps of all reorderings of the sequence of the set members. Those
permutation-sensitive functions may be modeled by recurrent networks and allow for
learning representations that utilize high order dependencies between the set points al-
ready at the aggregation time. Neural networks capable of processing sets where also
analyzed by [24], who prove that the studied permutation invariant/equivariant deep
models are universal approximators of permutation invariant/equivariant functions.

In this paper, we propose Set Aggregation Network (SAN), an alternative to the
global pooling operation, which guarantees no information loss. For this purpose, we
adapt the DeepSets architecture to embed a set of features retrieved from structured data
into a vector of fixed length. Contrary to pooling operation, the parameters of SAN are
trainable and we can adjust the size of its representation. In addition to Zaheer et al. [28],
we prove that for a sufficiently large latent space, SAN learns a unique representation of
every input set, which justifies this approach from a theoretical perspective (Theorem 1).

Our experimental results confirm that replacing global pooling by SAN leads to
the improvement of classification accuracy of convolutional neural networks used in
classification (Section 4). Moreover, SAN is less prone to overfitting, which allows to
use it as a regularizer. The experiments were carried out on a small network architecture
as well as on the large-scale ResNet model.

2 Set Aggregation Network

Suppose that we want to process structured data X = (x;); C R? by the use of a neural
network. Some practical examples of X may include a sequence of word embeddings,
image represented as a set of pixels or a graph structure. In this paper, we study one
of the typical architectures used for processing such data. It consists of two networks
combined with an intermediate pooling layer:

X = (21); 5 (Way); "X Pool{W(z;) : i} 5 RY. (1)

The first network ¥ : R*? — RX where a € N, is responsible for extracting
meaningful features of structured data. In the case of images it can be a convolutional
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Fig. 1: SAN is an intermediate network which is responsible for learning a vector representation
using a set of features extracted from of structured data.

network, while for a sequential data, such as texts, it may be a recurrent neural network.
This network transforms elements of X sequentially and produces a set (or sequence)
of K-dimensional vectors. Depending on the size of X (length of a sentence or image
resolution), the number of vectors returned by ¥ may vary. To make the response of ¥
equally-sized, a global pooling is applied, which returns a single K -dimensional vector.
A pooling layer, commonly implemented as a sum or maximum operation over the set
of K -dimensional vectors, gives a vector representation of structured object. Finally, a
network @ : RX — R maps the resulting representation to the final output.

The basic problem with the above pipeline lies in the pooling layer. Global pooling
“squashes” a set of K-dimensional vectors into a single output with K attributes. A
single K -dimensional output vector may be insufficient to preserve the whole informa-
tion contained in the input set (especially for large sets and small K'), which makes a
pooling operation the main bottleneck of the above architecture. In this paper, we would
like to address this problem. We focus on defining more suitable aggregation network,
which will be able to learn a sufficiently rich latent representation of structured data.

To replace a pooling layer, we extend DeepSets architecture introduced in [28] to
the case of structured data. In consequence, we define an aggregation network, which
embeds a set of extracted features to a fixed-length representation. First, we recall a
basic idea behind pioneering work of Zaheer et al. and explain its use as an alternative
to the classical pooling layer. In the next section, we prove that this framework is able
to preserve the whole information contained in the set structure.

Let f : RP D X — y € Y be a function, which maps sets X = (z;); to some
target values y € Y. Since f deals with sets, then the response of f should be invariant
to the ordering of set elements. Zaheer et al. [28] showed that to realize this requirement
f has to be decomposed in the form:

F(X) = p(Q_ (i), @)

i
for suitable transformations p, 7. In the case of neural networks, f can be implemented
by constructing two networks 7 and p. The first network processes elements of a given
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Fig.2: The idea of our approach is to aggregate information from projections of a set onto sev-
eral one-dimensional subspaces (left). Next non-linear activation function is applied to every set
element and the results are aggregated (right).

set X sequentially. Next, the response of 7 is summarized over the whole elements of
X and a single vector is returned. Finally, a network p maps the resulting representation
to the final output.

One can directly adapt the above architecture to the pipeline considered in this pa-
per. Namely, instead of taking the maximum or sum pooling over the set of extracted
features, we define a separate neural network 7 to compute the summarized activation
for all set elements (the role of p is played by a network @ in our framework). We refer
to this network as set aggregation network (SAN), see Figure 1. If 7 contains M out-
put neurons, then we get M -dimensional vector representation of the structured data.
In contrast to pooling operation, which always returns K-dimensional vector (K is a
dimension of input feature vectors), the size of representation produced by SAN may be
adjusted to a given problem. Moreover, their parameters are trainable and thus we allow
for learning the most convenient representation of structured data. Although SAN is de-
signed to process permutation invariant structures (sets), one may add special attributes
to indicate the ordering of extracted features. One way is to use the normalization of the
elements index or its trigonometric transformation [25, Section 3.5].

The following remark shows that max-pooling is a special case of SAN.

Remark 1. Observe that max-pooling is a special case of SAN. Clearly, for non-negative
scalar data X = (X;) C R and function 7, (x) = z”, we have:

7_1(2 7(x;)) — max(z;) , as p — 0o. (3)

%

To obtain a maximum, we use 7 as the activity function in aggregative neuron, which is
followed by a layer with its inverse. By extending this scheme, we can get a maximum
value for every coordinate. Additionally, to deal with negative numbers, we first take
the exponent followed by logarithm after the aggregation.

3 Theoretical Analysis

Although Zaheer et al. theoretically derived the form of f as the only permutation in-
variant transformation operating on sets, there is no guarantees that this network is
capable of learning a unique representation for every set. In this section we address this
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question and show that if 7 is a universal approximator, then ) 5\ 7(z) gives a unique
embedding of every set X in a vector space.

Before a formal proof, we first give an illustrative argument for this fact. A typical
approach used in computer tomography applies Radon transform [7,21] to reconstruct a
function (in practice the 2D or 3D image) from the knowledge of its integration over all
one-dimensional lines. A similar statement is given by the Cramer-Wold Theorem [4],
which says that for every two distinct measures one can find their one-dimensional
projection which discriminates them. This implies that without loss of information we
can process the set X C R¥ through its all one-dimensional projections v X C R,
where v € RE.

In consequence, we reduce the question of representing a multidimensional set to
the characterization of one-dimensional sets. Next, one can easily see that the one-
dimensional set S C R can be retrieved from the knowledge of aggregated ReLU on its
translations: b — . ReLU(s; + b), see Figure 2. Summarizing the above reasoning,
we obtain that the full knowledge of a set X C R¥ is given by the scalar function

R xRS (v,b) = Y ReLU(v"z; + ). 4)

Now, given M vectors v; € RX and biases b; € R, we obtain the fixed-size representa-
tion of the set X C R¥ as a point in RM given by

) ReLU(v{ @i +b1),..., Y ReLU(viz; + byr)] € RM. (5)

The above transformation directly coincides with a single layer SAN parametrized
by ReLU function. Thus for a sufficiently large number of neurons, SAN allows to
uniquely identify every input set.

Now, we show formally that the above reasoning can be extended to a wide range
of activity functions. For this purpose, we will use the UAP (universal approximation
property). We say that a family of neurons A has UAP if for every compact set K C
RP” and a continuous function f : K — R the function f can be arbitrarily close
approximated with respect to supremum norm by span(A) (linear combinations of
elements of ). We show that if a given family of neurons satisfies UAP, then the
corresponding SAN allows to distinguish any two sets:

Theorem 1. Let X, Y be two sets in RP. Let N be a family of functions having UAP.
If
7(X)=7(Y), foreveryt € N, (6)

then X =Y.

Proof. Let 1 and v be two measures representing sets X and Y, respectively, i.e. u =
1x and v = 1y. We show that if 7(X) = 7(Y") then p and v are equal.

Let R > 1 be such that X UY C B(0, R — 1), where B(a,r) denotes the closed
ball centered at a and with radius r. To prove that measures p, v are equal it is sufficient
to prove that they coincide on each ball B(a,r) with arbitrary a € B(0, R — 1) and
radius r < 1.
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Let ¢,, be defined by
¢n(x) =1—n-d(z,B(a,r)) forx € R, @)

where d(x,U) denotes the distance of point = from the set U. Observe that ¢, is a
continuous function which is one on B(a, ) an and zero on R” \ B(a,r + 1/n), and
therefore ¢,, is a uniformly bounded sequence of functions which converges pointwise
to the characteristic funtion 15,y of the set B(a, ).

By the UAP property we choose v, € span(N) such that

supp |¢n($) - ¢n(l’)| < l/n (8)
z€B(0,R)

Thus 1, restricted to B(0, R) is also a uniformly bounded sequence of functions which
converges pointwise to 1(, ). Since 1, € N, by (6) we get

Z w(@)Pn(z) = Z v(Y)Yn(y). )
reX yey
Now by the Lebesgue dominated convergence theorem we trivially get

S jlw)ibn () = /B o UnE)B) = (B,

zeX

S w(y)un(y) = /B oy @) (B,

yey

(10)

which completes proof.

4 Experiments

We apply SAN to typical architectures used for processing images. Our primary goal is
to compare SAN with global pooling in various settings. First, we focus on classifying
images of the same sizes using a small convolutional neural network. Next, we extend
this experiment to the case of images with varied resolutions. Finally, we consider a
large scale ResNet architecture and show that replacing a global pooling layer by SAN
leads to the improvement of classification performance. Our implementation is available
at github?.

4.1 Small Classification Network

We considered a classification task on CIFAR-10 [16], which consists of 60 000 color

images of the size 32x32 and the Fashion-MNIST, composed of 70 000 gray-scale pic-

tures of size 28x28 [26]. We used small neural networks with 3 convolutional layers

with ReLU activity function and a max-pooling between them, see Table 1 for details.
To aggregate resulted tensor we considered the following variants:

3 https://github.com/gmum/set-aggregation.
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Flatten Max/Avg-pooling SAN
Type Kernel Outputs Type Kernel Outputs Type Kernel Outputs
Conv2d  3x3 32 Conv 2d 3x3 32 Conv2d  3x3 32
Max pooling 2x2 Max pooling 2x2 Max pooling 2x2
Conv 2d 3x3 64 Conv 2d 3x3 64 Conv 2d 3x3 64
Max pooling 2x2 Max pooling 2x2 Max pooling 2x2
Conv 2d 3x3 64 Conv 2d 3x3 64 Conv 2d 3x3 64
Flatten Max/Avg pooling NxN SAN D
Dense 128 Dense D Dense 10
Dense 10 Dense 10

Table 1: Architecture summary of a small neural network (N is the size of the input to the layer,
and D is the number of output neurons from the SAN layer).

— flatten: We flattened a tensor to preserve the whole information from the previous
network.

— conv-1x1: We applied 1x1 convolutions with one channel and flattened the output.
This reduces the number of parameters in subsequent dense layer compared to the
classical flatten approach.

— max-pooling: We applied max pooling along spatial dimensions (width and height
of a tensor) to reduce the dimensionality. In consequence, we obtained a vector of
the size equal the depth of the tensor.

— avg-pooling: We considered a similar procedure as above, but instead of max pool-
ing we used average pooling.

— SAN: We used a single layer SAN as an alternative aggregation. The resulting
tensor was treated as a set of vectors with sizes equal to the depth of the tensor.
Moreover, the (normalized) indices were added to every vector to preserve the in-
formation about local structure.

SAN allows to select the number of output neurons. For the experiment, we con-
sidered the following numbers of output neurons: {128,256, 512, 1024, 2048, 4096}.
To use the same number of parameters for global pooling and convlx1 approaches we
followed them by a dense network with identical number of neurons to SAN. In the
case of flatten, we obtained a comparable number of parameters to the other networks
trained on the size 4 096. In each case we used additional two dense layers, except for
the SAN model, where only one dense layer was used. All models were trained using
adam optimizer with a learning rate 10~3 and batch size 256. We used 5 000 images for
the validation set, 5 000 images for the test set for both CIFAR-10 and Fashion-MNIST.
We trained every model on the remaining images.

It is evident from Table 2 that SAN outperformed all reported operations on CIFAR-
10. In addition, it gave higher accuracy than flatten when both approaches have a com-
parable number of parameters (last row). We verified that lower results of flatten were
caused by its slight overfitting to the training data. Adding dropout to flatten makes both
approaches comparable. In the case of significantly simpler Fashion-MNIST dataset,
the differences between all methods are smaller. SAN achieved an identical accuracy
to flatten for the size 2048. Note however, that the flatten approach uses twice as much
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\ Fashion MNIST \ CIFAR 10

size ‘ﬂatten avg-pool max-pool conv-1x1 SAN ‘ﬂatten avg-pool max-pool conv-1x1 SAN

128 - 0.852  0.901 0916 0912| - 0.624  0.690 0.731 0.738
256 - 0.877  0.908 0916 0911 - 0.649  0.697 0.738 0.739
512 - 0.879  0.906 0918 0910 - 0.671 0.701 0.722  0.730
1024] - 0.888 0914 0912 0915 - 0.659  0.683 0.722  0.756
2048 - 0.889 0912 0914 0919 - 0.697  0.686 0.707 0.733

4096/0.919 0912  0.900 0914 0.912/0.720 0.738  0.708 0.709 0.762

Table 2: Classification accuracy on a small network (images with the same resolutions) for dif-
ferent number of parameters used in aggregation layer.

parameters as SAN. This demonstrates that by the use of SAN the network can be sim-
plified without any loss in accuracy.

To get more insight to the results, we present learning curves for CIFAR-10 and
Fashion-MNIST in Figure 3 and Figure 4, respectively. It is evident that max-pooling
and conv-1x1 highly overfitted to training data, especially on the more demanding
CIFAR-10 dataset. Although avg-pooling presented comparable accuracy on train and
test sets, its overall performance was quite low, and matched that of the other meth-
ods only for high number of the parameters. In contrast, SAN provided high accuracy
and did not suffer from high overfitting to training data. In addition, for the Fashion-
MNIST experiment, SAN converged to high performance (over 90%) much faster than
the corresponding avg-pooling approach.

This experiment partially confirms our theoretical result that for a sufficient number
of neurons, SAN is able to preserve the whole information contained in the input. On
the other hand, it shows that SAN can work as a regularizer, which prevents the model
from overfitting.

4.2 Classifying Images with Varied Sizes

Most classification models assume that input images are of the same size. If this is not
the case, we are forced to scale images at preprocessing stage or use pooling operation
as an intermediate layer to apply fully connected layers afterwards. In this experiment,
we compared SAN with max-pooling and avg-pooling in classifying images of different
sizes. We used analogical architecture as in previous section. Note that we were unable
to use flatten or conv-1x1, because the output from convolutional network had different
sizes.

We again considered Fashion-MNIST and CIFAR-10 datasets. To create examples
with different sizes we used bicubic interpolation on randomly selected images*. We
examined two cases. In the first one, the network was trained only on images with

* For CIFAR-10, original images of size 32 x 32 were scaled to 16 x 16, 24 x 24, 32 x 32, 40 x
40, 48 x 48. For Fashion-MNIST, images of size 28 x 28 were scaled to 14 x 14,22 x 22,42 x
42,56 x 56.
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Fig. 3: Train (blue) and test accuracy (red) on CIFAR-10 (images with the same resolutions) for
different number of parameters used in aggregation layer.

original resolution, but tested on images with different resolutions. In the second case,
scaled images were used both in training and testing.

The results presented in Table 3 show that SAN produced more accurate results
than both global pooling approaches for almost every image resolution. Observe that
the results are worse when only images with 32 x 32 size were used in train set. It can
be explained by the fact that convolutional filters were not trained to recognize relevant
features from images with different scales. In this case, the differences are even higher.

4.3 Large Scale ResNet Experiment

In previous experiments we deliberately use a rather simple network in order the exam-
ine the effect of only alternating the aggregation method. This allows for the assessment
of the methods performance in isolation from any additional layers which could further
improve models regularization effect and which are necessary to efficiently train a vast
network (such as, for instance, batch norm [12]). In this experiment, we tested the im-
pact of using SAN in a large-scale network.

For this purpose we chose the ResNet-56 model [8], which consists of 56 layers.
The original ResNet uses the global average pooling approach followed by a dense
layer, which projects the data into the output dimension. Our modification relies on
replacing global pooling by SAN. As introduction of the SAN with 4096 vectors comes
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Fig. 4: Train (blue) and test accuracy (red) on Fashion-MNIST (images with the same resolutions)
for different number of parameters used in aggregation layer.

at a cost of increased number of parameters, we added an additional, penultimate dense
layer with hidden dimension 4096 to the ResNet for the average- and the max-pooling,
and the conv-1x1, in order to allow for fair comparison.

The results for CIFAR-10 dataset are reported in Table 4. It is evident that the intro-
duction of SAN to the original ResNet architecture led to the improvement of classifi-
cation accuracy. Moreover, SAN outperformed other aggregation approaches.

5 Conclusion

In this paper, we proposed a novel aggregation network, SAN, for processing structured
data. Our architecture is based on recent methodology used for learning from permuta-
tion invariant structures (sets) [28]. In addition, to Zaheer’s work, we showed that for
a sufficiently large number of neurons, SAN allows to preserve the whole information
contained in the input. This theoretical result was experimentally confirmed applying
convolutional network to image data. Conducted experiments demonstrated that the re-
placing of global pooling by SAN in typical neural networks used for processing images
leads to higher performance of the model.
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‘ Trained on all resolutions ‘Trained only on original resolution

Dataset Image size‘max—pool avg-pool SAN ‘max—pool avg-pool SAN

Fashion MNIST  14x14 | 0.8788 0.8753 0.8810| 0.2519  0.270 0.2884

22x22 | 0.8969 0.9002 0.9064| 0.7380  0.801 0.8247
28x28 | 0.9023 0.9078 0.9111| 0.9062  0.904 0.9150
42x42 | 09020 0.9041 0.9033| 0.5548 0.6511 0.6893
56x56 | 0.8913 0.8960 0.8966| 0.3274 0.3809 0.4515

CIFAR-10 16x16 0.5593 0.5820 0.6305| 0.3251 0.2714 0.3808

24x24 | 0.6450 0.6935 0.7317| 0.6409 0.6130 0.6956
32x32 | 0.6729 0.7018 0.7565| 0.7131 0.7637 0.7534
40x40 | 0.6739 0.6914 0.7430| 0.6512 0.6780 0.7234
48x48 | 0.6770 0.6625 0.7626 | 0.5325 0.5366 0.6264

Table 3: Classification accuracy for images with varied resolutions.

‘ original ‘ ResNet-avg ‘ ResNet-max ‘ ResNet-convlx1 ‘ ResNet-SAN ‘
error | 0.0735| 0.0724 | 00782 | 00780 | 0.0697 |

Table 4: Test accuracy on CIFAR-10 using the ResNets architecture. The first column corresponds
to the original ResNet model. The ResNet-avg/max/conv-1x1 models come with an additional
penultimate dense layer of size 4096, in order to match the number of parameters in SAN .
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A Graph processing

Predicting the properties of chemical compounds is one of basic problems in medical
chemistry. Since the laboratory verification of every molecule is very time and resource
consuming, the current trend is to analyze its activity with machine learning approaches.
Typically, a graph of chemical compound is represented as a fingerprint, which encodes
predefined chemical patterns in a binary vector (Figure 5). However, one can also apply
graph convolutional neural networks to learn from a graph structure directly without
any initial transformation.

OH
HO %FO
HO OH

H \—/OH 0\70
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Fig. 5: Example of a chemical compound represented by graph and its lossy conversion to finger-
print.

In this experiment, we considered a neural network, sum-pooling, developed by
Coley et al. [3], which is an extension of graph convolutional networks [15], [5] applied
to chemical compounds. Given a set of features extracted by convolutional filters from
a graph of compound, the authors use a type of global sum-pooling, which summarizes
the results to a fixed length vector. Next, dense layers are applied. We examined the
effect of replacing sum-pooling by a single layer SAN. We used identical number of
aggregative neurons in SAN as in the first dense layer of Coley’s network to provide
equal numbers of parameters in both approaches. Additionally, for a comparison we
used a dense network with a comparable number of parameters applied on classical
ECFP fingerprint’.

We used Tox21, which is a common benchmark data set for comparing machine
learning methods on chemical data. It comprises 12 060 training samples and 647 test
samples. For each sample, there are 12 binary labels that represent the outcome (ac-
tive/inactive) of 12 different toxicological experiments. In consequence, we evaluate
methods on 12 classification tasks.

The results presented in Table 5 indicate that replacing pooling layer by SAN in-
creased the performance in most cases. Although the difference between these meth-
ods is not high, obtained model allows to better predict the activity of compounds.

> https://docs.chemaxon.com/display/docs/Extended+Connectivity+Fingerprint+ECFP
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ECFP sum-pooling SAN

ahr 0.783402 0.843292 0.849239
ar 0.678241 0.464120 0.589120
ar-1bd 0.610887 0.735887 0.782258
are 0.691032 0.804965 0.837223
aromatase  0.704507 0.775510 0.710601
atad5 0.595447 0.612683 0.568130
er 0.591733 0.606814 0.621660
er-1bd 0.467754 0.723913 0.736957
hse 0.678906 0.734375 0.688672
mmp 0.776911 0.864057 0.866305
pS3 0.502083 0.728720 0.750149

ppar-gamma 0.448340 0.700133 0.619389

Table 5: ROC AUC scores for Tox-21.

Moreover, it is evident that the use of convolutional network significantly outperformed
fingerprint-based approach.

B Sentiment Classification

Text documents are often represented as sequences of word embeddings and processed
by convolutional or recurrent networks, followed by a pooling layer [14]. In this ex-
periment, the use of SAN is compared to the average- and max- pooling methods in
the problem of sentiment classification. For this purpose we consider the IMDB Movie
Review and the Movie Review (MR) dataset from [19]. The IMDB [17] consists of
50000 samples, from which 20% is used for test dataset. The MR review has 10662
documents. 10% of the data is used both for validation and test examples.

The embedding layer size used in this experiment is set to 128 for the IMDB and 64
for MR. The vocabulary used for the one-hot encoding of the inputs to the embedding
includes 10000 most frequent words from each dataset. The so obtained word represen-
tations are then passed to a single LSTM recurrent network, which produces outputs for
each word in the sequence. Those outputs are aggregated to form a single vector and
passed to the predictor head network. In this setting, we test the SAN approach against
the avg- and max- pooling methods. The number of tested output neurons is from the
set {256, 512} for IMDB and {128, 256} for MR. Again, to allow for the same number
of parameters in the avg- and max- models, we add and additional fully connected layer
after the pooling, with the hidden neurons size matching the size of output neurons in
SAN. The networks are trained for 5 epochs with the Adam optimization algorithm.
The learning rate is equal to 1le — 2 and batch size is 128 . The results are presented in
Table 6.

In this experiment the SAN approach gave results comparable to other methods,
however was not able to exceed them. The average pooling algorithm also performed
rather poorly, behaving nearly as simple random guessing for the most simple MR net-
work (size 128). The highest accuracy was almost always achieved by the max pooling.
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dataset ‘sizes‘avg-pooling max-pooling SAN ‘

IMDB ‘256‘ 0.9016 0.8930 0.8924‘

512 0.8892 0.9044  0.8890

MR 128 | 0.5186 0.7656  0.7510
256 | 0.7480 0.7656  0.7471

Table 6: Test accuracy for the IMDB and MR datasets. The MR model uses less parameters, as it
also has significantly less training examples.

This may be the result of identifying the largest activation associated with a sentiment-
significant word. In the other pooling approaches, this value would be mixed with other
obtained vectors indices, and possibly harder to retrieve. Moreover, increasing the num-
ber of parameters in SAN does not result in better outcomes, which may suggest that
the model has overfit to the training data. One should also point out that no spacial po-
sition information has been added to the representations processed by SAN. This may
be a drawback in this specific task, as NLP data are sequence-dependant.
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